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Abstract In this paper, we present results for testing main, simple and interaction
effects in heteroscedastic two factor MANOVA models. In particular, we suggest mod-
ifications to the MANOVA sum of squares and cross product matrices to account for
heteroscedasticity. Based on these modified matrices, we define some multivariate
test statistics and derive their asymptotic distributions under non-normality for the
null as well as non-null cases. Derivation of these results relies on the perturbation
method and limit theorems for independently distributed random matrices. Based on
the asymptotic distributions, we devise small sample approximations for the quantiles
of the null distributions. The numerical accuracy of the large sample as well as small
sample approximations are favorable. A real data set from a Smoking Cessation Trial
is analyzed to illustrate the application of the methods.

Keywords MANOVA · Perturbation method · Heteroscedasticity · Non-normality ·
Local alternatives · Multivariate tests

1 Introduction

Consider the multivariate linear model Yp×n = Bp×kXk×n+Ep×n where X is a known
design matrix, B is a matrix of unknown parameters, and E = (ε1, . . . , εn) is a random
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136 S. W. Harrar, A. C. Bathke

matrix whose columns εi are independently distributed with mean 0 and positive def-
inite variance-covariance matrix �i . Consider a linear hypothesis H0 : BC = 0 for
some known full column rank matrix C . Assuming that εi has multivariate normal dis-
tribution and that�1 = · · · = �n , the theory for testing the hypothesis H0 is very well
developed and documented in the multivariate statistics literature (Anderson 2003;
Muirhead 1985). The most commonly used test statistics are the Likelihood Ratio
(LR), Lawley–Hotelling (LH), and Bartlett–Nanda–Pillai (BNP) statistics. Exact null
and non-null distributions of these statistics take quite complicated forms except in
few special cases. Tabulations have been provided in some cases. Dempster (1958,
1960) devised a test statistic suited to the situation where the dimension is large and
proposed an approximation to the null distribution by matching moments with that of
the F-distribution.

On the other hand, these statistics are known to have an asymptotic chi-square
distribution as the sample size tends to infinity. There are also satisfactory asymp-
totic expansions as a function of chi-square variables, see for example Anderson
(2003) and Siotani et al. (1985). For the situation when the covariance matrices are
not assumed equal, the earliest research appears to be by James (1954) and Ito (1969)
who provided only approximate solutions for the one, two and k sample multivariate
problems.

Under non-normality and equal covariance matrices, the null distributions of these
statistics with the exception of Dempster’s are known to converge to a chi-square
limit distribution as the sample size tends to infinity, under certain restrictions on
the design matrix (Huber 1973). There are also a few recent works on asymptotic
expansions of the distributions of these statistics under non-normality (Fujikoshi 2002;
Wakaki et al. 2002; Kakizawa 2009). Despite its theoretical as well as practical impor-
tance, the more general case without the assumption of constant covariance matrix
has received only little attention. Part of the reason is that the asymptotic theory
tends to be much more involved. Ito (1969) obtained asymptotic expansions for dis-
tributions of the multivariate statistics for testing equality of k mean vectors when
the covariance matrices are unequal but normality holds. Later, Ito (1980) studied
the robustness of one-way MANOVA problems when normality and homoscedas-
ticity are violated one at a time. In these works, Ito noted that the effect of heter-
oscedasticity is substantially different on the different tests. Under non-normality,
Kakizawa and Iwashita (2008) obtained asymptotic expansions for the null distribu-
tion of Hotelling’s T 2-type counterpart of Welch’s t-test statistic by including terms
of order up to 1/n. Kakizawa (2007) obtained asymptotic expansions of James (1954)
statistic for the one-way MANOVA layout. One major problem with James’ statis-
tic is that its application is rather too complicated when there are two or more fac-
tors.

Besides focusing on the one-way layout problem, all the above asymptotic works
assume that the hypothesis degrees of freedom remain fixed or small. Allowing the
hypothesis degrees of freedom to go to infinity at the same rate as the error degrees
of freedom, Fujikoshi (1975) derived asymptotic formulas for the null and non-null
distributions of some multivariate statistics under normality and equal covariance
matrices. In this paper, we are concerned with testing linear hypotheses in a multi-
variate factorial design setup. For brevity, we consider the two-way cross classified
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A modified two-factor multivariate analysis of variance 137

design, without making the assumptions of normality and equality of covariance matri-
ces. Our asymptotic framework is that the replication sizes are fixed but the number
of levels of one of the factors is large. It was shown in Harrar and Bathke (2008)
that the distributions of the test statistics are sensitive to non-normality when the
covariances and sample sizes per treatment are not constant. The underlying cause
of this problem appears to be the weighting scheme in pulling the data together to
get estimates of the within and between variabilities. Mindful of that, we redefine
the estimates of these variabilities by using a suitable weighting scheme. Then the
comparison of these measures of variabilities is done via the Dempster, LR, LH and
BNP criteria to construct tests of significance for the main, simple, and interaction
effects.

The asymptotic setup considered in this paper is becoming increasingly popular in
view of the recent inventions of high throughput diagnostics and other biotechnologies
such as fMRI and Microarrays which generate massive amounts of data to be analyzed.
Another practical example in a Smoking Cessation Trial is discussed in Sect. 4.

More motivations for this type of asymptotics in agriculture, health sciences,
and other disciplines are found in Boos and Brownie (1995), Akritas and Arnold
(2000), Bathke (2002, 2004), Harrar and Gupta (2007), in univariate settings, and
Gupta et al. (2006, 2008), Bathke and Harrar (2008), and Harrar and Bathke
(2008) in the multivariate setting. Whereas Gupta et al. (2006, 2008) are restricted
to the equal covariance case, Bathke and Harrar (2008) and Harrar and Bathke
(2008) consider the single factor nonparametric situation. For a recent trea-
tise on high-dimensional multivariate approximations, see also Fujikoshi et al.
(2010).

In this paper, 0 will denote the vector (0, . . . , 0)′, the dimension will be clear
from the context, and 1n denotes an n-dimensional vector (1, . . . , 1)′ consist-
ing of ones. The matrix In is the identity matrix, and Jn, Pn are defined as

Jn = 1n · 1′
n and Pn = In − n−1 Jn , respectively. The symbol

L→ stands as an

abbreviation for “converges in law to” and
p→ for “converges in probability to”.

Throughout the paper, we will extensively use the Kronecker (or direct) prod-
uct A ⊗ B of matrices, the direct sum A ⊕ B of matrices, the vec opera-
tor that stacks columns of a matrix on top of each other, and the commutation
matrix Km,n . See Magnus and Neudecker (1979) for properties of the commutation
matrix.

The paper is organized as follows. Section 2 presents the modified test statistics
and their distributions under the null hypothesis as well as local alternatives. Also
in Sect. 2, the numerical accuracy of the asymptotic distributions are investigated.
Then Sect. 3 devises finite sample approximations based on the robustness results
obtained in Sect. 2 and some existing results under normality and constant covariance
matrices. The analysis of a real data set is presented in Sect. 4. An R-Script which
implements the methods of this paper can be obtained from the authors by request. We
will eventually develop a self contained R-package and make it available via CRAN.
Section 5 contains discussions and some concluding remarks. For the sake of clarity
and efficient presentation of the ideas, proofs and other technical details are placed in
the Appendix.
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138 S. W. Harrar, A. C. Bathke

2 Heteroscedastic MANOVA

2.1 Preliminaries

Let Yi jk be independent p-dimensional random vectors with mean vector μi j and
covariance matrix �i j for i = 1, . . . , a, j = 1, . . . , b, and k = 1, . . . , ni j . Consider
the model μi j = μ + αi + β j + γ i j , where αi ,β j , and γ i j are unknown constants
corresponding to the effects due to the two factors A and B and their interaction
AB. We assume the identifiability constraints

∑
i αi = ∑

j β j = 0,
∑

j γ i j = 0 for
i = 1, . . . , a, and

∑
i γ i j = 0 for j = 1, . . . , b.

The hypotheses of interest for this treatment design are as follows.

(a) H(A)
0 : αi = 0 for i = 1, 2, . . . , a—which means no main effects of levels of

factor A,
(b) H(A|B)

0 : αi + γ i j = 0 for i = 1, 2, . . . , a and j = 1, 2, . . . , b—which means no
simple effects of levels of factor A,

(c) H(B)
0 : β j = 0 for j = 1, 2, . . . , b—which means no main effects of levels of

factor B,
(d) H(B|A)

0 : β j + γ i j = 0 for i = 1, 2, . . . , a and j = 1, 2, . . . , b—which means
no simple effects of levels of factor B, and

(e) H(AB)
0 : γ i j = 0 for i = 1, 2, . . . , a and j = 1, 2, . . . , b—which means no

interaction effects of levels of factor A and levels of factor B.

The asymptotic setup is that the number of levels of one of the factors, say A, is
large but the sample size and the number of levels of the other factor remain fixed.
In this asymptotic situation, the problems of testing main and simple effects of factor
B seemingly fall in the usual large n asymptotic framework. However, the techniques
and the results will be new and nontrivial due to the modification of sum of squares
and cross products matrices to be introduced next.

