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Abstract We study a non-linear regression model with functional data as inputs and
scalar response. We propose a pointwise estimate of the regression function that maps
a Hilbert space onto the real line by a local linear method and derive its asymptotic
mean square error. Computations involve a linear inverse problem as well as a repre-
sentation of the small ball probability of the data and are based on recent advances in
this area.

Keywords Functional data - Regression model - Kernel - Mean square error -
Small ball probability - Inverse problem

1 Introduction
1.1 The data and the model

In probability theory, random functions have been for quite a long time under the lights.
The tremendous advances in computer science and the opportunity to deal with data
collected at a high frequency make it now possible for statisticians to study models
for high-dimensional data. As a consequence, many of them focused their attention on
models for functional data, i.e., models that are suited for curves, for instance, spectral
curves, growth curves, or interest rate curves...

Even if seminal articles on functional data analysis date back to more than 20 years
(see Dauxois et al. (1982)), this area is currently going through a deep bustle. The book
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1048 A. Berlinet et al.

by Ramsay and Silverman (1997) initiated a series of monographs on the subject: Bosq
(2000), Ramsay and Silverman again (2002), Ferraty and Vieu (2006).

Functional Data Analysis has drawn much attention and many of the classical mul-
tivariate data analysis techniques such as Principal Component Analysis, Correlation
Analysis, ANOVA, and Linear Discrimination were generalized to curves. Statistical
inference gave and gives birth to many papers. Linear regression and autoregression,
for instance, rise an interesting inverse problem (see Kneip et al. (2004); Yao et al.
(2005); Miiller and Stadtmiiller (2005); Cai and Hall (2006); Cardot et al. (2007) and
Mas (2007) and even more recently Crambes et al. (2008)). The case of nonparametric
regression was introduced in Ferraty and Vieu (2003) then studied in Masry (2005)
and Ferraty et al. (2007): a Nadaraya-Watson type estimator was proposed. This model
is the starting point of our article.

In the sequel, we will consider a sample drawn from random elements with values
in an infinite dimensional vector space: X1, ..., X,. Here X; = X; () is a random
function defined, say, on a compact interval of the real line [0, 7']. We will also assume
once and for all that the X;’s take their values in a separable Hilbert space denoted
H. This Hilbert space is endowed with an inner product (-, -) from which is derived
the norm ||-||. Such techniques as wavelets or splines yield reconstructed curves in the
(Hilbert) Sobolev spaces:

w2z — {f e L% ([0, T):f"™ e L? (|0, T])}

where £ denotes the mth derivative of f. Further information on Sobolev spaces
may be found in Adams and Fournier (2003). However, for the sake of generality
we will consider H as the sequence space /5, and any vector x will be classically
decomposed over a basis, say (e;);cy so that

+00

Il =D (@, ei)?.

i=1

We are given a sample (yi, Xi)<j<, € R x H )®" of independent and identically
distributed data. Let m be the regression function that maps H onto R.
The model is a classical non-parametric regression model:

or, with other symbols
m(zo) = E (y|X = xo)

where y and X stand for random variables with the same distributions as y; and X.
The noise ¢ follows both assumptions

E(e|X) =0,
E (52|X) =0’
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Local linear regression for functional data 1049

and o2 does not depend on X. The issue of the expectation of X (should the X’s be
centered or not ?) is not crucial ; it will be addressed later on, but for simplicity we
assume that E (X) = 0. Let z¢ be a fixed and known point in H. We are aiming at
estimating m ().

In finite dimension, and more precisely when X; is a real-valued random variable,
m(xp) may be estimated by considering an affine approximation of m around xg:

m (x) ~ m (z0) +m’ (20) (¥ — o)

when z is close to xg. This approach leads us to look for a solution to the following
minimization problem:

min > (i —a — bzo — X))’K (%) @)
i=1

acR,beR

which is nothing but a mean square program weighted by the K ((xg — X;)/h)’s.
Here, K is a kernel: a measurable positive function such that f K =1and h = h,
the bandwidth indexed by the sample size. Then a*, one of the two solutions of the
above display is the estimate of m (z() . As a special case taking b = 0 comes down to
the classical Nadaraya—Watson estimator. We refer the interested reader to Nadaraya
(1964) and Fan (1993) about this topic. The generalization of (2) to higher orders
(namely approximating locally m by a polynomial) gives birth to the local polynomial
estimate of m (x(). We refer, for instance, to Chen (2003) for a recent article. Conver-
gence in probability and asymptotic normality of the kernel polynomial estimators for
a density function, variable bandwidth, and local linear regression smoothers, were
studied by Fan and Gijbels (1992).

When x belongs to a Hilbert space, the principle remains the same. The function
m is now approximated by

m (x) ~ m (x0) + (¢ (20), © — o)

where ¢ (rog) € H is the first-order derivative of m at xg (the gradient in fact) and
the local linear estimate of m at xo stems from the following adapted weighted least
square program:

min " (y; —a — {p, Xi — 20))> K (M) 3)

acR,peH “ N h
=

Atlast the estimate 711,, () of m(zg) is a*, solution of (3). We refer to Barrientos-Marin
et al. (2007) for another approach. These authors consider a program simplified from
the one above (they replace the functional parameter ¢ with a scalar one). But display
(3) seems to be a true generalization of (2) since ¢ like b estimates the derivative of
m.

Remark 1 Investigating higher-order approximations turns out to be especially dif-
ficult in this functional setting. For instance, a local quadratic estimate involves the
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1050 A. Berlinet et al.

second-order derivative of m (the Hessian operator) which is a symmetric positive
operator on H. The local linear method appears as a good trade-off between the com-
plexity of the method and its accuracy.

Nevertheless, solving (3) is not so easy. The aim of the present work is to provide
a bound for the mean square error of the estimate a* of m (x() that is

E [, @o) — m(o)]*

through a classical bias-variance decomposition. The present paper rises two kind of
questions, both difficult to answer. The first one is about optimality. It will be seen that
the rate of convergence of the proposed estimate outperforms the one already obtained
in the literature on this model (see Ferraty et al. (2007)), but up to now no result on
optimal rates is available in this context. The second one is about implementation
of the method. Much work has to be done to select efficiently the bandwidth from
the observed data. The article is organized as follows: the two next subsections are
devoted to pointing out the two main problems that arise from the model and that are
symptomatic of the functional framework. The needed assumptions are commented,
then the central result is given before the last section which contains all mathematical
derivations.

