Ann Inst Stat Math (2011) 63:769-789
DOI 10.1007/s10463-009-0255-z

Constrained estimation using judgment
post-stratification

Jesse Frey - Omer Ozturk

Received: 11 August 2008 / Revised: 7 May 2009 / Published online: 24 July 2009
© The Institute of Statistical Mathematics, Tokyo 2009

Abstract Inranked-setsampling (RSS) and judgment post-stratification (JPS), more
efficient inference is obtained by creating a stratification based on ranking information.
Using this stratification exactly as is done in stratified sampling or standard post-strati-
fication leads to the standard nonparametric estimators for RSS and JPS. However, we
show that strata obtained from ranking information satisfy additional constraints that
need not be met by ordinary strata. Specifically, the in-stratum cumulative distribution
functions (CDFs) can be no more extreme, in a certain sense, than the CDFs for order
statistics from the overall distribution. The additional constraints can be used to obtain
better small-sample estimates of the in-stratum CDFs using either RSS or JPS. In the
JPS case, the constraints also lead to better small-sample estimates of the overall CDF
and the population mean.

Keywords Convexity - Maximum likelihood - Ranked-set sampling - Stratified
sampling

1 Introduction

Ranked-set sampling (RSS), proposed by McIntyre (1952, 2005), is a sampling scheme

appropriate for use when it is inexpensive to rank or approximately rank units without
actually measuring them. The ranking information is used to guide the selection of the
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units to be measured, and the result is a sample that tends to be more informative than
a sample obtained via simple random sampling (SRS). The problem that motivated
Mclntyre (1952, 2005) was that of estimating average yields in agriculture. Measuring
ayield is expensive because one must actually harvest the crops, but an expert may be
able to produce an accurate ranking of the yields for a collection of plots on the basis
of a visual inspection.

RSS may be either balanced or unbalanced. To implement balanced RSS, one first
specifies both a number of cycles n and a set size m. The set size m is typically chosen
to be between two and five so that sets of m units can easily be ranked accurately. One
then draws N = nm independent simple random samples (sets) of size m and ranks the
units within each sample from smallest to largest using some method other than actual
measurement. From each of the first n samples, the unit ranked smallest is selected
for measurement. From each of the next n samples, the unit ranked second-smallest is
selected for measurement, and so on. If the rankings are perfectly accurate, then the
ranked-set sample consists of N independent measurements, with n values distributed
like the smallest order statistic from a sample of size m, n values distributed like the
second-smallest order statistic from a sample of size m, and so on. If the rankings
are not perfectly accurate, then the sample consists of independent judgment order
statistics.

To implement unbalanced RSS, one relaxes the requirement that the same number
of each type of order statistic be chosen. One still specifies a set size m, but instead
of specifying a number of cycles n, one specifies a vector n = (ny, ..., n,), where
n; indicates the number of units with rank i to be selected for measurement. The total
sample then consists of N = > | n; independent order statistics or judgment order
statistics.

RSS allows for more efficient statistical inference than does SRS in a wide variety
of statistical problems. These problems include parametric point estimation (Stokes
1995), nonparametric estimation of the cumulative distribution function (CDF) (Stokes
and Sager 1988), testing for a difference in location between two distributions (Fligner
and MacEachern 2006), nonparametric estimation of the population variance
(MacEachern et al. 2002), and best linear unbiased estimation (Barnett and Moore
1997). However, one must use the RSS sampling approach described above in
order to realize the benefits. Judgment post-stratification (JPS), proposed by
MacEachern et al. (2004), is an alternate method that uses the same ranking infor-
mation that is used in RSS, but that is based on a simple random sample. As a result,
researchers who use JPS retain the option of using SRS-based methods if desired.

To implement JPS, one first specifies both a total sample size N and a set size
m. As in RSS, the set size m is typically chosen to be between two and five so that
the sets of m units can easily be ranked accurately. One then draws a simple random
sample of size N. The N units are each measured, and some ranking information is
also collected. For each of the N units in the simple random sample, one obtains an
additional m — 1 independent units, yielding a set of m units. The units in the set
are ranked from smallest to largest, and the rank of the unit from the simple random
sample is recorded. The full data set then consists of both the N measured values and
the rank associated with each measured value. Just as in unbalanced RSS, the number
of measured units with each particular rank may differ from one rank to another. In
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fact, some ranks may not appear at all, particularly if N is small. In what follows,
we let the vector n = (ny,...,n,), where N = Z:": 1 1, indicate the number of
sampled values with each rank 1 to m. JPS may be thought of as a randomized version
of balanced RSS; it is equivalent to drawing N independent simple random samples
of size m, ranking the units in each sample from smallest to largest, and then deciding
at random which one unit in each sample to measure.