Define,

H (A) = 1

a − 1

a∑

i=1

b∑

j=1

(Ỹi.. − Ỹ...)(Ỹi.. − Ỹ...)′,

H (A|B) = 1

(a − 1)b

a∑

i=1

b∑

j=1

(Ȳi j. − Ỹ. j.)(Ȳi j. − Ỹ. j.)′,

H (B) = 1

b − 1

a∑

i=1

b∑

j=1

(Ỹ. j. − Ỹ...)(Ỹ. j. − Ỹ...)′, (1)

H (B|A) = 1

a(b−1)

a∑

i=1

b∑

j=1

(Ȳi j.−Ỹi..)(Ȳi j.−Ỹi..)
′,

H (AB) = 1

(a−1)(b−1)

a∑

i=1

b∑

j=1

(Ȳi j.−Ỹi..−Ỹ. j.+Ỹ...)(Ȳi j.−Ỹi..−Ỹ. j.+Ỹ...)′,
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and

G = 1

ab

a∑

i=1

b∑

j=1

1

ni j (ni j − 1)

ni j∑

k=1

(Yi jk − Ȳi j.)(Yi jk − Ȳi j.)
′ = 1

ab

a∑

i=1

b∑

j=1

1

ni j
Si j ,

where Ȳi j. = 1
ni j

∑ni j
k=1 Yi jk , Ỹi.. = 1

b

∑b
j=1 Ȳi j., Ỹ. j. = 1

a

∑a
i=1 Ȳi j., Ỹ... =

1
ab

∑a
i=1

∑b
j=1 Ȳi j., and Si j = 1

(ni j −1)

∑ni j
k=1(Yi jk − Ȳi j.)(Yi jk − Ȳi j.)

′.
The mean vectors μi j and covariance matrices �i j differ from cell to cell.

Thus, it does not make sense to use the weighting scheme used in homoscedas-
tic MANOVA when combining the data in the process of forming the hypoth-
esis mean squares and cross products matrices. More specifically, let μ̃p×ab =
(μ11, . . . ,μ1b,μ21, . . . ,μab). The hypothesis of no interaction effects can be writ-
ten as H(AB)

0 : μ̃(Pa ⊗ Pb) = 0. Define Ȳ· = (Ȳ11·, . . . , Ȳ1b·, Ȳ21·, . . . , Ȳab·). It
is reasonable to consider Q(AB) = Ȳ·(Pa ⊗ Pb)Ȳ′· as a hypothesis sum of squares
and cross products matrix for H(AB)

0 . Then, with the aid of Eqs. (9), one can see
that Q(AB) = (a − 1)(b − 1)H (AB). This idea is similar to the quadratic forms in
Brunner et al. (1997) for their ANOVA-type statistics in the univariate setting. Anal-
ogous arguments can be used to justify the other sum of squares and cross products
matrices.

As an estimate of the within variability, we take the average of the estimators of the
variances of the cell mean vectors. These sum of squares and cross products matrices
correspond to the type III sum of squares and cross products matrices in unweighted
means analysis of multivariate linear models. In the univariate case these types of
mean squares have been used, e.g., by Wang and Akritas (2004, 2006).

2.2 Test statistics

Before we define the test statistics, we show that the sum of squares and cross products
matrices given in the previous section have the same expected values under the null
hypotheses. First, define� by� = 1

ab

∑a
i=1

∑b
j=1

1
ni j
�i j . From here on, we assume

that � = O(1).
It is shown in Appendix A that for each of H (AB), H (A|B), H (A), H (B), and H (B|A),

the expected value under the corresponding null hypothesis is equal to �. That is,

under H(ψ)
0 , E

(
H (ψ)

)
= 1

ab

a∑

i=1

b∑

j=1

1

ni j
�i j = � (2)

where ψ can be each of the effects under consideration: AB, A|B, A, B or B|A.
In view of (2) and the fact that E(G) = �, we can compare the hypothesis and

error matrices to obtain a meaningful test statistic. In multivariate analysis of vari-
ance (MANOVA), there is a multitude of test statistics to choose from. None of these
statistics perform uniformly better than the others in the whole parameter space. For
this manuscript, we consider the four most commonly used test statistics, namely the
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140 S. W. Harrar, A. C. Bathke

Dempster, LR, LH, and BNP criteria. In what follows, we present the test statistics for
H(ψ)

0 . Here also, ψ can be each of the effects under consideration: AB, A|B, A, B, or
B|A.

(a) Dempster’s ANOVA Type criterion: T (ψ)D = tr(H (ψ))/tr(G).

(b) Wilks’ Lambda (Likelihood Ratio) criterion: T (ψ)LR = − log(|G|/|H (ψ) + G|).
(c) The Lawley–Hotelling criterion: T (ψ)LH = tr(H (ψ)G−1).

(d) The Bartlett–Nanda–Pillai criterion: T (ψ)BNP = tr
(
H (ψ)(H (ψ) + G)−1

)
.

2.3 Asymptotic distributions under the null hypotheses

We have seen that the matrix G is an unbiased estimator of�. The following theorem
asserts that the difference G −� is asymptotically (a → ∞) negligible.

Theorem 1 Assume that the ni j are bounded and that
∑a

i=1
∑b

j=1 n−2
i j (ni j −

1)−1�i j ⊗ �i j = o(a2) and
∑a

i=1
∑b

j=1 n−3
i j K4(Yi j1) = o(a2) as a → ∞. Then

G −�
p→ 0 as a → ∞.

The conditions in Theorem 1 basically require the weighted sum of the fourth and
second order moment do not grow at a rate faster than a2. Apparently, these condi-
tions become rather mild (in terms of a cell sample sizes) if we assume that the fourth
and second order moments of the data in the different treatment groups are uniformly
bounded.

In the remainder of this section we obtain the asymptotic null distributions of the
four test statistics for testing the main, simple, and interaction effects. Since the results
for testing H(AB),H(A),H(A|B) and H(B|A) are similar in form and their derivations
proceed along the same lines, we group them under the same heading in the following
subsection.

2.3.1 Testing H(AB),H(A),H(A|B) and H(B|A)

We know from Theorem 1 that, under two technical assumptions, G −� = op(1) as
a → ∞ and it is established in Theorem 2 below that

√
a(H (ψ) − G)� = Op(1)

as a → ∞ and for any matrix of constants �. Then the following expansions can be
easily verified.

T (ψ)D = 1 + 1√
a

[√
a tr(H (ψ) − G) · 1

tr(�)

]

+ op(a
−1/2),

T (ψ)LR = log |Ip+H (ψ)G−1|= p log 2+ 1

2
√

a

[√
a tr(H (ψ)−G)�−1

]
+op(a

−1/2),

T (ψ)LH = p + 1√
a

[√
a tr(H (ψ) − G)�−1

]
+ op(a

−1/2) (3)
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and

T (ψ)BNP = tr
(

H (ψ)G−1(Ip + H (ψ)G−1)−1
)

= p

2
+ 1

4
√

a

[√
a tr(H (ψ) − G)�−1

]
+ op(a

−1/2).

Considering the expansions in (3), one can see that all four test statistics, scaled and
centered suitably, may be expressed as

√
a
(
�T (ψ)G − h

) = √
atr
(
H (ψ) − G

)
�+ op(1), (4)

where � = 1, 2, 1, 4, h = 1, 2p log 2, p, 2p and� = (1/tr�)Ip, �
−1, �−1, �−1 for

G = D,LR,LH,BNP, respectively.
In light of the expression (4), the null distributions of the four test statistics can be

derived in a unified manner by obtaining the null distribution of
√

a tr(H (ψ)−G)� for
any fixed matrix �. The null distribution of the latter quantity is given in Theorem 2.
The theorem needs the following technical assumptions to hold.

Assumption 1 For some δ > 0, E |(Yi j1 −μ
(ψ)
i j )

′�−1
i j (Yi j1 −μ

(ψ)
i j )|2+δ < ∞ where

Yi jk and μ
(ψ)
i j are as defined in Theorem 2.

Assumption 2 For some δ > 0,

lim
a→∞

1

a

a∑

i=1

b∑

j=1

1

n1+δ/2
i j (ni j − 1)1+δ/2 tr(��i j )

2+δ < ∞

and

lim
a→∞

1

a

a∑

i=1

b∑

j �= j ′

1

n1+δ/2
i j n1+δ/2

i j ′
tr(��i j��i j ′)

1+δ/2 < ∞.