1.2 The estimate and the ill-posed problem

In order to go ahead we need to define two linear operators from H to H (the first
is non-random, the second is random, based on the sample). The usual sup-norm for
operator T will be denoted

ITlloo = sup [Tz
zeB)

where B stands for the closed unit ball of H. From now on, the reader should be
familiar with basic notions related to the theory of bounded and unbounded linear
operators on Hilbert space. A wide literature exists on this topic which is central to
the mathematical science. Some of our references are Weidman (1980), Akhiezer and
Glazman (1981), Dunford and Schwartz (1988) and Gohberg et al. (1991) amongst
many others.

Definition 2 The theoretical local covariance operator of X at xg € H associated
with the kernel K is defined by

X _
Mg =E (K (”1}1—”30”) (X1 — 20) ® (X1 — 330)))

and its empirical counterpart is

1 < X —
Lok = 1; K (M) (X — 20) ® (X — 0)). (4)
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Remark 3 In fact, neither I'x nor I', g are truly covariance operators; since the
involved random elements are not centered, they could also be named “local sec-
ond order moment operators”. Also note that I'x depends on 4 and 4 will depend on
the sample size n. So, the reader must keep in mind that the index n was dropped in
the notation I'g.

Itis important to give some basic properties of these operators. Several assumptions
are needed on the kernel K. They will be outlined in the next subsection as assumption
A1. We list those which will be useful in the sequel.

e 'k and I';, g are self-adjoint and trace-class; hence compact whenever K has com-
pact support.
e Both operators tend to zero when i does. Indeed

X —
ITklloe <E (K (”‘h—xo”) X —xo||2) < Ci?

as will be shown in the section devoted to mathematical derivations. The oper-
ator I, x also tends to O as a consequence of the strong law of large numbers
for sequences of independent Banach-valued random variables (see Ledoux and
Talagrand (1991)).

e When I'g is one to one its inverse exists. Sufficient conditions on K and on X for
'k to be injective are not difficult to find, but this interesting issue is out of the
scope of the present work. Then I‘El is an unbounded linear operator acting from a
dense domain of H onto H. It should be stressed that F;(l is continuous at no point
of its domain (it is nowhere continuous).

Imagine that the distribution of the data (namely of the couple (y, X)) is known.
We could consider, instead of (3):

min E [(y —a— (g, X —x0)2 K (M)} . (5)

acR,peH h
The first stumbling block appears within the next proposition.

Proposition 4 Even when the distribution of the data is known, the solution ay, of the
“theoretical” program (5) exists only when I g is one to one. Then aj, is the solution
of a linear inverse problem which involves the unbounded inverse (whenever it exists)
Of Ik:

E(yK) — <r,;11E(yKZ), E (KZ)>

6)

* —
apn =

E(K) — <r,;11E(KZ), E (KZ)>
where, for the sake of shortness, we denoted

Z(xg)=2Z=X—209 and KZK(”X_SCO”/]’Z)
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1052 A. Berlinet et al.

The problem gets deeper when we go back to the original and empirical program
(3). It turns out that the solution cannot be explicitly written since I';, ¢ (Which replaces
now I'k) has no inverse because it has finite rank. Its rank is clearly bounded by n.
In other words, the inverse 1"_l does not exist. A classical remedy consists in replac-
ing Fn x by a bounded operator FT x depending on n and such that FT behaves
pointwise like the inverse of 'y k. ThlS inverse operator, which is not always the
Moore-Penrose pseudo inverse, will be called the regularized inverse of T'), k. Several
procedures could be carried out.

e Truncated spectral regularization: Here this method matches the usual Moore-
Penrose pseudo inversion hence I'j, KF K and FI x'n.x are both projection
operators on H. In fact, if the spectral decomp0s1t1on of Tk is 'k =
Zi=1 Wion (u,’n ® ul,n) where for all i (,ul,n, u,,n) are the eigenvalues/eigenvectors
of I', k (we will always assume that the positive u; ,’s are arranged in decreasing
order):

N}l

1
Ml =D — (tin ®tin). 7)

o Min
where N,, < m,,.
. + —1 . -
e Penalization: Now F,; k= (Fn, K+ anS) where o, is a (positive) sequence tend-
ing to zero and S is a known operator chosen so that I';, ¢ 4+ @, S has a bounded

inverse. Here S may be taken to be the identity operator.
e Tikhonov regularization: It comes down here, since I';, x is symmetric, to taking

-1
M= (M2 +anl) Tux.

The sequence o, is again positive and tends to zero.

Several other methods exist. The reader is referred, for instance, to Tikhonov and
Arsenin (1977), Groetsch (1993) or Engl et al. (2000).

Remark 5 1In all situations it should be noted that
sup H FZ KF,LK” < 400,
n ’ 00

)
T, xT H .
sup s, < +o0

All these regularizing methods may also be applied to I'x as well and lead to F}; and
this operator depends on n even if this index does not explicitly appear. One may then
prove that for all = in the domain of F,;l, FT T — F_lx when n goes to infinity. In

addition to the boundedness, the operator r a.k 18 always self-adjoint and positive.

We are now in a position to propose an estimate for m(zg). This estimate will
depend on the chosen regularization technique applied to I',, ¢ which implies that the
program (3) gives birth to several approximate solutions.
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Local linear regression for functional data 1053

Proposition 6 A local linear estimate of m(xq) is den(_)_ted my (xo). It is an approxi-
mate solution of (3) based on the regularized inverse I, :

Z:’:I YiWi n

T , (3)
Zi:l Win

’/ﬁn (ro) =

where

X. — J—
wip, =K (th—foll) (1 - <Xi — Zo, FZ,KZK,n»

and
Xi—x
ZKn:_ (” O”)(Xi—fo)~

The proof of this proposition is omitted since it stems from calculations similar to
those carried out in the proof of Proposition 4.