Like RSS, JPS allows for more efficient statistical inference than does SRS.
For example, it allows for more efficient estimation of population means (MacEachern
et al. 2004) and more efficient estimation of contrasts in designed experiments (Du
and MacEachern 2008). JPS also offers more flexibility than RSS in that rankers can
be permitted to declare ties.

Neither RSS nor JPS requires perfectly accurate rankings in order to be effective,
but more accurate rankings tend to lead to more efficient inference. In addition, recent
work by Ozturk (2007) and Wang et al. (2008) has shown that if one is willing to
assume that the in-stratum distributions are stochastically ordered, then even greater
gains in efficiency can be obtained using in-stratum estimators that satisfy the same
stochastic-ordering constraints. The stochastic-ordering assumption is certainly rea-
sonable in many settings. However, in small-sample settings where only limited data
are available and where the ranking information may be subjective information that
does not translate easily into covariates, there is a danger that the rankings may be
inaccurate in surprising ways. In this paper, we develop methods for obtaining better
inference without making any additional assumptions at all.

The standard nonparametric RSS and JPS mean estimators are obtained using
exactly the procedure used in stratified random sampling or in standard post-
stratification (see Lohr 1999), with the rank (1 to m) associated with each measured
value being used as the stratification variable. However, we show in this paper that
strata that arise from ranking information have a structure that is not present for ordi-
nary strata. Specifically, the collection of in-stratum CDFs must satisfy, at each point
on the real line, constraints that force them to be no more extreme, in a certain sense,
than the CDFs for order statistics from the overall distribution. After deriving these
constraints in Sect.2, we show in Sect. 3 that when sample sizes are small, the con-
straints can be used to obtain better estimates of the in-stratum CDFs. In the JPS case,
these better estimates of the in-stratum CDFs also lead to a better estimate of the over-
all CDF. In Sect. 4, we show that in the JPS case, we can also obtain a better estimate
of the population mean. In Sect. 5, we discuss a small data example, and in Sect. 6, we
give our conclusions and mention some possible extensions of the method.

2 The constraints

In this section, we derive the constraints that must hold for the in-stratum CDFs when
the strata arise from ranking information. We then use these constraints to prove some
useful results about the geometry of the space of possible judgment-order-statistic
CDF values at a particular point. Our first theorem shows that, in a certain sense, the
in-stratum CDF values can never be more extreme than the CDFs for order statistics
from the overall distribution.
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Theorem 1 Assume that m > 1. Suppose that p = (p1, ..., pm) is the vector
of in-stratum CDF values at the point t, and let p = % >, pi be the overall
CDF value at t. Then, if I is any subset of the set {1, 2, ..., m}, we have that

1]
D pi <D B(prim+1—i), eh)
iel i=1

where B(-; o, B) is the CDF for the beta distribution with parameters o and B.

Proof Let I be any subset of {1, 2, ..., m}. Letting X[;; indicate a random ith judg-
ment order statistic and X ;) indicate a random true ith order statistic, we have that

D pi=> PXy<t)=E [Z I(Xj) < t)}

iel iel iel
=F |:E [Z[(X[i] <Dl Xu,..., X(m):|:|
iel

= E [E [# of values X[;1, i € I less than or equal to | X1y, ..., X(m]] -
The values X[;1,i € I are a subset of |/| values chosen from X (i), ..., X(n). The
smallest | /]| values in the list X1y, ..., X () are X(1y, ..., X)) Thus, the number of
values X[;],i € I less than or equal to ¢ can be no larger than the number of values
Xy, .-, X)) less than or equal to ¢. This tells us that

Zpi = E[E [# of values X;}, i € I less than or equal to 7 | X1y, ..., X(m]]

iel
< E[E [#of values X(;y, i =1, ..., |I| less than or equal to ¢
X1y X ]
[1] ]
=D PXoy <= B(priim+1-10),
i=1 i=1
proving the theorem. O

Theorem 1 allows us to prove Theorem 2, which characterizes the space of all pos-
sible values for the in-stratum CDFs when the overall CDF has the value r. Theorem 2
shows that the constraints (1) given in Theorem 1 are sufficient as well as necessary.
Moreover, if we define K, to be the set of all vectors p such that the constraints (1)
and the constraint p = r hold, then Theorem 2 identifies the vertices for K.