As one can readily understand, Assumptions 1 and 2 are needed for the application
of Liaponauv’s Central Limit Theorem in proving the following theorem. Before stat-
ing the theorem, though, we introduce a notation which greatly facilitates a succinct
presentation. Let

μ
(ψ)
i j =

⎧
⎪⎨

⎪⎩

μ + αi + β j if ψ = AB

μ + β j if ψ = A or A|B
μ + αi if ψ = B or B|A

. (5)

Theorem 2 Let ψ = AB, A, A|B or B|A. Suppose that under the hypothesis
H(ψ)

0 ,Yi jk are independently distributed with mean vectorμ
(ψ)
i j and covariance matrix

�i j for i = 1, . . . , a, j = 1, . . . , b and k = 1, . . . , ni j . Then, under the assumptions 1

and 2,
√

a tr(H (ψ)−G)�
L→ N

(
0, τ 2

ψ(�)
)

as a → ∞ and ni j and b bounded, where
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142 S. W. Harrar, A. C. Bathke

τ 2
ψ(�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

b

{

v1(�)+ v2(�)

(b − 1)2

}

when ψ = AB

2

b
{v1(�)+ v2(�)} when ψ = A

2

b
v1(�) when ψ = A|B

2

b2

{

v1(�)+ v2(�)

(b − 1)2

}

when ψ = B|A

.

Here,v1(�) = lima→∞ 1
ab

∑a
i=1

∑b
j=1

tr(��i j )
2

ni j (ni j −1) andv2 = lima→∞ 1
ab

∑a
i=1

∑b
j �= j ′

tr(��i j��i j ′ )
ni j ni j ′

, assuming the limits exist.

Under the assumptions and notations of Theorem 2, the asymptotic distribution of
Dempster’s ANOVA type criterion can be obtained by setting� = (1/tr�)Ip. For the
other three criteria, we set � = �−1 to get the asymptotic null distributions.

Needless to say, the asymptotic null distributions of TLR, TLH and TBNP, scaled and
centered as in (4), are the same up to the order O(a−1/2). A comparison of the asymp-
totic variances in Theorem 2 reveals that the test statistic for the interaction effect
has smaller variance than that of the main effect. Also we see from the asymptotic
variances in Theorem 2 that the test statistic for the simple effect of A has smaller
variance compared to that of either the interaction or main effects. In addition, it is
apparent from the theorem that the sizes of the four tests are asymptotically robust.

2.3.2 Consistent estimator of τ 2
ψ(�)

In practice, we need a consistent estimator of τ 2
ψ(�) for� = (1/tr�)Ip and� = �−1

to apply Theorem 2. Since G − � = op(1) as a → ∞, we only need to find a con-
sistent estimator of τ 2

ψ(�) assuming � is a known constant matrix. The following
Theorem provides such an estimator. A similar estimator has been used in a univariate
setting in Wang and Akritas (2009).

Theorem 3 Let the model and assumptions be as in Theorem 2. Further assume the
eighth order moments of Yi jk exist and define

�̂i j (�) = 1

4ci j

ni j∑

(k1,k2,k3,k4)∈K
�(Yi jk1 − Yi jk2)(Yi jk1 − Yi jk2)

′

×�(Yi jk3 − Yi jk4)(Yi jk3 − Yi jk4)
′,

where K is the set of all quadruples κ = (k1, k2, k3, k4)where no element in κ is equal
to any other element in κ , and ci j = ni j (ni j − 1)(ni j − 2)(ni j − 3). Then, as a → ∞,

1

ab

a∑

i=1

b∑

j=1

1

ni j (ni j − 1)
tr(�̂i j (�))− 1

ab

a∑

i=1

b∑

j=1

1

ni j (ni j − 1)
tr(��i j )

2 = op(1)
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and

1

ab

a∑

i=1

b∑

j �= j ′

1

ni j ni j ′
tr(�Si j�Si j ′)− 1

ab

a∑

i=1

b∑

j �= j ′

1

ni j ni j ′
tr(��i j��i j ′) = op(1).

In some cases it may be appropriate to assume that �i j = � j (cf. Bathke
2004). Under this assumption, 1

a

∑a
i=1

∑b
j=1

1
ni j
�i j = ∑b

j=1 n. j� j , where n. j =
1
a

∑a
j=1

1
ni j

. Thus, assuming n. j = O(1) as a → ∞, a consistent estimator of � j

and, therefore, of� can be obtained by pooling the estimates from each level of factor
A. This estimator will obviously be consistent as a → ∞ and uses all information in
the samples.

2.3.3 Testing for the main effects of factor B

For testing the main effects of factor B, the asymptotic framework a → ∞ is con-
ceptually similar to the usual large replication size asymptotics, and therefore, we
expect a chi-squared type asymptotic null distribution. In the proof of Theorem 4 (see
Appendix B), we will see that (b − 1)tr(H (B)G−1) = Op(1). Thus, the expansion

(b − 1)T (B)G = (b − 1)tr(H (B)G−1)+ Op(
1
a ) holds for G = LR and BNP. Therefore,

in light of the fact that G −� = op(1) as a → ∞, the asymptotic null distribution of
the four test statistics can be derived in a single stroke if we have the asymptotic null
distribution of (b − 1) tr(H (B)�) for any constant matrix �. Before we present the
the result, we state an assumption needed for the application of Liaponauv’s Central
Limit Theorem.

Assumption 3 For some δ > 0, E‖Yi j1 − μ
(B)
i j ‖2+δ < ∞ where Yi jk and μ

(B)
i j are

as defined in Theorem 4.

Theorem 4 Suppose Yi jk are independently distributed with mean vector μ
(B)
i j =

μ+αi and covariance matrix�i j for i = 1, . . . , a, j = 1, . . . , b and k = 1, . . . , ni j .
Then, under Assumption 3 and the assumption (1/a)

∑a
i=1 n−1

i j �i j = O(1) as a →∞,

(b − 1)trH (B)�
L→

(b−1)p∑

k=1

λkχ
2
1,k (6)

where ni j and b are bounded and λk is the kth largest eigenvalue of� defined by� =
(Pb ⊗�1/2)( 1

a

∑a
i=1(

⊕b
j=1

1
ni j
�i j ))(Pb ⊗�1/2). Here, χ2

1,k, k = 1, 2, . . . , (b−1)p,

stands for independent chi-square random variables each with one degree of freedom.

The application of Theorem 4 requires a reasonable approximation to the right
hand side of (6) and a consistent estimator of � or at least of its p(b − 1) nonzero
eigenvalues λ1, . . . , λ(b−1)p. A well known approximation to the distribution of a lin-
ear combination of independent chi–squared random variables is a constant multiple
of a chi-square distribution, say gχ2

f , where g and f are determined by the method
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144 S. W. Harrar, A. C. Bathke

of moments. The moment matching principle applied here leads to f = tr(�)2

tr(�2)
and

g = tr(�2)
tr(�) . Now consistent estimators f̂ and ĝ can be obtained by replacing � with

its consistent estimator,

�̂ = (Pb ⊗ �̂1/2)

⎛

⎝1

a

a∑

i=1

⎛

⎝
b⊕

j=1

1

ni j
Si j

⎞

⎠

⎞

⎠
(

Pb ⊗ �̂1/2
)

where �̂ is obtained from � by replacing � with G. The consistency of G for � is
established in Theorem 1. The same argument as in the proof of Theorem 1 can be
used to establish

1

a

a∑

i=1

⎛

⎝
b⊕

j=1

1

ni j
Si j

⎞

⎠− 1

a

a∑

i=1

⎛

⎝
b⊕

j=1

1

ni j
�i j

⎞

⎠ = op(1) as a → ∞.

On the other hand, � = Pb ⊗ Ip for the Wilks Lambda, Lawley–Hotelling and
Bartlett–Nanda–Pillai criteria when the quantity (1/a)

∑a
i=1 n−1

i j �i j does not depend

on the index j . In this case� is idempotent and therefore (b − 1)T (B)G
L→ χ2

(b−1)p for

G = LR,LH,BNP. In the case of T (B)D ,� = Pb ⊗�. Then,

T (B)D
L→

p∑

k=1

σk

tr�
χ2
(b−1),k (7)

where σ1, . . . , σp are the eigenvalues of�. Here again applying the moment matching
principle to the right hand side of (7), we can use the approximation gχ2

f where consis-

tent estimators of f and g are given by tr(G)2/tr(G2) and tr(G2)/tr(G)2, respectively.

2.4 Asymptotic distributions under local alternatives

In this section, we give the asymptotic distributions under some reasonable local alter-
natives. Here also we present the results for the general cases and the distributions for
each of the four test statistics can be obtained by making the necessary substitution
for �. Here also we introduce a handy notation which allows a concise presentation
of the results. Denote

μ
ψ
i j,a = μ

ψ
i j +

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ i j,a if ψ = AB

αi,a if ψ = A

αi,a + γ i j,a if ψ = A|B
β j,a if ψ = B

β j,a + γ i j,a if ψ = B|A

,
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where μ
ψ
i j is as defined by (5) and the triangular arrays αi,a,β j,a and γ i j,a satisfy

the following constraints for each positive integer a:
∑a

i=1 αi,a = ∑b
j=1 β j,a = 0,

∑b
j=1 γ i j,a = 0 for i = 1, . . . , a and

∑a
i=1 γ i j,a = 0 for j = 1, . . . , b. Also let

�ψ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
a

1

(b − 1)

a∑

i=1

b∑

j=1

γ i j,aγ ′
i j,a if ψ = AB

1√
a

a∑

i=1

αi,aα′
i,a if ψ = A

1√
a

1

b

a∑

i=1

b∑

j=1

(αi,a + γ i j,a)(αi,a + γ i j,a)
′ if ψ = A|B

1√
a

1

(b − 1)

a∑

i=1

b∑

j=1

(β j,a + γ i j,a)(β j,a + γ i j,a)
′ if ψ = B|A

.