It is easy to check that (8) is the empirical counterpart of (6). We finally see that
m, (xg) may be viewed as a linear combination of the outputs 1, ..., 3, and may
be expressed from ajj just by replacing expectations by sums. The reader may also
compare our estimate with its one-dimensional counterpart (display 2.2, p. 198 in Fan
(1993)) and will also notice that the nice properties of the w; ,,’s in this setting do not
hold anymore (see display 2.5, p. 198 in Fan (1993) and the lines below).

The next section is devoted to developing the framework as well as the assumptions
needed to get our central result.

2 Assumptions and framework

In all the sequel we assume

A1:Thekernel K is one-sided, supported on [0, 1], bounded and K (1) > 0. Besides
K’ is non-null and belongs to Ll ([0, 1]).

We did not try to find minimal conditions on the kernel. However, the assumption
K(1) > 0 is rather rarely required in the non-parametric literature—to the authors’
knowledge—and is essential here, as will be seen below.

2.1 The small ball problem and the class Gamma

Consider the one-dimensional version of our model (1) and take X € R with density
f.Fan (1993) studied the minimax properties of the local linear estimate in this setting
and gave the Mean Square Error (see Theorem 2, p. 199). This MSE depends on f (z9).
Here appears the second major problem. When the data belong to an infinite-dimen-
sional space, their density does not exist, in the sense that Lebesgue’s measure -or any
universal reference measure with similar properties- does not exist. Consequently, we
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must expect serious troubles since it is plain that the density of the functional input
X cannot be defined as easily as if it was real or even multivariate. Once again this
problem will not be managed by just letting the dimension tend to infinity, and we
should find a way to overcome this major concern.

It turns out that in many computations of expectations the problem mentioned
above may be shifted to what is known in probability theory as small ball problems.
Roughly speaking, if ¢ is a real-valued function (we set z9 = 0 for simplicity),
E @ X)) K (I X]l /h)) may be expressed essentially by means of P (|| X|| < &) and
¢ for small h. We refer to Lemma 29 in the proof section for an immediate illustra-
tion. Instead of knowing or estimating a density we must now focus on P (|| X|| < h)
for small &, and everyone may understand why this function is often referred to as
the “small ball probability associated with X”. We propose such references as Li and
Linde (1993), Kuelbs et al. (1994) and Li and Linde (1999) as well as the monograph
by Li and Shao (2001) which provides an interesting state of the art in this area.

What can be said about the function P (|| X|| < #)? Obviously, by Glivenko-
Cantelli’s theorem it will be easily estimated from the sample (the rate of conver-
gence is non parametric). Besides, it is not hard to see that, under suitable but mild
assumptions, if X € R? with density f :R? — RT, P (| X — xq|| < h) ~ h? f (x0).
But this fact leaves unsolved the question : what can be said when p — +00?

In probability theory most of the small ball considerations focused on the case
where X is the brownian motion, the brownian bridge, or some known relatives.
Several norms were investigated as well. Most of the theorems collected in the litera-
ture yield

c
P(|X| < h) =< C1h® exp (—h—g) )

where «, 8, C; and C; are positive constants. The symbol < is sometimes replaced
with the more precise ~ . Another serious problem comes from the fact that the C*°
function on the right in the display above has its derivatives null at zero at all orders.
Other results assess that, when z belongs to the Reproducing Kernel Hilbert Space
of X,

PIX —zoll < h) ~ Coo P (IX]| < h)

where C,,, does not depend on £, but on xy and on the distribution of X. Two majors
contributions will be found in Mayer-Wolf and Zeitouni (1993) and in Dembo et al.
(1995). The authors give the exact asymptotic of P (|| Xlp < h) when X is a [-valued
gaussian random element (by means of large deviation theory):

X = (a11'1,a2:L'2,.__) (10)

with x; independent, N (0, 1)-distributed and Za? < +00.Whena; =i "(r > 1/2)
they obtain a formula similar to (9). Recently Mas (2008b) derived the estimate when
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Local linear regression for functional data 1055

a; = exp(—ci), c > 0 and got

P(IX] < h) ~ Cy [log (1/m)] " exp (—cz [log (h)]z). (11)

A very strange fact is that both functions in (9) and (11) belong to a class of functions
known in the theory of regular variations: the class Gamma introduced and studied
by de Haan (1971, 1974). This class arises in the theory of extreme values and is
closely related to the domain of attraction of the double exponential distribution. It
was initially introduced by de Haan as a “Form of Regular Variation”. We provide
now the definition of the class Gamma at 0, denoted I'.

Definition 7 A function f belongs to de Haan’s class I'g with auxiliary function p
if f maps a positive neighborhood of 0 onto a positive neighborhood of 0, f (0) =
p (0) =0, f is non decreasing and for all x € R,

tim L2 _ oy, (12)
S0 1)

In a recent manuscript, Mas (2008b) proved that, in the framework of Dembo et
al. (1995), the small ball probability of any random element that may be defined like
display (10) belongs to the class Gamma. A work is in progress to prove that, under
suitable assumptions on the auxiliary function, the reciprocal also holds. The auxiliary
functions appearing in displays (9) and (11) may be easily computed. It can be proved
that p depends only on the sequence a(-) that defines X in (10).

The next proposition illustrates the above definition. It will be useful in the section
devoted to the main results.

In all the sequel and especially within the proof section, C denotes a constant (which
may vary from a theorem to another).

Proposition 8 When the small ball probability is defined by the right-hand side of
(9), the function p is

p(s) = Cs' P (13)

with B > 0, and when the small ball probability is defined by the right-hand side of
(11), the function p is

p(s)=C

. 14
llog s| (1

Starting from all these considerations it seems reasonable to assume the following:
Aj: Let

F(h) = Fyy(h) = P(| X — 2ol < h)

be the shifted small ball probability of X. We assume that F € T'g with auxiliary
function p.
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1056 A. Berlinet et al.

Gamma varying functions feature original properties. We give now one of them
which will be useful later on in the proof section. We refer to Proposition 3.10.3 and
Lemma 3.10.1 p. 175 in Bingham et al. (1987).