Theorem 2 Assume that m > 1. Suppose that at the point t, the overall CDF has

the value r. Then the possible values p = (pi1, ..., pm) for the vector of in-stra-
tum CDF values at the point t is precisely the set of all convex combination of the
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vectors (0x(1)s - - > Ox(m))s T € Sy, where Sy, is the set of all permutations of the set
{1,2,...,m} and o; is defined by 0o; = B(r;i,m+1—i),i =1,...,m.

Proof We first show that any convex combination of the vectors (0 (1), - .., Ox(m)),
w € S, can arise as a vector of in-stratum CDF values. We then show that no other
vectors are possible by proving that the vectors (07(1), ..., Oz(m)), T € Sy, are the
vertices for the space K, of vectors p that satisfy the constraints (1) and yield an overall
CDF value of r.

Let (p1, ..., pm) be an arbitrary convex combination of the vectors (0x (), ...,
Ox(m)), T € S;. We can then write that

(P1s--sPm) = Z ¢z (0x(1)s - -+ s Ox(m))>

TESH

where the ¢, are nonnegative constants that sum to 1. To show that (py, ..., p,) can
actually be realized as a vector of in-stratum CDFs, we suppose that with probability
Cx , the true order statistics X1y, . .., X () in a particular set are judgment-ranked from
smallest to largest as Xz (1)), . . . » X(z(m))- We also assume that the judgment ranking
of the true order statistics depends on the actual data only through the true ranking of
the data values. The vector of in-stratum CDF values at the point 7 is then given by
Zﬂesm Cx (Ox(1)s - - - » O (m))» Which is precisely (pi1, ..., pm).

To show that no other vectors p can be realized as vectors of in-stratum CDF values,
we show that the vectors (0x(1), ..., 0z(m)), T € Sy are the vertices of the convex
set K, consisting of all vectors p that satisfy both the constraints (1) specified in
Theorem 1 and the constraint p = r. We note first that the set of all vectors p that
satisfy the condition p = r for fixed r is an (m — 1)-dimensional convex polytope
(see Ziegler 1995). Thus, any vertex of the set must achieve equality in at least m — 1
of the inequalities given by (1), and the inequality determined by choosing / to be the
full set {1, 2, ..., m} may not count towards the m — 1.

Suppose that p is a vertex of K, and suppose that two of the equalities satisfied
by p involve the same number of indices. That is, suppose that there are nonidentical
subsets 11 and I of {1,2,...,m} such that |I;| = |I| and

[
ZPiZZOiZZPi~ (2)
iel i=1 iel
Let j be a value in I1 \ I5. Then, by Theorem 1, we know that
[11—1
Zpi —Pj= z 0i-
iel i=1

Subtracting this new inequality from (2), we find that p; > oy;,|. Consider the set /3
that consists of I, together with j. The set /5 includes | /2| + 1 indices, and we have that
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12| |12
E pi = ZOi tprj= E 0i | +oin)
ich i=1 i=1

12| |13

> ZOi +oin1+1 = E 0,

i=1 i=1

where the strict inequality follows from the fact that oy > - -- > 0,,. The subset /3 thus
violates the constraints (1) from Theorem 1, providing a contradiction. This shows
that the m — 1 equalities must each involve a different number of indices.

Since there are only m — 1 possible numbers of indices, and since p must satisfy
m — 1 different equalities, it must be true that foreachk = 1, ..., m — 1, there is a set
of k in-stratum CDF values that sum to Z{;l 0;. The in-stratum CDF values that sum
to Zle o; must be the k largest in-stratum CDF values, for otherwise the constraints
(1) will be violated. Thus, the in-stratum CDF values, ordered from largest to smallest,

must coincide exactly with the values o1, ..., 0. That s, the values p1, ..., p,, must
be a permutation of the values o1, .. ., 0,,. This shows that the vertices of the convex
set K, are precisely the vectors (0x (1), - - -, Ox(m)), T € Sy, proving the theorem. 0O

Theorem 2 shows that when the overall CDF value is fixed at » € [0, 1], the space
K, of possible values for p is a convex set. The next theorem shows that if we define
K= rel0.1] K, to be the set of all possible values for p, then K is also convex. To
prove the theorem, we need the following lemma. As before, B(-; «, ) is the CDF
for the beta distribution with parameters « and .