We assume �ψ = O(1). For example, when ψ = AB this assumption will be
reasonable if γ i j,a = O(a−1/4). So the following Theorem states that the four test
statistics will be able to detect a sequence of alternative points converging to 0 at the
rate a−1/4.

Theorem 5 Let ψ ∈ {AB, A, A|B, B|A}. Suppose Yi jk are independently distrib-

uted with mean μ
ψ
i j,a and covariance �i j . Then under the assumptions and notations

of Theorem 2,
√

a tr(H (ψ) − G)�
L→ N (tr�ψ�, τ 2

ψ(�)) where τ 2
ψ(�) is as defined

in Theorem 2.

Notice that the asymptotic power of the four tests under the local alternative in

Theorem 5 is a monotone function of tr �ψ�/
√
τ 2
ψ(�). The four test statistics will

have the same asymptotic power if � = cIp for any non-negative constant c. That
would be the case, for example, when �i j = Ip.

Next we present the asymptotic distribution of the test statistics for the main effects
of factor B under local alternatives.

Theorem 6 Suppose Yi jk are independently distributed with mean vector μB
i j,a and

covariance matrix �i j for i = 1, . . . , a, j = 1, . . . , b and k = 1, . . . , ni j . Assume
β j,a = a−1/2β j,0 where β j,0 are fixed vectors of constants. Then under Assumption 3

and the assumption that (1/a)
∑a

i=1 n−1
i j �i j = O(1) as a → ∞,

(b − 1)trH (B)�
L→

(b−1)p∑

k=1

λkχ
2
1,k(trB Pb B ′�)

as a → ∞ where B = (β1, . . . ,βb),� is as defined in Theorem 4, λi is the kth
largest eigenvalue of � as a → ∞ and, ni j and b are bounded where χ2

1,k(θ) for
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k = 1, 2, . . . , (b − 1)p are independent chi-square random variables each with one
degree of freedom and non-centrality parameter θ .

2.5 Numerical accuracy of the asymptotic distributions

To assess the quality of the asymptotic null distributions in Theorem 2, a simulation
study was conducted by generating data from multivariate normal and multivariate
skew normal (Azzalini and Capitanio 1999) distributions with dimension p = 3.
In each case, three different structures for the covariance matrices were considered.
These structures are (i)�i j = free of i and j , (ii)�i j = (1 −ρi j )Ip +ρi j 1p1′

p where
ρi j = (i j)1/2/(1+i j) and (iii)�i j = i j Ip. We denote these three structures by�1, �2
and �3, respectively. Note that covariance structure �3 violates the assumptions of
Theorem 2.2, and the tests are, therefore, not necessarily expected to perform well
in the simulation study. Five values of a = 10, 20, 35, 50, and 100 were considered,
along with b = 3. For the replication sizes, we set ni j = 4 for a − 1 cells, ni j = 5 for
(b − 1) cells and ni j = 6 for (a − 1)(b − 1)+ 1 cells.

In Table 1, results for testing the main effect of A and the interaction effect AB
are displayed. Considering the results for the structures �1 and �2, it can be seen
from the table that the test statistic TBNP appeared to be conservative for all values of
a considered, in particular, when testing the main effect. In this case, the quality of
approximation was not quite adequate even for a = 50 and 100. On the other hand,
TD and TLH appeared to be liberal for testing both the main effect of factor A and
the interaction effect. However, the quality of approximation improved quickly and
attained the desired size fairly close at a = 50 and 100. The test statistic TLR appeared
to be the best in terms of achieving the desired size. More so, in particular, for testing
the interaction effect. Table 1 also shows that heteroscedasticity and skewness did not
adversely affect the size of the tests.

Despite the fact that structure �3 violates the assumptions of Theorems 2,
we see that this did not seem to have an effect under normality. When the data
contained skewness, however, the numerical accuracy of the sizes was only
acceptable for the test of interaction effect, but not for testing the main effects.
Nevertheless, the increasing tendency of the sizes as a gets bigger is undesirable.
This indicates that the assumptions seem to be needed in practice, and that they are
not merely abstract technical conditions. In sum, the simulations give some compel-
ling evidence that the assumptions of the theorem on the covariances are important
only for testing the main effect. Even in this case the assumption seems to be required
only when there is departure from normality.

Overall, the actual type I error rates were better controlled at the desired level for the
interaction effect than the main effect. This is expected because the sampling variance
of the test statistic for the interaction effect is smaller than that of the main effect.

3 Finite sample approximations

Let Y1,Y2, . . . ,Yn be mutually independently distributed as Np(0, �i ) where
�i > 0. Define Q = YCY′ where C = (ci j ) is an n × n symmetric non-negative
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Table 1 Simulated actual sizes (expressed as percentages) for the four test statistics when sampling from
multivariate normal and multivariate Skew–Normal distributions under the three heteroscedasticity struc-
tures �1, �2, and �3

Cov. Pop. Test Stat a = 10 a = 20 a = 35 a = 50 a = 100

A AB A AB A AB A AB A AB

�1 MN TD 10.0 8.0 7.3 7.1 7.1 5.5 7.3 7.5 6.3 6.0

TLR 4.0 4.1 2.7 5.0 3.8 4.9 4.9 4.9 3.1 6.5

TLH 10.7 9.1 7.6 8.9 7.7 7.2 7.8 7.4 5.5 7.4

TBNP 1.3 1.2 1.3 2.6 2.1 3.2 3.3 3.6 2.4 5.1

MSN TD 9.5 6.7 5.9 8.6 7.1 7.2 6.8 5.9 6.4 6.8

TLR 2.8 3.4 4.1 6.0 4.9 5.5 4.0 4.3 4.8 6.0

TLH 10.8 8.5 8.2 8.9 7.8 7.6 6.5 5.6 6.9 7.2

TBNP 1.3 1.3 1.7 3.9 2.7 3.1 2.7 3.6 3.3 5.0

�2 MN TD 7.3 8.8 6.8 7.5 5.8 6.3 6.0 4.9 6.0 6.8

TLR 3.0 5.7 3.8 4.7 3.9 5.5 3.8 4.7 4.4 5.8

TLH 9.6 11.8 7.6 9.1 7.3 7.8 5.9 6.9 6.4 7.6

TBNP 0.5 1.4 1.6 2.8 2.1 3.4 2.0 2.6 2.9 4.8

MSN TD 7.8 8.1 7.4 7.2 6.0 5.9 8.0 5.6 6.6 4.8

TLR 3.2 4.8 3.2 5.6 3.8 4.4 5.1 5.0 4.5 5.2

TLH 9.6 10.9 7.8 8.7 6.3 6.1 7.9 6.7 7.5 6.9

TBNP 0.6 1.7 1.2 2.5 2.0 3.3 2.7 3.3 3.2 3.6

�3 MN TD 7.1 8.8 6.4 5.4 6.0 7.1 6.7 5.9 5.4 6.2

TLR 2.2 5.2 3.1 3.4 3.4 4.8 4.3 4.2 3.8 5.5

TLH 10.0 12.1 8.6 8.1 7.0 8.6 7.0 7.0 5.9 6.8

TBNP 0.6 1.4 1.3 1.7 1.6 3.2 2.2 2.3 2.6 3.5

MSN TD 27.9 7.8 42.4 7.7 59.1 9.3 75.9 7.3 93.9 6.1

TLR 11.9 5.0 24.4 5.3 43.1 7.4 60.4 5.4 86.3 5.1

TLH 32.8 11.5 46 9.6 23.9 10.9 77.5 8.5 94.6 7.2

TBNP 2.5 1.8 8.4 2.8 23.9 4.3 38.5 3.4 69.9 3.5

Here, b = 3, p = 3 and ni j = 4 for a −1 cells, ni j = 5 for (b −1) cells and ni j = 6 for (a −1)(b −1)+1
cells. The desired size of the tests is 0.05
Simulation size is 1,000

definite matrix and Y = (Y1,Y2, . . . ,Yn). We are interested in approximating the
distribution of Q by a p dimensional central Wishart distribution with degrees of
freedom f and mean f�, denoted by Wp( f, �), where � > 0. The quantities f
and � are to be approximated by matching the means and the total variances of Q
and Wp( f, �). By the total variance is meant the trace of the variance–covariance
matrix.

For a random matrix W distributed as Wp( f, �), the mean and variance are E(W) =
f� and Var(W) = f (Ip2 + K p,p)(�⊗�). On the other hand, the mean and variance
of Q can be obtained using Lemma 1 noting that, under normality, K4(Yi ) = 0. Now
setting the means and the total variances of Q and W equal,
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f� =
n∑

i=1

cii�i and

tr
(

f (Ip2 + K p,p)(� ⊗�)
) = tr

⎛

⎝
n∑

i=1

n∑

j=1

c2
i j (Ip2 + K p,p)(�i ⊗� j )

⎞

⎠ .