Proposition 9 If F' € I'g with auxiliary function p then for all x € [0, 1],

im £ _ g (15)
0t F (h)

im 2P _ g (16)
h—0 h

Assumption Aj is central to tackle our problem since the mean square error, com-
puted from our estimate actually depends on p. But additional assumptions should
hold, especially on the distributions of the margins of X.

Remark 10 The representations (9) and (11) show that the small ball probability is
extremely flat around 0. Computations of moments smoothed by the kernel K show
that these flat distributions feature in a way the same behavior as a Dirac mass on the
frontier of the support of K. Consequently, assuming that K (1) > 0 in assumption
A enables to obtain exact rates of convergence for several functionals involved in the
calculation of our estimate.

2.2 Assumptions on the marginal distributions

The next assumption essentially aims at simplifying the technique of proof but could
certainly be alleviated at the expense of more tedious calculations (see also Mas
(2008a) and comments therein).

Ajz: There exists a basis (e;)<j<, Such that the margins ((X,e;))|<j<, are
independent real random variables.

In all the sequel, f; = fi ., stands for the density of the real-valued random
variable (X — x¢, ¢;). The behavior around O of the shifted density f; is crucial, like
in the finite dimensional setting. It has to be smooth in a sense that is going to be made
more clear now. Note that f; (0) is nothing but the density of the non-shifted random
variable (X, ¢;) evaluated at (z, ¢;).

Let V) be a fixed neighborhood of 0, set

Siw) — fi(—u)
u(fi(u) + fi(—uw))

o; = Sup
uely

and assume

+o00
AA;:Z:OQ2 < +o0.
i=1
The next proposition illustrates assumption A4 in the important case when X is

gaussian.
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Example 11 Let X be a centered gaussian random element in H with Karhunen-Logve
expansion

+00
X = Z\/)Tknkek-
k=1

Here, the Aj’s are the eigenvalues of the covariance operator of X, E (X ® X), the
er’s are the associated eigenvectors and the 7n;’s are real-valued random variables
N (0, 1)-distributed. It is a well-known fact that (X, ex) = /Aini are independent

real gaussian random variables and A3z holds. Then f; (u) = 1 — w]

2 P [ 24

and

sup | fi () — fi(=u)| <C<xo,ei>
ueVy 4 [ fi(w) + fi(=w)| — A

whenever (g, ¢;) /A; — 0 when i tends to infinity and A4 holds if
+00

\2
Z(JCo,e,) - oo an

2
i A
Example 12 We can also consider the family of densities indexed by the integer m:

C 1
Vi u—(zo.er) | "
1 ()

filu) =

where C,, is a normalizing constant. We find

(o, &)
o < Co2
7

and assumption A4 holds whenever the sequence (‘(Lg—m")l) N €.
i ]

Since the rate of decrease of the A;’s is intimately related to the smoothness of the
random function X, we may easily infer that A4 should be interpreted as a smoothness
condition on the function xg. In other words, the coordinates of x¢ in the basis ¢;
should tend to zero at a rate which is significantly quicker than the eigenvalues of the
covariance operator of X and hence that z¢ should be sufficiently smoother than X.

It should also be noted that, when the family of densities f; is not uniformly smooth
enough in a neighborhood of 0, Assumption A4 may fail. For instance, it is not hard to
see that the ¢;’s are not even finite when f; is the density of a shifted Laplace random
variable:

lu — (xo,ei)l)

1
Jitw) = 2 exp (— y
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Remark 13 The issue of the expectation of the functional input X should be raised
now. We assumed sooner that the X;’s are centered. But in practical situations we can
expect © = E (X) to be a non-null function. Then considering a new shift zo — u
instead of xg solves the problem. So we can always consider the centered version of
X, but we must take into account that any assumption made on z( should be valid for
xo — w. For instance, (17) should be replaced by

+o00 2

xro — U, €
z( 0 l; i) < 400,
)‘i

i=1

Assumptions A,—A4 model the distribution of the functional data X. It is a difficult
issue to compare them with their counterparts in a multivariate setting. Obviously,
assumption A, is typical with functional data except when considering a degenerate
design (see Gaiffas (2005)). Assumption A3 always holds for gaussian X as was seen
above and could certainly be alleviated yielding longer calculations within the proofs.
A work is on progress about this issue. At last, assumption A4 could be compared
with Condition 1 (ii) in Fan (1993) which aims at controlling the local smoothness of
the density around the point z¢. Simple calculations show that A4 is slightly stronger
than the Holder assumption in the latter article.

2.3 Smoothness of the regression function

In order to achieve our estimating procedure we cannot avoid to assume that the func-
tion m is regular. Since m is a mapping from H to R, its first-order derivative is an
element of L(H, R), the space of bounded linear functionals from H to R which is
nothing but H* >~ H. As announced sooner m’ (zg) € H. The second-order deriv-
ative belongs to L (L (H,R),R) >~ L (H x H,R) and is consequently a quadratic
functional on H x H and may be represented by a symmetric positive linear operator
from H to H (the Hessian operator). We will sometimes use abusive notations such
as (m” (zo) (u) , v) below and throughout the proofs.

As: The first order derivative m’ (xo) of m at xq is defined, non null and there
exists a neighborhood V (x) of xo such that:

sup ||m” (x) ||OO < 4o00.
xeV(xp)

This last display may be rewritten: for all # in H and all x in a neighborhood of x
(m" @), u) < Cull*.

Remark 14 Assumption As assesses in some way that the second-order derivative of
m in a neighborhood of x( is bounded. It echoes exactly Condition 1(i) in Fan (1993).
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Local linear regression for functional data 1059

2.4 Back to the regularized inverse

We need, for immediate purpose, to define a sequence involved in the rate of conver-
gence of our estimate.

Definition 15 Let v (h) be the positive sequence defined by

X —
v=uv(h)= [E(K (Ilh_xoll) IIX—onIIp(IIX—onI))] (18)

It is plain that v tends to zero when & does.