Lemmal Foranyk =1,...,m—1, thefunction B(t; 1,m)+---+B(t; k,m+1—k)
is concave in t on the interval [0, 1].

Proof We proceed by showing that the second derivative of the function is nonpositive
on the interval [0, 1]. Consider first the case k = 1. The first derivative of B(¢; 1, m)
is the beta density

bt;1,m) =m(l —t)" L.

Differentiating again with respect to 7, we find that the second derivative is
—m(@m — 1)(1 —1)"2, which is nonpositive for ¢ € [0, 1]. Thus, the lemma holds for
k=1.
Suppose that k& > 1. The first derivative of B(¢; k, m 4+ 1 — k) is the beta density
m!

. _ s k=1 m—k
b kom o+ 1= k) = ot A =,

which means that the second derivative of B(t; k, m + 1 — k) with respect to ¢ is

|
m ((k — D20 = R — o — < (1 — t)’"—"—l)
— m‘ tk—2(1 _ t)m—k _ m' tk_l(l _ t)m_k_l,
k —2)l(m — k)! k—1)lm —k —1)!
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a sum of two terms. However, the positive term in the second derivative of B(¢;
k,m + 1 — k) is exactly the same as the negative term in the second derivative of
B(t; k — 1,m + 2 — k). Thus, when we compute the second derivative of the sum
B(t; 1,m)+---+ B(t; k, m + 1 — k) with respect to ¢, all but one of the terms cancel
out, and the final result is

m!

k—1 m—k—1
Tk Dim—k—D (=0 ’

which is nonpositive for ¢ € [0, 1]. This proves the lemma. O

Theorem 3 The space K of all possible vectors of in-stratum CDF values is a convex
set.

Proof We proceed by showing that any convex combination of two vectors of in-
stratum CDF values must also be a vector of in-stratum CDF values. To do this, we
show that the bounds specified in (1) behave in an appropriate way.

Let p1 = (p11,..., pim) and p2 = (p21, ..., pom) be arbitrary vectors of in-
stratum CDF values. Let p; = % > piiand pp = % > | pai be the correspond-
ing values for the overall CDF, and let I be an arbitrary subset of {1, 2, ..., m}. When
the overall CDF is p;, the upper bound on >, _; pj; specified in (1) is Zy:l] B(pj; i,
m + 1 —i). Thus, p1 and py satisfy

1 1

D pi <D B(pim+1—i) and D py <> B(pai,m+1—i).

iel i=1 iel i=1

Let A € (0, 1) be a constant, and let p3 = Ap; + (1 — A)p2 be a convex combination
of p1 and py. The corresponding value for the overall CDF is p3 = Ap; + (1 — 1) pa,
and we have that

D=2 pit+ =2 p

iel iel iel
1] 1]
<A B(priim+ =i+ (1=2) > B(pai,m+1-1).

i=1 i=1
By Lemma 1, the function lelz‘l B(t;i,m + 1 — i) is a concave function of 7. Thus,

|1 1]

D opsi <A Brim+ 1=+ (=1 B(prim+1-i)
iel i=1 i=1
1] 1
<D B+ (I —Wpaiim+1—i)= > B(pziim+1—1i),

i=1 i=1

which proves the theorem. O
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Fig. 1 The space of all possible o |
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To illustrate the results that we have obtained in this section, we created Figs. 1 and
2. Figure 1 shows the space K of all possible vectors (pi, p2) in the m = 2 case,
and Fig. 2 shows four different slices from the three-dimensional space of all possible
vectors (p1, p2, p3) in the m = 3 case. One important feature to notice in each figure
is that some possibilities are ruled out. For example, in Fig. 1, we see that if p; is
very small, then it is not possible for p; to be large. A second important feature is
symmetry. Since the labels 1, ..., m are interchangeable, each region plotted in the
two figures is symmetric with respect to the line p; = p».