This leads to

f = tr
(∑n

i=1 cii�i
)2

∑n
i=1

∑n
j=1 c2

i j tr(�i� j )
and � =

∑n
i=1

∑n
j=1 c2

i j tr(�i� j )

tr
(∑n

i=1 cii�i
)2

n∑

i=1

cii�i .

It must be noted that one can also consider matching other functions of the eigenvalues
of the variances of W and Q such as the determinant to get different approximations.

Assuming normality, we propose approximating the distributions of H (A), H (B),

H (A|B), H (B|A), H (AB) and G by Wishart distributions with the respective degrees
of freedom denoted by f A, fB, f A|B , fB|A, f AB and fG . The rationale behind this
approximation is that it is shown in Sect. 2 that the asymptotic distributions of the
test statistics do not depend on the distribution of the data. Therefore, small sample
size approximations such as those based on asymptotic expansions may give good
approximations for moderate sample sizes under non-normality as well. The degrees
of freedoms for the approximating Wishart distributions of the sum of squares and
cross products matrices are obtained, after lengthy algebra, as:

f A = tr(�2)(ab)2

×
⎛

⎝
a∑

i=1

b∑

j, j ′=1

1

ni j ni j ′
tr(�i j�i j ′)+ 1

(a−1)2

a∑

i �=i ′=1

b∑

j, j ′=1

1

ni j ni ′ j ′
tr(�i j�i ′ j ′)

⎞

⎠

−1

,

f A|B = tr(�2)(ab)2

×
⎛

⎝
a∑

i=1

b∑

j=1

1

n2
i j

tr(�2
i j )+ 1

(a − 1)2

a∑

i �=i ′=1

b∑

j=1

1

ni j ni ′ j
tr(�i j�i ′ j )

⎞

⎠

−1

,

fB = tr(�2)(ab)2

×
⎛

⎝
a∑

i,i ′=1

b∑

j=1

1

ni j ni ′ j
tr(�i j�i ′ j )+ 1

(b − 1)2

a∑

i,i ′=1

b∑

j �= j ′=1

1

ni j ni ′ j ′
tr(�i j�i ′ j ′)

⎞

⎠

−1

,

fB|A = tr(�2)(ab)2

×
⎛

⎝
a∑

i=1

b∑

j=1

1

n2
i j

tr(�2
i j )+ 1

(b − 1)2

a∑

i=1

b∑

j �= j ′=1

1

ni j ni j ′
tr(�i j�i j ′)

⎞

⎠

−1

,
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f AB = tr(�2)(ab)2

×
⎛

⎝
a∑

i=1

b∑

j=1

1

n2
i j

tr(�2
i j )+ 1

(a − 1)2

a∑

i �=i ′=1

b∑

j=1

1

ni j ni ′ j
tr(�i j�i ′ j )+ 1

(b − 1)2

×
a∑

i=1

b∑

j �= j ′=1

1

ni j ni j ′
tr(�i j�i j ′)+ 1

(a − 1)2(b − 1)2

×
a∑

i �=i ′=1

b∑

j �= j ′=1

1

ni j ni ′ j ′
tr(�i j�i ′ j ′)

⎞

⎠

−1

and

fG = tr(�2)(ab)2

⎛

⎝
a∑

i=1

b∑

j=1

1

n2
i j (ni j − 1)

tr(�2
i j )

⎞

⎠

−1

where � = (ab)−1∑a
i=1

∑b
j=1 n−1

i j �i j . In practice, �i j and � can be replace by
their unbiased estimators. It may be noted that fψ diverges as a → ∞ for each
ψ ∈ {A, A|B, B, B|A, AB,G}.

In the remainder of this section, we show the details of the proposed approxima-
tions when applied to the test statistics for testing the main effects of factor A. The
details for the others can be obtained along the same lines. Also to facilitate ease of
presentation, we will use the following notations. Let B and W be independent random
matrices distributed as B ∼ Wp(nh, �) and W ∼ Wp(ne, �). Based on B and W,
define T1 = − log |W(B + W)−1|, T2 = tr(BW−1) and T3 = tr{B(B + W)−1}.

Since H (A) depends on the data only through the cell means Ȳi j and G depends
on the data only through Si j , we see that f A H (A) and fG G are independent. Also
according to the approximation discussed above, f A H (A) and fG G are approximately
distributed as Wp( f A, �) and Wp( fG , �), respectively.

3.1 χ2-Based asymptotic expansion

It is well known in the multivariate literature (see, for example, Anderson 2003) that
the upper α quantile of the distributions of mTi can be expanded as

χ2
ν,α + 1

ne

({
(p − nh + 1)

2
− d

}

χ2
ν,α + a(p + nh + 1)

2(ν + 2)
χ4
ν,α

)

+ O

(
1

n2
e

)

where m = ne(1 + d/ne), 0 < α < 1, ν = p · nh and χ2
ν,α is the upper α quantile

of the chi-square distribution with ν degrees of freedom. The values taken by d are
−(p − nh + 1)/2, 0 and nh − 1 for i = 1, 2, 3, respectively, and those taken by a
are 0, 1,−1 for i = 1, 2, 3, respectively. Notice that this expansions slightly differs
from those given in Anderson (2003) because we are giving the modified versions
after Bartlett’s corrections (accounting for the multiplying factor 1 + d/ne). These
formulae will reduce to those given in Anderson (2003) when d = 0. The sign of the
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second term in equation (22) on page 332 of Anderson (2003) should be corrected to
minus.

This approximation can be applied to the test statistics for the main effects of factor
A by redefining H (A) as f A H (A) and G as fG G and setting nh = f A and ne = fG .
In that case, T1, T2 and T3 coincide with T (A)LR , T (A)LH and T (A)BNP, respectively.

3.2 Normal-based asymptotic expansion

In a similar asymptotic framework as in this paper, Fujikoshi (1975) obtained asymp-
totic expansions for the distributions of centered and scaled versions of T1, T2 and
T3. More precisely, Fujikoshi’s asymptotic framework is that nh = nh, ne = ne, h >
0, e > 0 and h + e = 1. The asymptotic expansion is in the order of n meaning
that both nh and ne tend to infinity at the same rate. Accordingly, the Cornish-Fisher
expansion for the upper α quantile of

√
(m/τ 2)(Ti − l) is

zα + 1√
m

{a1h1(zα)+ a3h3(zα)} − 1

m

{

b2h2(zα)+ b4h4(zα)+ b6h6(zα)

+zα(a1 + a3h3(zα))

(
1

2
a1 + a3

[
1

2
h3(zα)− 2

])}

+ O
(
m−3/2) (8)

where zα denotes the upper α-quantile of a standard normal variate and the func-
tions h1, . . . , h6 are the first six Hermite polynomials defined as h1(x) = 1, h2(x) =
−x, h3(x) = x2 − 1, h4(x) = −x3 + 3x, h5(x) = x4 − 6x2 + 3 and h6(x) =
−x5 + 10x3 − 15x . The values taken by the coefficients m, τ, l, a1, a3, b2, b4 and
b6 depend on i . For i = 1,m = {(1 + e)n − (p + 1)}/2, τ 2 = 2ph(μe)−1, l =
−p log e, a1 = τ−1 p(p + 1)h(2μe)−1, a3 = 2τ−3 ph(1 + e)(μe)−2/3, b2 =
(1/2)τ−2 p(p+1)h(μe)−1{[p(p+1)+4(1+e)](μe)−1/4−1}, b4 = τ−4 ph{p(p+
1)(1 + e)h + 2(1 + e + e2)}(μe)−3/3 and b6 = (1/2)a2

3 where μ = 2(1 + e)−1.
For i = 2,m = ne, τ 2 = 2phe−2, l = phe−1, a1 = τ−1 p(p + 1)he−1, a3 =
4τ−3 ph(2 − e)(3e3)−1, b2 = τ−2 p(p + 1)[(1/2)(p2 + p + 8)h2 + 3he]e−2, b4 =
2τ−4 ph{(2/3)p(p + 1)h(2 − e) + e2 − 5e + 5}e−4 and b6 = (1/2)a2

3 . For
i = 3,m = n, τ 2 = 2phe, l = ph, a1 = 0, a3 = (4/3)τ−3 phe(e − h), b2 =
−τ−2 phe(p + 1), b4 = 2τ−4 phe(e2 + h2 − 3he) and b6 = (1/2)a2

3 .
To use Fujikoshi’s approximation to our case, we first redefine H (A) as f A H (A)

and G as fG G. For h, e and n, we take h = f A
f A+ fG

, e = fG
f A+ fG

, and n = f A + fG .

Finally, note that T1, T2 and T3 coincide with T (A)LR , T (A)LH and T (A)BNP, respectively.