Since they will be used in the sequel we list now some results from Mas (2008a).
They are collected in the next proposition and consist in bounding the norms of
operators 'k and I', g

Proposition 16 The following bounds are valid

ITklloo = Cv (h), 19)

ICyk k| = 0u (h2 M) 20)

n

Besides Tk /v (h) may converge to a bounded operator, say S, that may be compact.

Before giving the main results, we have to get back to the regularized inverse of
I'y k- Indeed, a bound on the norm of FZ’ x may be derived. Under the assumption
that h2F'/2 (h) / (n'/?v (h)) — 0 we see that

” 1—‘n,I(HOQ > Cv (h).

As a consequence of these facts, we expect the norm F;  to diverge with rate at least
1/v (h) since

O<C<‘

Fn»Kri,KHoo = ) FZ,KHOO ”F”’KHOO'

If the operator S mentioned in the above proposition is compact, we may even be aware
that the norm of v(h)I‘:: x Will tend to infinity since S ~1'is unbounded whenever S~!

exists. All this leads us to consider the next and last assumption on FZ K-
Ag: There exists a sequence r, > 0 such that rpv (h) — 0 as n — 400 and

R

21

=[] |

Here, the parameter r, just depends on the chosen regularizing method (penaliza-
tion, Tikhonov, etc.) and may be viewed as a tuning parameter.
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1060 A. Berlinet et al.

Remark 17 In fact as will be seen below the sequence

)
Ml

determines the degree of ill-posedness of the problem. It may be bounded, but the most
unfavorable situation appears when it tends to infinity (and consequently 7, tends to
0). We intend to investigate it with care. However, ¢, always tends to infinity and
cannot be bounded above because of (19) and (20). Besides, if I'x /v(h) converges to
an operator with bounded inverse, the sequence r, can always be chosen constant or
at least bounded below.

cormen[15] |

Let us take some examples to illustrate the role of r,,. We keep the notations of
display (7) and of the lines below and for the sake of clarity we assume that

T i T
max ||l =
Uil Dol o} =l
e Truncated spectral regularization: remind that
N
FZ,K = Z (Mi,n & ui,n)
i=1 Mi,n

where (M,-,,,, ui’n) are the eigenelements of I';, g and
” Cnx ||oo = sup {Mi,n} = MK1.n
L

(as announced earlier, the eigenvalues are positive and arranged in decreasing order).
Hence

il =1/ ot ) = i

I<i=N,

thenr, = wn,.n/1,n 4 0is the inverse of the conditioning index of operator F,I K-

e Penalization: Now F; x = (Cngx +oanl )71 with

mp

1
FZ,K = Z E—— (Mi,n ® Mi,n)

im Win + oy

and we can take r, = o, /[t1,,. It is possible here to get r,, 1 +00 by an accurate
choice of &, and some information on (1 ;.

-1
e Tikhonov regularization: Here I" Z k= (Fﬁ x tonl ) I'y k and
mpy m
F in
r = ——— (Uin O Uin).
n,K ; /’Liz,n +a, ( )
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A choice for r, is here o, / ,u% ,, and the same remark as above holds.

3 Statement of the results

The central result of this article is a bound on the Mean Square Error for the local
linear estimate of the pointwise evaluation of the regression function at a fixed design.
In the sequel the generic notation C stands for universal constants.

Theorem 18 Fix zo in H. When assumptions A1 —Ag hold and if n F (h) — +o00

P 2 h® 4
E (my (xo) —m (x0))” < C r—2+h +

c . h? v (h)
+nF(h) ( * nryv (h) * rnF(h))'

where the first line arises from the bias of our estimate and the second stems from its
variance.

h2 vZ (h)
nF(h) F? (h)]

Remark 19 1f K is chosen to be the naive kernel, K (s) = 10,17 (s), assumption A
can be removed and the previous theorem remains valid.

Remark 20 Tt turns out that the variance term is decomposed into three. The first is
(nF(h))~" and is classical (see Ferraty et al. (2007)). The two others stem directly
from the underlying inverse problem and the sequence r, appears.

Note that we did not fix the issue of the sequence r, involved in the regularizing
inverses F;r( and F; k- Theorem 18 may be simplified under mild additional assump-
tions.

Proposition 21 Taking r,, < h, then
E (7, (x0) — m (20))*

= Em (1 " nv(h))

This proposition is derived from Theorem 18 and Lemma 29.

Turning back to Proposition 8 and considering displays (13) and (14) it is not hard
to see that both functions p are regularly varying at 0 with index 1 4+ 8 for the first
and 1 for the second. It should also be noted that from property (16) in Proposition 9
that we can expect p to be of index larger than 1 whenever it is regularly varying at 0.
This fact motivates the next proposition.

Proposition 22 Under the assumptions of Theorem 18 and of Proposition 21, if the
auxiliary function p is regularly varying at O with index g > 1,

v (h) = hp (h) F (h). (22)
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Then, if p (s) = Cs* in a neighborhood of 0, the mean square error becomes

1
E (i1, (x0) — m (20))> < C (h“ +— (h))

and the rate of decrease of the Mean Square Error depends on h* given by
a4 gy L
(h) F(h):;. (23)

If p(s)/s* — 0 when s — 0 the above rate is damaged. For instance, taking r, =< h
the MSE becomes

N 2 4 ;
E (1, (x0) —m (20))” = C (h EEDEIOY. (h)) ‘

Remark 23 As announced earlier, considerations about optimality of our estimate are
beyond the scope of this work. However, it is worth commenting on display (23).
Indeed, we see that when X € RY, F (h)y ~C h9 then the rate of convergence in mean
square turns out to be n~2/4+4) which is the optimal (minimax) rate of convergence
for a twice-differentiable regression function (see Stone (1982)). This does not prove
that (23) defines the optimal rate in the functional framework, but it underlines that
our approach remains valid in a multivariate setting. In fact, when the small ball prob-
ability belongs to the class I, this rate depends on p. We know that the term F (h)
will always tend to 0 quicker than #* and will consequently determine the choice of
h. The situation is consequently more intricate than that in the multivariate setting.
However, following the example of displays (9) and (11) we get, respectively,

h% = C (logn)~'/F
h* = C (logn)~'/?

where 8 < 3 when p (s) > Cs*. Finally, the rate of decrease of the mean square error
is O ((log n)_c) where ¢ > 1.