3 The restricted CDF estimator

The standard estimate of the population CDF F under either RSS or JPS is given by

. 1 <&
Py =—2> Fi@), 3)

i=1

where ﬁl () is the empirical distribution function (EDF) for the data values that were
given rank i. If any of the strata are not represented, as may occur in JPS, then F(t)
is the average of F; (1) over all the strata with nonzero sample sizes. The estimator
F is unbiased for F, but the vector (F1 (1), . F (1)) of in-stratum CDF estimates
need not be a possible value for (Fi(¢), ..., Fm (t)), the true vector of in-stratum CDF
values at ¢. In situations like this where an estimator may fall outside of the feasible
region, one can typically obtain a better estimate using an estimator that is forced to
fall inside the feasible region. In this section, we provide a method for obtaining such
an estimator of (F| (1), ..., F,,(1)).

Suppose that we wish to estimate the values Fi (), ..., Fy, () for some fixed real
number ¢. Let n = (n1,...,n,) be the vector of in-stratum sample sizes, and let
X = (x1, ..., X;) be the vector of counts of the number of values in each stratum that
are less than or equal to ¢. If p = (py, ..., pm) is a candidate vector of in-stratum
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Fig. 2 Some slices from the space of possible vectors (p1, p2, p3) when the set size is m = 3. Each plot
shows the potential values for p; and p, when the overall CDF value p is fixed at some particular value.
The value p3 is determined by the constraint that p = 3 (p1+ p2+p3)

CDF values, then the likelihood function is given by

m

Lom =T (4 ) ra=p ™ o 0= psti=tm @
l

i=1

Thus, the log likelihood function can be written as

m
I(plx,m) = ¢+ > {xilog(pi) + (n; —xi)log(1 = py)}  for 0 < p; <1,
i=1
i=1...m, ®)

where ¢ does not depend on p. If we maximize [ over the entire space [0, 1", then
we obtain the standard EDF-based vector of in-stratum estimates (F 1(D), . F (1)).
However, if we maximize / only over the set K of vectors p that satisfy the constraints
(1) given in Theorem 1, then we obtain the restricted vector of in-stratum estimates
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(F 1@, ..., I:",Z (1)). That is, we define the restricted estimator by

(FL(t), ..., E" (1)) = arg max,c ¢/ (plx, n),

The corresponding restricted estimator for the overall CDF value is
1 m
Friy==> F@).
= le 7 ()

The restricted estimator (ﬁ 1@, ..., I:",Z (1)) is not unbiased. One can show, however,
that it is a consistent estimate of the true vector (Fi(t), ..., F,;(t)) in the sense that
if min{ny, ..., n,} goes to infinity, then (ﬁ{ 0, ..., I:)Z (t)) converges in probability
© (Fi@), ..., Fa0). .

We obtain the estimate (F (), ..., F,,(¢)) by maximizing the concave function
[(p|x, n) over the convex set K of all possible vectors of in-stratum CDF values. This
maximization can be done in a variety of ways. The algorithm that we use involves
(i) taking advantage of Theorems 1 and 2 to find the value p that maximizes / when
the overall CDF value p is fixed and (ii) doing a systematic search for the overall
CDF value p for which the maximizing likelihood is highest. Details of the algorithm
are described in the appendix, and an R function for implementing the algorithm is
available from the authors.

To illustrate the restricted estimator F" (t) and show how it differs from the stan-
dard EDF-based estimator F (1), we present a few examples. Since the two estimators
coincide when the vector (I:” 1@, ..., I:“m (1)) satisfies the constraints (1), we focus
on cases where these constraints are not met. Note that while (I:" 1@, ..., o (t)) and
(ﬁ 1@, ..., I:",Z (t)) will often coincide for many values of ¢, it is impossible (in the
absence of ties) for them to coincide for all values of ¢ since the restricted estimator
does not allow any of the values F 1@, ..., I?,Z (1) tobe 0 or 1 without all of the values

I:“I’(t), e ﬁ,;(t) being the same.

Example 1 Suppose thatm = 2, n = (10, 10), and x = (0, 10) when some particular
value ¢ is fixed. The standard estimate of the in-stratum CDF values is (0, 1), which
does not meet the constraints (1). The restricted estimate is (0.25, 0.75), which does
meet the constraints. Note that while the estimates of the in-stratum CDF values are
different, the estimate of the overall CDF is 0.5 in either case.