3.3 Numerical accuracy of the small sample approximations

We investigated the accuracy of the small sample approximations proposed for the null
distributions of the test statistics TLR, TLH and TBNP for testing the main effects of A
and interaction effects AB. Table 2 displays simulation results for the approximations
based on the χ2-based asymptotic expansion (AEC) and normal-based asymptotic
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Table 2 Simulated actual sizes (expressed as percentages) for TLR, TLH and TBNP tests based on Normal
and Chi-Square asymptotic expansion approximations

TS �1 �2

MV Normal MV Skew Normal MV Normal MV Skew Normal

TLR TLH TBNP TLR TLH TBNP TLR TLH TBNP TLR TLH TBNP

a = 6

A

AEC 5.4 5.6 6.1 5.5 5.8 5.9 4.5 4.3 5.1 5.6 6.5 6.1

AEN 4.9 5.8 5.5 4.9 5.9 5.2 3.8 4.7 4.6 5.0 6.5 5.5

AB

AEC 5.1 5.1 6.8 4.8 4.9 7.0 4.6 4.8 6.6 5.1 5.3 7.3

AEN 4.6 5.1 4.8 4.3 4.9 4.8 3.6 4.8 4.2 4.1 5.3 4.4

a = 10

A

AEC 5.4 5.2 6.0 5.5 5.4 6.1 4.3 4.1 4.6 4.6 4.6 5.1

AEN 5.3 5.2 5.3 4.9 5.4 5.4 3.9 4.2 4.2 4.4 4.6 4.6

AB

AEC 4.4 4.2 6.3 4.8 4.1 6.5 5.9 6.0 9.8 4.8 4.9 7.8

AEN 3.6 4.2 4.3 3.6 4.2 3.9 5.6 6.0 5.1 4.4 4.9 4.6

a = 20

A

AEC 4.1 4.4 4.8 4.8 4.7 5.2 4.4 4.5 5.1 4.2 4.0 4.7

AEN 3.8 4.4 3.9 4.6 4.7 4.8 4.2 4.5 4.3 4.0 4.0 4.1

AB

AEC 5.8 5.2 9.9 6.8 6.2 10.1 6.3 5.5 10.1 6.8 6.5 9.9

AEN 5.1 5.2 5.1 6.1 6.3 6.0 4.9 5.5 5.3 5.6 6.5 5.6

a = 35

A

AEC 4.8 4.7 5.4 6.1 6.2 6.8 4.9 4.6 5.6 4.6 4.5 5.2

AEN 4.5 4.7 4.7 6.0 6.2 6.0 4.4 4.6 4.7 4.3 4.5 4.2

AB

AEC 5.8 4.8 11.1 6.1 5.1 11.7 6.6 5.7 11.1 5.2 4.5 10.4

AEN 4.8 4.8 4.8 5.1 5.1 5.2 5.8 5.7 5.9 4.4 4.5 4.2

a = 50

A

AEC 5.8 5.9 6.9 4.8 4.6 5.8 4.9 4.5 5.6 6.4 6.1 7.0

AEN 5.7 5.9 5.6 4.4 4.6 4.3 4.6 4.6 4.6 6.1 6.1 6.0
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Table 2 continued

TS �1 �2

MV Normal MV Skew Normal MV Normal MV Skew Normal

TLR TLH TBNP TLR TLH TBNP TLR TLH TBNP TLR TLH TBNP

AB

AEC 6.9 5.1 13.6 5.4 4.5 10.3 6.6 4.5 12.0 6.0 4.6 11.2

AEN 5.0 5.2 5.2 4.5 4.5 4.5 4.5 4.6 4.7 4.8 4.6 4.7

Data are generated from multivariate normal (MN Normal) and multivariate Skew–Normal (MV Skew
Normal) distributions under the heteroscedasticity structures �1 and �2. Here, b = 3, p = 3 and ni j = 4
for a − 1 cells, ni j = 5 for (b − 1) cells and 6 for b − 1 cells and ni j = 6 for (a − 1)(b − 1) + 1. The
desired size of the tests is set at 0.05
Simulation size is 1,000

expansion (AEN). For the sake of brevity, we consider only the heteroscedastic struc-
tures �1 and �2.

The results shown in Table 2 demonstrate that both the chi-square and normal based
small sample approximations maintained the desired size (α = 0.05) fairly accurately
for TLR and TLH. On the other hand, we notice that the quality of the chi-square based
approximation for TBNP when testing the interaction effect deteriorated as a increased.
So the chi-square approximation for this test can not be recommended.

4 Real data example: randomization for a smoking cessation trial

The Greek Health Project (NIH R01 CA107191) was intended to assess the efficacy
of a motivational interviewing (a form of counseling) versus an attention matched
control on smoking quit rate. The subjects for the research are students in the Greek
houses (fraternities and sororities) of the University of Missouri-Colombia. To avoid
a contamination effect, the researchers decided to use a cluster-randomized design
(individual fraternity or sorority chapters taken as clusters). That is, a whole chap-
ter is assigned to either the treatment or control arm. Prior to the assignment of the
chapters to the treatment and control arm, it was necessary to know whether nico-
tine dependence of the subjects depended on the chapter they came from, in order to
avoid unintentional selection bias. Another important variable believed to be highly
associated with nicotine dependence, in particular in the context of college students,
is depression. The level of depression for each subject was determined as low or high
based on the Center for Epidemiologic Studies Depression Scale (Kohout et al. 1993).
Three well known scales of nicotine dependence are the Fagerström Test for Nico-
tine Dependence (Heatherton et al. 1991), Hooked on Nicotine Checklist (Wellman
et al. 2005) and Minnesota Tobacco Withdrawal Scale (Hatsukami et al. 1984). In
the analysis that follows, we shorthand these variables as FTSD, HOOKNCTN and
WDRSYPTM, respectively. For this data set we have two factors (Chapter with twenty
levels and Depression with two levels) and three dependent variables (FTSD, HOOK-
NCTN and WDRSYPTM).
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Fig. 1 Three-dimensional scatter plot of the cell covariance between two variables against cell means
separately for each pair of the dependent variables

In Fig. 1, the sample covariances (for each pair of the dependent variables sepa-
rately) against the sample means of the variables are plotted to assess if the assumption
of constant covariance matrix is reasonable. It is clear from the three plots that cell
covariances change with the cell means indicating the violation of the constant covari-
ance assumption. A univariate Levene test for homogeneity of variance (Levene 1960)
for FTSD, HOOKNCTN and WDRSYPTM resulted in p-values < 0.001, 0.011 and
<0.001, respectively, all of which leading to the rejection of the homogeneity of var-
iance assumption. Given the linear dependence between the means and covariances
discerned in the plots of Fig. 1, one might think that the heteroscedasticity may be
resolved after a log transformation of each of the dependent variables. That does not
appear to be the case in view of Levene’s test p values < 0.001, 0.242 and 0.009
for the log of FTSD, HOOKNCTN and WDRSYPTM, respectively. Also, a plot of
the covariances against the means for the log-transformed data (not shown here in the
interest of space) indicates that the transformation does not seem to remove all of the
heteroscedasticity.

Having strong evidence against homogeneity of variance–covariance matrices, we
analyzed the data using the standard homoscedastic MANOVA procedures as well
as the heteroscedastic MANOVA procedure of this paper to investigate the effect of
heteroscedasticity on these methods. We conducted a homoscedastic MANOVA on
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Table 3 p values ×100 for testing the effect of Chapter and Chapter × Depression interaction

Chapter Chapter × Depression

Approximation TD TLR TLH TBNP TD TLR TLH TBNP

Heteroscedastic MANOVA

χ2–Asym. Exp. 36.3 35.3 41.1 46.5 46.9 51.3

Normal-Asym. Exp. 37.1 35.2 38.3 47 35.2 38.3

Large-a Asym. 41.3 47.7 28.5 66 49.6 55.1 41.3 67.6

Data TD TLR TLH TBNP TD TLR TLH TBNP

Homoscedastic MANOVA

Original 1.7 1.5 1.9 8.0 7.5 8.5

log-Transformed Data 5 4.6 5.4 15.2 15.2 15.1

both the original as well as the log-transformed observations. The results for the main
effects of Chapter and the interaction between Chapter and Depression are displayed
in Table 3. In the heteroscedastic MANOVA analysis, we computed p-values based
on the two small sample approximations of Sect. 3 for the likelihood ratio, Lawley–
Hotelling and Barlett–Nanda–Pillai Criteria and the large a asymptotic null distribu-
tions of Sect. 2 for the three statistics as well as Dempster’s ANOVA-type statistic.

It is clear from Table 3 that if we analyzed the data assuming a constant covariance
matrix and utilized a standard homoscedastic MANOVA, we would conclude that
nicotine dependence varied by chapters. Also the evidence for Chapter × Depression
interactions would not be negligible at the level of significance 0.1, though insig-
nificant at the 0.05 level. On the other hand, the heteroscedastic MANOVA results
agree with each other and do not show evidence of nicotine dependence variation by
Chapter nor presence of Chapter × Depression interaction. The log transformation
which has somewhat reduced, but not fully removed, the heteroscedasticity led to
borderline insignificant results for the Chapter effects. This gives a clear indication
that in this data set, heteroscedasticity was disguised as Chapter effects, which do not
actually seem to be present. Since heteroscedasticity was indicated by the original
as well as the transformed data, the heteroscedastic MANOVA results appear more
trustworthy, and we conclude that a selection bias due to randomizing chapters is not
supported by the data.