Remark 24 Display (22) was proved in Mas (2008a). In the first case (when p (s) >
Cs*), since the bias term is here O(h*), the rate of convergence of our estimate
outperforms the one computed in Ferraty et al. (2007). The estimate was a classical
Nadaraya-Watson kernel estimator whose bias was O (k). Obviously the rate of con-
vergence in the second case is damaged, but even for very irregular processes such as
Brownian motion or Brownian Bridge function p(s) is above s> or 53 depending on
the norms that are used. The interested reader is referred, for instance, to displays (20)
and (22) in Mayer-Wolf and Zeitouni (1993) or Proposition 6.1, p. 568 in Li, Shao
(2002) but will have to carry out some additional computations. It seems reasonable
to think that this unfavorable situation will rarely occur in usual statistical context
(with functions reconstructed on smooth spaces). We prove below that, even when p
decays rapidly to 0, it is always possible to choose a regularizing method for I', x
that reaches the best rate of display (23).
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The last proposition deals with the situation described in Remark 17: when r,, does
not tend to zero. This cannot happen when the problem is ill-posed and the regular-
izing method is the spectral truncation but may occur when either a penalization or a
Tikhonov method is applied. We remind that we cannot avoid the conditionr, v (k) | O.
We start from Theorem 18.

Proposition 25 When assumptions A1 —Ag hold, if n F (h) — 400, when the regu-
larizing method allows to do so, taking r (h) = 1/p (h) provides

E (iin (z0) — m (v0))* < Ch* 4+ C

nF (h)

Obviously r,v (k) tends to 0. If the chosen method is penalization such that FZ K=

(I‘,,,K + ay S)_l it suffices to take o, = h*F (h*) to achieve our goal. The proof of
this proposition is easy and hence omitted.

Remark 26 The rate in Display (23) should be compared with the minimax rate
obtained by Fan (1993) for local linear regression with scalar inputs. The MSE was
then Ch* + C/(nh). We see that, replacing F (h) with i (which is logical if we consider
the remark about the multivariate case just below display (9) in the section devoted
to the small ball problems), both formulae match. This fact leads us to another inter-
esting issue: does this rate inherit the optimal (minimax) properties found by Fan in
his article? This question goes beyond the scope of this article. Besides, not much
has been done until now about optimal estimation for functional data—to the authors’
knowledge. But there is no doubt that this issue will be addressed in the near future.

4 Conclusion

Obviously, this article could be the starting point for other issues such as almost sure
or weak convergence of the estimate. Almost all practical aspects were left out on
purpose. They will certainly give birth to another article. However, the main goal of
this essentially theoretical work was to underline the rather large scope of our study.
We had to seek several ideas from various areas such as probability theory, functional
analysis, statistical theory of extremes, and inverse problems theory. Finally, it turns
out that it is possible to get, in the functional setting, the same rate of decay for the bias
as in the case of scalar inputs. The variance involves the small ball probability evalu-
ated at &, the selected bandwidth. A drawback arises with the necessity of introducing
a new parameter: the regularizing sequence r,, which depends on the sample size
(more precisely on the bandwidth /). We give no clue to find out in practical situations
the bandwidth £, but we guess that the ever wider literature on functional data will
quickly overcome this problem by adapting classical methods such as cross-validation,
for instance.

Another major practical concern relies in the estimation of the unknown auxil-
iary function p. Several tracks already appear to address this issue. One may think
of adapting some techniques from extreme values theory. After all, p characterizes
the extreme behavior of || X| like tail indices for Weibull or Pareto distributions.
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The only difference stems from the fact that p is a function and not just a real number.
The other idea Olies in the article by Mas (2008b) where the auxiliary function p is
explicitly linked with the eigenvalues of the ordinary covariance operator of X. From
the estimation of these eigenvalues (which is a basic procedure), it should be possible
to propose a consistent estimation of the auxiliary function as a by-product.

5 Proofs

For the sake of clarity we begin with an outline of the proofs. The following bias-var-
iance decomposition for 1, (z¢) — m(xg) holds:

n
- P -a).
mp (o) —m (xg) = 2= Yi®in
— z?:l (yl —m (xg)) Win

Z?:l Wi n

2ici Wi —m X)) win | 2oy (m (Xi) —m (20)) Win
= - T i .
i1 @in 2ie1 Win

We denote
Doy (m (X)) — m (20)) win
21 @i ’
it (i —m (X)) win
21 @i
_ i1 @inéi

Z?:l Wi,n

where ¢ was defined at display (1). Here 7}, , is a bias term and T, ,, is a variance term.
Finally we get

Tb,n = (24)

Tyn = (25)

E [y (x0) — m (20)1* = BTy, + ET;, + 2E (Tp,n To.n) (26)
and since

E (TpnTyn) = E(TpuE (Tynl X1, - ... Xn))
=0

computing the mean square error of m,(x9) comes down to computing IEszn and
ET2,. which will be done later.
The proof section is divided into two subsections. The first one is devoted to pre-

liminary results as well as lemmas. In the second one the main results are derived.
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5.1 Preliminary results

We assume that assumptions A;—Ag hold once and for all. All the proofs of this
subsection were omitted in order to shorten the article. They are, however, available
online on the arXiv website with reference arXiv:0710.5218v1.

Lemma 27 If f belongs to the class Iy with auxiliary function p, then forall p € N,

. pil
/ 1 f(SM)dt ~02”E‘r(p+1)f(s)(p(s)) T
0

1 —1¢2 s> 2 s

For any x = > ae; in H and fori € N set ||x||il. = Zk# x,%

We denote f; the density of [|X — xoll,;. We need to compute both densi-
ties flx—uo) (density of [|X — zoll) and fix—z,e;).1X—xo (density of the couple
(X — o, ), | X — xol).

Lemma 28 We have

FiX=zo.e), 1X =0l (U, V) = ﬁfi () fri (v v2 — uz) sy, (27

1 ]
FiX—zo] (V) = v / 1 j’l(j_tt)z i (v\/l - ﬂ) dr. (28)

Besides, if fix—uzy) and f+; are I'-varying for all i then they have all p as auxiliary
function.