Example 2 Suppose that m = 2, n = (10, 10), and x = (0, 5) when some particu-
lar value ¢ is fixed. The standard estimate of the in-stratum CDF values is (0, 0.5),
which does not meet the constraints (1). The restricted estimate is (0.0566, 0.4194),
which does meet the constraints. In this example, unlike in Example 1, the estimates
of the overall CDF differ slightly. The standard EDF-based estimate is 0.25, while
the restricted estimate is 0.238. In the m = 2 equal-sample-size setting, the general
pattern is that the restricted estimate of the overall CDF value is always farther from
0.5 than is the standard estimate of the overall CDF value. The difference can never
be very large, however. In fact, in the m = 2 equal-sample-size setting, it is always
true that | F” (1) — F(t)| < 0.014.
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Example 3 Suppose that m = 2, n = (10, 5), and x = (0, 5) when some particular
value ¢ is fixed. The standard estimate of the in-stratum CDF values is (0, 1), which
does not meet the constraints (1). The restricted estimate is (0.158, 0.637), which does
meet the constraints. The standard estimate of the overall CDF value is 0.5, while the
restricted estimate is 0.398. Because of the smaller sample size in the second stratum,
the sample proportion from the first stratum carries greater weight in determining the
restricted estimate than does the sample proportion from the second stratum. The esti-
mate of the in-stratum CDF value for the first stratum moved only from O (standard)
to 0.158 (restricted), while the estimate for the second stratum moved from 1 (stan-
dard) all the way down to 0.637 (restricted). This example shows that in the JPS case,
large differences |ﬁ "(t) — F (#)| can occur when the in-stratum sample sizes are very
unbalanced.

To compare the performance of the restricted estimator F" (1) to that of the stan-
dard EDF-based estimator F' (), we computed mean squared errors (MSEs) for each
estimator under different types of rankings, different average in-stratum sample sizes,
and different values p for the true overall CDF. We also compared the performance of
the two estimators both under balanced RSS and under JPS. We modeled the rankings
using a one-parameter model that extends from perfect rankings at one extreme to
random rankings at the other. Specifically, we assumed that the true CDF F; (¢) for the
ith stratum satisfies

Fi(t) =AFyH@) + (0 =MF(@), (6)

where F(;)(¢) is the CDF for a true ith order statistic, F(¢) is the overall CDF, and
A € [0, 1] is the parameter. This model is equivalent to assuming that each set of units
is either ranked perfectly or ranked at random, with the probability of perfect ranking
being A. Thus, A = 1 gives perfect rankings, and A = 0 gives random rankings. Alter-
nate models for imperfect rankings are discussed by Ridout and Cobby (1987), Bohn
and Wolfe (1994), and Fligner and MacEachern (2006).

Figure 3 shows some results for the case of JPS withm = 2 and A = 1. The top two
panels in Fig.3 show the MSEs for each estimator as a function of the overall CDF
value p in the cases where the total sample size is N = 4 and N = 16. The MSEs
for estimating each parameter F(¢), Fi(t), and F>(t) are plotted as separate curves,
with dotted lines giving the MSEs for the standard estimator and solid lines giving
the MSE:s for the restricted estimator. We see that while the restricted estimator does
not achieve uniformly smaller MSEs for estimating F(¢) and F>(?), the areas beneath
the MSE curves are much smaller for the restricted estimator than for the standard
estimator. We also see from comparing the top two panels of Fig. 3 that the advantage
of the restricted estimator over the standard estimator decreases as the total sample
size N increases. The bottom two panels in Fig. 3 show the same information as the
top two panels, but in a slightly different form. The plotted curves give the MSEs for
the two estimators relative to the MSEs for the restricted estimator. We see that while
the standard estimator slightly outperforms the restricted estimator in estimating F (¢)
when the true CDF value is close to 0.5, the restricted estimator far outperforms the
standard estimator when the true CDF value lies in either tail of the distribution.
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Fig. 3 MSEs and relative MSEs for the restricted CDF estimator (solid lines) and the standard CDF esti-
mator (dashed lines) in the JPS setting with m = 2, total sample sizes N = 4 and N = 16, and overall
CDF values p ranging from O to 1. The fop two plots show MSEs, while the bottom two plots show MSEs
relative to the MSE for the restricted estimator. In the top two plots, the curves corresponding to estimates
of F(t), F1(t), and F;(t) are those with modes in the center, left, and right, respectively. In the bottom two
plots, the dashed curves can be distinguished by noting that when p = 0.1, the top and bottom curves are
those corresponding to F(¢) and F,(t), respectively