5 Discussion and conclusion

In this paper, we considered a heteroscedastic MANOVA model. The usual MANOVA
sum of squares and cross products matrices were modified to adapt to heteroscedastic-
ity. Although these sum of squares and cross products matrices were motivated from
suitability for testing the corresponding hypotheses, as it happens they can neatly be
expressed as matrix quadratic forms. Defining the four standard multivariate test sta-
tistics based on the new sum of squares and cross products matrices, their asymptotic
distributions were derived in a unified manner both under the null as well as reasonable
local alternatives.
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Adjustment factors to the sum of squares and cross products matrices were derived
so that their first two moments match those of respective Wishart distributions. With
these factors, the asymptotic expansion approximations for the Likelihood ratio,
Lawley–Hotelling and Bartlett–Nanda–Pillai statistics under normality and homo-
scedasticity were shown, in a numerical study, to perform quite well even when both
non-normality and heteroscedasticity were present.

The asymptotic framework considered here is such that the number of levels of one
of the factors tends to infinity. A real data example has been provided to illustrate the
practicality of the asymptotic framework and the application of the methods.

The quadratic form expressions for the sum of squares and cross products matrices
vividly suggest a formal extension to the multi-factor case. Although similar asymp-
totic results appear to come through, the technical details seem cumbersome unless
handy notations and techniques are introduced. We plan to explore this in a future work.

The results of this paper may also serve as a theoretical tool for obtaining the cor-
responding results in a fully nonparametric setting. The test statistics computed on
componentwise ranks are typically asymptotically equivalent to the same statistics
based on so-called Asymptotic Rank Transforms (e.g. see Harrar and Bathke 2008).
In the two-way layout case, the asymptotic rank transforms would still be heterosced-
astic even under the null hypotheses. However, the asymptotic equivalence alluded to
above needs to be established and consistent estimators of the asymptotic variances
need to be found. In the interest of space, we chose to delegate this problem to a
separate treatise.

Appendix A: Moments of sum of squares and cross products matrices

The following lemma is handy in calculating the first two moments of matrix quadratic
forms. Its proof is given in Bathke and Harrar (2008).

Lemma 1 Suppose Y = (Y1, . . . ,Yn) is a p × n random matrix whose columns
Yi , i = 1, . . . , n, are independently distributed with mean 0 and covariance �i . Let
A = (ai j ) and B = (bi j ) be n×n symmetric matrices. Then, E(YAY′) = ∑n

i=1 aii�i

and Cov
(
vec(YAY′), vec(YBY′)

) = ∑n
i=1

∑n
j=1 ai j bi j (Ip2 + K p,p)(�i ⊗ � j ) +

∑n
i=1 aii bii K4(Yi ), where K4(Yi ) = E

(
vec(Yi Y′

i )vec(Yi Y′
i )

′)−(Ip2 + K p,p)(�i ⊗
�i )− vec(�i )vec(�i )

′.

Let Y = (Y1, . . . ,Ya),Yi = (Yi1, . . . ,Yib) and Yi j = (Yi j1, . . . ,Yi jni j ).
The sum of squares and cross products matrices H (A), H (A|B), H (B|A), H (AB) and
G can be written as YCAY′,YCA|BY′, H (B|A) = YCB|AY′,YCABY′ and YCGY′,
respectively, where

CA = 1

a − 1

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠
(

Pa ⊗ 1

b
Jb

)
⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠ ,

CA|B = 1

(a − 1)b

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠ (Pa ⊗ Ib)

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠ ,
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CB|A = 1

a(b − 1)

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠ (Ia ⊗ Pb)

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠ ,

CAB = 1

(a − 1)(b − 1)

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠ (Pa ⊗ Pb)

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠

and

CG = 1

ab

a⊕

i=1

b⊕

j=1

1

ni j (ni j − 1)
Pni j . (9)

It is straightforward that E(G) = � both under the null and alternative hypotheses.
The expected value of the random matrix H (A) can be expressed as E(YCAY′) =
E(YC (1)

A Y)− E(YC (2)
A Y), where

C (1)
A = 1

b(a − 1)

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠ (Ia ⊗ Jb)

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠

and

C (2)
A = 1

ab(a − 1)

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠ Jab

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠ .

Each of the expected values on the right hand side, under the null hypothesis H (A),
can be computed with the aid of Lemma 1 to get

E(YCAY′) = 1

b(a − 1)

a∑

i=1

b∑

j=1

1

ni j
�i j − 1

ab(a − 1)

a∑

i=1

b∑

j=1

1

ni j
�i j

= 1

ab

a∑

i=1

b∑

j=1

1

ni j
�i j = �.

The calculations for E(YCA|BY′), E(YCB|AY′) and E(YCABY′), under their respec-
tive null hypotheses, are similar.
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Appendix B: Asymptotic distributions

Proof of Theorem 1 In view of Lemma 1,

var

⎛

⎝1

a

a∑

i=1

b∑

j=1

1

ni j
vec(Si j )

⎞

⎠

= 1

a2
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i=1

b∑

j=1

1

n2
i j

1

(ni j − 1)2
var

(

vec

(

Yi j

(

Ini j − 1

ni j
Jni j

)

Y′
i j

))

= (Ip2 + K p,p)

⎛

⎝ 1

a2

a∑

i=1

b∑

j=1

1

n2
i j (ni j − 1)

(�i j ⊗�i j )

⎞

⎠

+ 1

a2

a∑

i=1

b∑

j=1

1

n3
i j

K4(Yi j1)

which becomes asymptotically negligible provided
∑a

i=1
∑b

j=1 n−2
i j (ni j −1)−1(�i j ⊗

�i j ) = o(a2) and
∑a

i=1
∑b

j=1 n−3
i j K4(Yi j1) = o(a2) as a → ∞. �


Proof of Theorem 2 It is evident from (1) that H (ψ) and G are invariant to the location
translation Yi jk −μ

(ψ)
i j . Hence we can, without loss of generality, take μ

(ψ)
i j = 0 when

considering the test for H(ψ)
0 .

Let us write
√

a(H (ψ) − G) = √
aY(Cψ − CG)Y′. One can then, after lengthy

algebra, express

CA − CG = 1
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i=1

b⊕
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1

ni j (ni j − 1)
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⎛
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CB|A − CG = 1
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Then in view of Lemma 2,
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where Va � Wa means Va − Wa
p→ 0 as a → ∞. It can be verified that E(Z (A)i ) = 0

and,
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Applying Lemma 1
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j �= j ′

1

ni j ni j ′
�i j ⊗�i j ′

⎞

⎠

Putting this in (10),

Var(Z (A)i ) = 2

b2

⎛

⎝
b∑

j=1

1

ni j (ni j − 1)
tr(��i j )

2 +
b∑

j �= j ′

1

ni j ni j ′
tr(��i j��i j ′)

⎞

⎠ .

(11)

Furthermore,

lim
a→∞

1

a

a∑

i=1

var(Z (A)i ) = 2

b

⎡

⎣ lim
a→∞

⎛

⎝ 1

ab

a∑

i=1

b∑

j=1

1

ni j (ni j − 1)
tr(��i j )

2

⎞

⎠

+ lim
a→∞

⎛

⎝ 1

ab

a∑

i=1

b∑

j �= j ′

1

ni j ni j ′
tr(��i j��i j ′)

⎞

⎠

⎤

⎦ .

Notice that Z (A)i ’s are independently but not identically distributed. In the follow-
ing we will show that Liaponauv’s conditions hold. Applying Lemma 3 by setting
s = 1 + δ/2,

lim
a→∞

∑a
i=1 E |Z (A)i − E(Z (A)i )|2+δ
(√∑a

i=1 var(Z (A)i )

)2+δ

≤ cδE(Y′
i j1�

−1
i j Yi j1)

2+δ lima→∞
(

1
a1+δ/2

∑a
i=1(var(Z (A)i ))1+δ/2

)

lima→∞
(

1
a

∑a
i=1 var(Z (A)i )

)1+δ/2 = 0

provided lima→∞(1/a)
∑a

i=1(var(Z (A)i ))1+δ/2 < ∞ where cδ does not depend on a.
But from (11),

(var(Z (A)i ))1+δ/2

= 21+δ/2

b2+δ

⎛

⎝
b∑

j=1

1

ni j (ni j − 1)
tr(��i j )

2 +
b∑

j �= j ′

1

ni j ni j ′
tr(��i j��i j ′)

⎞

⎠

1+δ/2
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≤ 21+δ/2

b2+δ (bp)1+δ/2
b∑

j=1

1

n1+δ/2
i j (ni j − 1)1+δ/2 tr(��i j )

2+δ

+21+δ/2

b2+δ (pb(b − 1))1+δ/2
b∑

j �= j ′

1

n1+δ/2
i j n1+δ/2

i j ′
tr(��i j��i j ′)

1+δ/2.