We begin with more specific computational lemmas.

Lemma 29 Let ¢ be a positive real-valued function, bounded on [0, 1] and regularly
varying at 0 with index g > 1 and let p € N:

e (|55

)(p(IIX — o)~/ K (D)@ (h) F (h). (29)

As important special cases we mention

o([5]) oo e

X_
E[nx — wol™ K (H - w0

X —x
h

) ~ K2(1)F (h),

):| ~ K(D)F(h)h™.

n

_ 1 1 <
Zkn= ;221& = ;sz(xi —x0) K (IX; — 20ll / h).
P —

The next lemma is crucial.
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Lemma 30 We have

2

IE[ZK]? = HE [K (” X 0

)]

Remark 31 We can evaluate the sharpness of the previous bound. Indeed, a very simple
inequality would give by Lemma 29:

< Cv% (h).

IE[ZK]I> < (ENZK])* = (EIZ| K)* ~ Ch>F? (h)

whereas in view of (18) and—when p is regularly varying at O with positive index—of
Lemma 29,

X — 2
[E (K (”h—xo”) IX — ol p (IIX — :con))] < h?p* (h) F* (h).

So the bound was improved by a rate of pz(h) = o(h?).

Lemma 32 Both following bounds hold:

_ — h2F (h
E|Zx - EZka|’ = €2,

— — h4F? (h
B[ Zka ~BZxa|' <@

Lemma 33 We have

2
Ew?, < C(F(h)+ WED | v(h)).

nryv (h) n
Lemma 34 When nF (h) — +o00,

K 2
a2y
nK (1) F (h)
L? .
where — denotes convergence 1m mean square.

Lemma 35 We have

WF2(h) 2 (k)

2,242 2
n=riv= (h) r;

— _ 2
E(r} «Zkn Zkn) =C
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5.2 Derivation of the main results
We start with a short and simple intermezzo about optimization in Hilbert spaces.

Proof of Proposition 4 Consider the following program:

[ (IIX—IOII)}
min Ef(y—a—{p, X )) K{———) |

acR,peH h

Simple computations lead to

X —
£ =E[w-a o x w2k (H520)]

= C+a’EK + Tk, ¢)—2aE (yK)—2(E(yZK), p)+2a (E(ZK), ¢).
Obviously, £ (a, ¢) is positive, strictly convex, and

lim & (a,p) =400

a,|lgll—+o0

hence £(a, ¢) has a single minimum (see Rockafellar (1996) for further information
about the minimization of convex functions). It is also differentiable for all (a, ¢) in
R x H. We compute its gradient :

(Za]EK —2E(yK) + 2 (E(ZK), (p))
Vé(a, )
g —2E(yZK) + 2aE(ZK)

from which we get the solutions (a*, ¢*):

a*EK 4 (E(ZK), ¢*) = E(yK)
Fk¢* = E(yZK) — a*B(ZK) )

We see from the second line that ¢* is not uniquely defined if I'g is not one to one.
Taking ¢* = FI;I (E (yZK) — a*E (ZK)), we get im,, (xo) as announced. O

The forthcoming lemma assesses that the random denominator of our estimate may
be replaced with a non-random one.

_v(h)

Lemma 36 When both ——and W E 0D tend to zero, the following holds:

2 2(h)

2O L
nK (1) F (h)
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1068
Proof

n n

Zwi,n = Z K, —n <FZ’KZK,I17 ZK,n>

i=1 i=1

hence
i = _
> @i | ik <Fn,KZK,n, ZK,n>
nK (1) F (h) K (1) F (h)
O

nK ()F (h)
From Lemmas 34 and 35 we deduce that the announced Lemma 36 holds.

5.2.1 Variance term
= Zim Um0 _ izt 9 i plain that BT, ,, =

We study first (see 25): Ty, ST o :
i=1@in i=1®i.n
— 2180 We have:

0. Denote fm = TKOFM
~ F(h) = iRy 2iz1 @in
Tv,n - Tv,n — Ly,n F (h) .
We begin with a proposition. By Lemma 36 just above we know that T, ,, ~ ~v, n in
L? sense, i.c.,
Lo LY
TU,I’Z
Proposition 37 We have
hF (h h
ET?, <C—s— (F) + ONRLIONY
’ nF2(h) nrpv(h) 'n
Proof As announced earlier, it suffices to prove the proposition for fv) n
2
ETvzn —F Z?:l EiWin
' nK (1) F (h)
1 " ’
:mE E (;8[0)1";1) Xl,...,Xn
= ;E E i“ o’ | X, X
n2K? (1) F2 (h) P i “i,n s An
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since for i # j,

E [(siwi,nsja)j,n) |X1, ey Xn] = a),-,na)j,nE [(8,‘8]') |X1, ey Xn] =0.

Hence,
2 2
~ 1 " O¢ E (a)l n)
ET? = ———— o°E 2 )l=——7
v TR () F2 (h) 8 (;w”" nK2 (1) F2 (h)
By Lemma 33,
h2F(h)  v(h)
E( 2 ) <c(Fm
Pln) = ( ( )+nr,,v(h) + n
from which we deduce the proposition. O

Now we turn to the bias term.