If we compute the areas under curves like those plotted in the top two panels of
Fig.3, then we obtain integrated MSEs (IMSEs). A natural way to compare the per-
formance of the two estimators is by computing the ratio of IMSEs

, , IMSE(F)
Relative efficiency = ————.
IMSE(F™)

Relative efficiencies larger than 1 indicate that the restricted estimator is outperform-
ing the standard estimator, while relative efficiencies less than 1 indicate the opposite.
Table 1 contrasts the relative efficiencies under JPS with the relative efficiencies under
balanced RSS for a variety of choices for the parameter A and the average sample size
N/m (or n in the RSS case). The upper half of Table 1 shows results for the RSS
case, while the lower half of Table 1 shows results for the JPS case. We see that under
either RSS or JPS, the restricted estimator provides better small-sample estimates of
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Table 1 Calculated efficiencies for the restricted estimator relative to the standard EDF-based estimator
for m = 2, RSS and JPS, and different levels of imperfect rankings

Type Parameter A Average sample size
2 4 6 8 10
RSS F() 0 0.98 0.98 0.99 0.99 1.00
1/3 0.98 0.98 0.99 0.99 0.99
2/3 0.98 0.98 0.99 0.99 0.99
1 0.98 0.98 0.98 0.98 0.99
Fi(t) 0 1.39 1.20 1.12 1.07 1.05
173 1.39 1.21 1.14 1.10 1.08
2/3 1.37 1.25 1.21 1.19 1.17
1 1.32 1.26 1.25 1.24 1.24
JPS F() 0 1.06 1.05 1.02 1.01 1.00
173 1.06 1.05 1.02 1.01 1.00
2/3 1.05 1.05 1.03 1.01 1.01
1 1.04 1.05 1.03 1.01 1.01
Fi(t) 0 1.45 1.28 1.16 1.09 1.06
173 1.44 1.30 1.18 1.12 1.09
2/3 1.40 1.33 1.25 1.21 1.18
1 1.32 1.32 1.29 1.27 1.26

By symmetry, the relative efficiencies for estimating F>(¢) are the same as the relative efficiencies for
estimating F (t)

the in-stratum CDFs Fj(¢) and F>(t) than does the standard EDF-based estimator.
When we estimate F(¢), however, the picture is somewhat different. Under RSS, the
standard estimator slightly outperforms the restricted estimator for estimating F (¢).
Under JPS, however, the restricted estimator is more efficient than the standard esti-
mator. A comparison of the top half of Table 1 with the bottom half of the table shows
that the relative advantage in using the restricted estimator rather than the standard
estimator tends to be larger for JPS than for balanced RSS.

The results presented in Fig.3 and Table 1 show the good performance of the
restricted estimator in terms of MSE. However, it is also of interest to separately
examine the bias. Figure 4 gives some results for the JPS case whenm = 2 and A = 1.
The two plots in Fig.4 show the bias of the restricted estimators F" (), Fy (¢), and
F;(t) as a function of the overall CDF value p for total sample sizes N = 4 and
N = 16. We see that under perfect rankings, F| () is positively biased, F; () is
negatively biased, and the overall CDF estimator F” (¢) is hardly biased at all. The
magnitude of the bias decreases as the sample size increases.

4 Estimating the population mean

The standard RSS or JPS estimator for the population mean p can be obtained as

= /t dF (1),
t
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Fig. 4 Bias of the restricted CDF estimators F” (¢), F| (t), and F; (¢) in the JPS setting with m = 2, total
sample sizes N = 4 and N = 16, and overall CDF values p ranging from 0 to 1. From top to bottom, the
curves correspond to F' l’ (1), F"(t), and Fzr (t). All values were computed under an assumption of perfect
rankings

where F (t) is the standard EDF-basedA estimatorA (3) of the overall CDF value that
was discussed in Sect. 3. If we replace F (t) with F” (), we obtain the restricted mean
estimator

o= /t dF" (1).
t

In the balanced RSS case, the restricted estimator is typically not more efficient than
the standard estimator . This is not surprising given our previous finding that in the
balanced RSS case, F" (1) is outperformed by F (t) in terms of IMSE. However, in the
JPS setting, the restricted estimator does tend to be more efficient than the standard
estimator. We demonstrate this increased efficiency by presenting results from two
related simulation studies. The first study focused on assessing the performance of
the restricted mean estimator relative to that of the standard JPS estimator, and the
second focused on comparing the performance of the restricted estimator to that of
the isotonic JPS mean estimator developed by Wang et al. (2008).