The last inequality follows from |∑b
j=1 a j |s ≤ bs ∑b

j=1 |a j |s which holds true

for any s> 0. This later inequality also implies (tr(A))s ≤ ps ∑p
i=1 λ

s
i = ps tr

(A)s for a non-negative definite matrix A with eigenvalues λ1, . . . , λp. Thus,

lima→∞(1/a)
∑a

i=1(var(Z (A)i ))1+δ/2 < ∞ as long as Assumptions 1 and 2 hold.

Likewise, E(Z (A|B)
i ) = E(Z (B|A)

i ) = E(Z (AB)
i ) = 0,

lim
a→∞

1

a

a∑

i=1

var(Z (A|B)
i ) = 2

b
lim

a→∞

⎛

⎝ 1

ab

a∑

i=1

b∑

j=1

1

ni j (ni j − 1)
tr(��i j )

2

⎞

⎠ ,

lim
a→∞

1

a

a∑

i=1

var(Z (B|A)
i ) = 2

b2(b − 1)2

⎡

⎣(b − 1)2 lim
a→∞

⎛

⎝ 1

ab

a∑

i=1

b∑

j=1

1

ni j (ni j − 1)
tr(��i j )

2

⎞

⎠

+ lim
a→∞

⎛

⎝ 1

ab

a∑

i=1

b∑

j �= j ′

1

ni j ni j ′
tr(��i j��i j ′ )

⎞

⎠

⎤

⎦ ,

lim
a→∞

1

a

a∑

i=1

var(Z (AB)
i ) = 2

b(b − 1)2

⎡

⎣(b − 1)2 lim
a→∞

⎛

⎝ 1

ab

a∑

i=1

b∑

j=1

1

ni j (ni j − 1)
tr(��i j )

2

⎞

⎠

+ lim
a→∞

⎛

⎝ 1

ab

a∑

i=1

b∑

j �= j ′

1

ni j ni j ′
tr(��i j��i j ′ )

⎞

⎠

⎤

⎦

and Liaponauv’s condition can be verified in a similar manner. �

Lemma 2 As a → ∞,

Q1 = √
aY

⎡

⎣ 1

a(a − 1)b

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠ ((Ja − Ia)⊗ Jb)

×
⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠

⎤

⎦Y′ = op(1),

Q2 = √
aY

⎡

⎣ 1

a(a − 1)b

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠ ((Ja − Ia)⊗ Ib)

×
⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠

⎤

⎦Y′ = op(1)
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and

Q3 = √
aY

⎡

⎣ 1

a(a − 1)(b − 1)

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠ ((Ja − Ia)⊗ Pb)

×
⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠

⎤

⎦Y′ = op(1).

Proof Write Qi = YMi Y′ where Mi are defined in the obvious way. Since the diago-
nal elements of Mi s are zero, we can easily verify by applying Lemma 1 that E(Qi ) =
0 and, as a → ∞, var(Qi ) = o(1) for i = 1, 2, 3. �


The following Lemma extends an inequality in Rao and Kleffe (1989, pp 39) to a
matrix quadratic forms.

Lemma 3 Let E = (E1, E2, . . . , Em) such that Ei = �i Ui where Ui are independent
p dimensional random vectors with mean E(Ui ) = 0 and covariance matrix
Ip, and �i is a matrix of constants for i = 1, 2, . . . ,m. Let D be an m × m
symmetric matrix. If the diagonal entries of D are all zero, then E |trE DE ′ −
E(trE DE ′)|2s ≤ 25sC(2s)B(2s){maxm

i=1 E(U′
i Ui )

2s}{var(trE DE ′)}s for s > 1 where
C(2s) = 2s−1(2π)−1/2�(s + 1/2), B(2s) = (18(2s)3/2(2s − 1)−1/2)2s and �(·) is
the Gamma function.

Proof First note that when the diagonal entries of D are zeros from Lemma 1 we see
that var(trE DE ′) = 2tr{(D ⊗ Ip)(

⊕m
i=1�i )}2 where �i = �i�

′
i . On the other hand,

note that tr(E DE ′) = vec(E ′)′(D ⊗ Ip)vec(E ′) and that var(vec(E)) = ⊕m
i=1�i .

Now applying inequality (2.3.10) in Rao and Kleffe (1989) yields the desired
result. �

Proof of Theorem 3 Noting that �̂i j (�) is a U -statistic (cf. Serfling 1980), it is straight
forward to show that

E

⎡

⎣ 1

ab

a∑

i=1

b∑

j=1

1

ni j (ni j − 1)
tr(�̂i j (�))− 1

ab

a∑

i=1

b∑

j=1

1

ni j (ni j − 1)
tr(��i j )

2

⎤

⎦ = 0

and

E

⎡

⎣ 1

ab

a∑

i=1

b∑

j �= j ′

1

ni j ni j ′
tr(�Si j�Si j ′)− 1

ab

a∑

i=1

b∑

j �= j ′

1

ni j ni j ′
tr(��i j��i j ′)

⎤

⎦ = 0.

Then it suffices to show that the variances tend to 0 as a → ∞. This can be achieved
by a repetitive application of Hölder’s inequality to the second moments. �

Proof of Theorem 4 Here also we can set μ(B)i j = 0 without loss of generality. As for

the other sum of squares and cross products matrices, express H (B) as quadratic form
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(b − 1)H (B) = Y

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠
(

1

a
Ja ⊗ Pb

)

×
(

1

a
Ja ⊗ Pb

)
⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1′

ni j

⎞

⎠Y′.

Noting that a−1(Ja ⊗ Pb) is an idempotent matrix,

(b − 1)H (B) =
⎛

⎝Y

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠
(

1

a
Ja ⊗ Pb

)
⎞

⎠

×
⎛

⎝Y

⎛

⎝
a⊕

i=1

b⊕

j=1

1

ni j
1ni j

⎞

⎠
(

1

a
Ja ⊗ Pb

)
⎞

⎠

′
.

Now, Y(
⊕a

i=1
⊕b

j=1
1

ni j
1ni j )(

1
a Ja ⊗ Pb) = 1

a

∑a
i=1(Ȳi1., . . . , Ȳib.)Pb1′

a = Z̄a Pb1′
a ,

where Z̄a = (1/a)
∑a

i=1 Zi and Zi = (Ȳi1., . . . , Ȳib.). It can easily be seen that
var(vec(

√
aZ̄a)) = 1

a

∑a
i=1

⊕b
j=1

1
ni j
�i j .

To establish the asymptotic normality of Z̄a it suffices to show that tr(T′Z̄a) has an
asymptotic univariate normal distribution for each T ∈ R

p×b (see, for example, Rao
1973). Assuming (1/a)

∑a
i=1 n−1

i j �i j = O(1) as a → ∞, Liaponauv’s condition will

be satisfied if a−(1+δ/2)∑a
i=1 E |tr(T′Zi )|2+δ → 0 as a → ∞. This latter condition

holds if E‖Yi j1‖2+δ < ∞. Therefore, we have

√
aZ̄a

L→ Np×b

⎛

⎝0,
1

a

a∑

i=1

b⊕

j=1

1

ni j
�i j

⎞

⎠ . (12)

Observe that (b − 1)trH (B)� = a tr(Z̄a PbZ̄′
a�) = a tr((�1/2Z̄a Pb)

′(�1/2Z̄a Pb)) =
vec(

√
a�1/2Z̄a Pb)

′vec(
√

a�1/2Z̄a Pb). In view of (12), vec(
√

a�1/2Z̄a Pb)
L→

Npb(0,�). As the rank of� is p(b − 1), the above pb variate normal distribution is a
singular one. At any rate, from the theory of quadratic forms in normal random matri-
ces (see Gupta and Nagar 2000), we have that aH (B)� = aZ̄a PbZ̄′

a� = Op(1) and

that if λ1, λ2, . . . , λp(b−1) are the nonzero eigenvalues of � then (b − 1)trH (B)�
L→

∑(b−1)p
k=1 λiχ

2
1,k . �


Proof of Theorem 5 Here we present the proof for ψ = A. The proofs for the others
follow along the same lines.

Let H (A)(Y) and G(Y) denote H (A) and G matrices, respectively, based on Y.
Given that

∑a
i=1 αi,a = ∑b

j=1 β j,a = 0 and G(Y) = G(U), a direct manipulation
reveals that
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√
a tr(H (A)(Y)− G(Y))� = √

a tr(H (A)(U)− G(U))�

+2
1√
a

a∑

i=1

α′
i,a�Ũi.. + tr�A�+ O

(
1√
a

)

.

It is straightforward to show that a−1/2∑a
i=1 α′

i,a�Ũi.. converges to 0 in probabil-
ity. Further, the asymptotic distribution of the first term on the right hand side is
the same as that given in Theorem 2. The proof is complete by applying Slutsky’s
Theorem. �

Proof of Theorem 6 In the notations of the proof of Theorem 4, we can see that

vec(
√

a�1/2Z̄a Pb)
L→ Npb(vec(

√
a�1/2 B Pb),�). Then the final result follows from

normal theory of quadratic forms. �
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