5.2.2 Bias term

Remember that we have to deal with

er'lzl (m (X;) — m (x0)) Wi, n
21 @i

Copying what was done above with 7, ,,, we know that we can focus on

Tb,n =

D m (X)) —m (20)) win
nK (1) F (h)

Tb,n =

via Lemma 36. For each i there exists ¢; € B (zq, ) such that
m(X;) — m(xo)

1
= (m'(x0). Zi) + 3 (m" (i) (Zi) . Zi).

with Z; = X; — xo. We deal with the first- and second-order derivatives separately:
Tb,n = Tb,n,l + Tb,n,z with

Sy (m (@0), Zi) win

Tom1 = nK (O F(h)y
7 170 (m" (i) (Zi), Zi) win
bn?2 = < .
2 nK (1) F (h)

@ Springer



1070 A. Berlinet et al.

Proposition 38 We have

- h? v? (h)
ET? ,<C C .
bl =0 F (h) TR h)

Proof We first see that

n n

;(m/ (z0), Xi — z0) i = ;(m/ (o), Zi) Ki (1 - <Zi, FZ’K7K,n>)
=D {m' (20), Zi) Ki

i=1
n 1
=" (' @o). Zi) Ki (7. T« Z k)
i=1
= n ' @0). Zic) = n Tk’ @0). T} ¢ Z)
= n(m' @0, (1= TukT} ) Zx)
and

~ <m/ (x0), (I - rn,KFZ’K) (7K,n)>
Tpp1 = :
K () F (h)

Then we split this into two terms:

(" @), (1 =Tk} ) Zien)) = (1 = Tk ) ) ' @0, (Zicn = EZn))
+<(1 — F,,,KFZ’K) m' (o), E?K,n>.
The L? norm of the first is bounded by Ch/F (h) /n (see Lemma 32) and the L?

norm of the second is bounded by Cv (%) (see Lemma 30). This finishes the proof of
Proposition 38. O

We turn to Tb, .2 and cut it into two parts:
71X m"e) (2. Zi) Ki
bn2 =75 nK () F(h)
1 2y (m"(ci)(Z), Zi) K; <Zi, F;,ka,n>

2 nK (1) F(h)
Rpn1 + Rpn2.-

The two forthcoming propositions aim at giving a bound for the mean square norm of
Rpn1 and Rppo.
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Proposition 39 We get

2 h 4
ER;, <C nF(h)+h .

Proof 1t is plain to see that for all i and when Assumption As holds

0 < (m" (ci) (Zi), Zi) Ki s( sup |m” (a:)HOO) I1Z:1I* K;
xeV(xp)

hence that

_CXL 1Z: 1% K;

0<R .
bl =K () F ()
It follows that
n 2 2
> (> 1Zi11% k)

Then

0 <ERj, < o5~ F2(h) ( ZK ||Z||2)

C 1 1
= —— | ~E(K21ZI") + E(KI1ZIP K, |2
F2(h) | n n

| I<i#j=n
c [1_ 5, 4 -\ 2
< g2 g | W EK120° + (5K 12017)
C [h*F(h) 4, ,
< ———|———+h"F(h
=l .t ()]

C i + h“}
[nF(h) '

We turn to Rp;2.
Proposition 40 We have

h6
2
ERj,» < Cr—z.

n

Proof Dealing with Ry, is a bit more complicated. We have
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1 . |
— i z e NWAY A4
—2Rpn2 = K F () <Fn’KZK,n7 " ~ (I’I’l (¢i) (Zi), Zl)KlZl>'

The next operation consists in replacing Z , by its expectation. Like above in the
proof of Proposition 38 as well as in the proof of Lemma 33 and 35, we can add and
subtract EZK from Zg ,,. Once again, we decide not to go through details here for
the sake of shortness and clarity. Finally, since the remaining involving Z Kon— EZ K.n
tends to zero quicker in mean square, we can focus on

2
c 2 1 <
2 i 2
4R} = g | o | VK2 > @@, z)Kizi) . G0)
At last, we have to deal with
1 « ?
E ;2<m//(ci)(zi)azi)[(izi
1=
Easy computations give
|« ?
1
=D m" () (2), Zi) Ki Zi
n i=1
_ln eV (Zs Z'ZKZZ'Z
—EZ(’” (ci)(Zi), 1) 7 1Zil]
i=1
+£Z(m”(c~)(z-) Zi)(m"(c))(Z)), Z;)(KiZi, K; Z;) (31)
n2 i i)y i J VAR 140 jljl.

i<j
Now, we take expectations and use assumption As for the first sum:

- 2
n—z]EZ(m” (ci) (Zi). Zi) K,2 I1Z:|I?

i=1

1 n
< CEX IZiI K7 12112
i=1

c c
- (K,? ||zl~||6) < ZhOF ().
n n

Since h®F (h) /n tends to zero at a rate much quicker than the next term, we do not
let it appear in the proposition.
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We fix i and j in (31) and take expectation
E(m"(ci)Zi, Zi)(m"(c))Zj, Z;)(KiZi, K; Z;)
= (E[{m" () Zi, Zi) K: Zi). E[(m"(c))Z}. Z;) K ; Z}])
= |E[(m"(©)Z, 2)k 2]
By assumption A5 we get
|E{m" () Zi, Zi){m" (e;)(Z)), Zj)(Ki Zi, K; Z,)|
< (E|(m"©2z. 2)kz|)’
2
=c[E(k1z1P)]
< Ch®F?(h).

Finally, with (30) at hand we have

c v [C
ER? , < ——— —hSF (h) + ChOF? (h
bnz_Fz(h)vzr,%(n )+ *)
Ch6
=0
since nF (h) — +oo0. O

Atlast, we finish with the proof of the main theorem which is considerably alleviated
by all that was done above.

Proof of Theorem 18, Proposition 21 and Proposition 22 The proof of the theorem
stems from display (26), Proposition 37, 38, 39 and 40. Collecting these previous
results we have

h2F(h)  v(h)

nF2(h) (F(h) oo T )
e, h? v2(h)

+C[r—2+h +nF(h) F2(h)]‘

n

E (71, (x0) — m(x0))* < C

First, from
v (h) < h*F (h),

we see that the first line above will be O (1/(nF (h))) whenever h%/r, and
h%/ (nr,v (h)) are bounded. We turn to the second line. The term is at least
h?/ (nF (h)) may be removed because it can be neglected with respect to the variance
term. In order to reach O (h4) for the bias we have to bound 42/ r,% and 1/ (han (h)).
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At last, summing up all what was done above, we take r, < h and
7 - min {v(h)/h, th(h)} >C>0.

Following the results of Mas (2008a) this last inequality comes down, when p is
regularly varying at 0 with positive index, to

nF (h) - min {p ), hz} >C=>0

and Theorem 18 is proved. O

Acknowledgements We greatly thank an Associate Editor and a referee for their careful reading of the
paper and helpful suggestions.
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