The first simulation study considered different parent distributions, different types
of rankings, and different average sample sizes N /m. The parent distributions, which
were chosen to represent a range of possibilities in terms of how heavy the tails of the
distribution are, were (i) the normal distribution, (ii) the # distribution with 3d f, (iii) the
Gamma(5, 1) distribution, (iv) the uniform distribution, and (v) the Beta(1/2, 1/2)
distribution. The rankings used were those given by the model (6) from Section 3, and
the average sample sizes considered were 1, 2, . .., 10. The set size was fixedatm = 2,
and 100,000 samples were simulated for each combination of parent distribution, type
of ranking (A = 0, 1/3,2/3, 1), and average sample size. For each combination of
factor levels, a relative efficiency value was computed as

@ Springer



Constrained estimation using judgment post-stratification 783

Lambda = 0 Lambda = 1/3
g e : ot :
C - . C . .
Q2 - : 2 - ;
o NP O RN
= TN A A
o &4 TN o 8 77 <
= / NS =. = s =~ =. .
© - ;//» == bk U i — p/, ST e R
) * o) E—
vl o0 o o
o T T T T T o T T T T T
2 4 6 8 10 2 4 6 8 10
Average Sample Size Average Sample Size
Lambda = 2/3 Lambda = 1
ge | o 5w
C Pl c - —
o -~ : o -~
(% : o
= 1 NPSACINEN = = _
aE] D S L - T
[Te} 4 \\\ ..... [Te) /_——\:A\‘
02) .,C_>'_ j‘l)//,_\_\\\;\\‘tA‘ OEJ S_ /// \\:A\\__~4_ _
E /"‘ \':~:.\_;;\:= = E S ——— _ o=
.1 T e T -
8 8
(=) T T T T T = T T T T T
2 4 6 8 10 2 4 6 8 10
Average Sample Size Average Sample Size

Fig. 5 Simulated efficiencies for the restricted JPS mean estimator relative to the standard JPS mean esti-
mator for different types of imperfect rankings, different underlying distributions, and different average
sample sizes when m = 2. The parameter X is the proportion of all sets that are ranked perfectly. The
distributions are normal (dashed), t with 3df (dotted), Gamma(5, 1) (dotdash), uniform (longdash), and
Beta(1/2,1/2) (twodash). Note that higher simulated efficiencies and heavier tails seem to go together

Relative efficiency = M
MSE (")
The results are presented in Figs. 5 and 6.

Figure 5, which summarizes the results by the type of ranking, shows that except
for certain cases involving the very light-tailed uniform and Beta(1/2, 1/2) distri-
butions and perfect rankings, the restricted mean estimator outperforms the standard
EDF-based mean estimator. The relative efficiencies are highest when the average
sample size is around three, and they decrease as the average sample size increases
beyond that value. The relative efficiencies are highest for the heavy-tailed distributions
(t with 3df and Gamma(5, 1)) and lowest for the light-tailed distributions (uniform
and Beta(1/2, 1/2)). This finding is not surprising given that ET (t) outperforms F (1)
for estimating overall CDF values near the tails, but not for estimating overall CDF
values near the center of the distribution.

Figure 6 depicts essentially the same results shown in Fig. 5, but it groups the results
by parent distribution rather than by the type of ranking. We see from the bottom two
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Fig. 6 Simulated efficiencies for the restricted JPS mean estimator relative to the standard JPS mean esti-
mator for different types of imperfect rankings, different underlying distributions, and different average
sample sizes when m = 2. The parameter A is the proportion of all sets that are ranked perfectly. The values
of the parameter A are 1 (dashed), 2/3 (dotted), 1/3 (dotdash), and 0 (longdash)

plots in Fig. 6 that when the distribution is light-tailed, the relative efficiencies tend
to become smaller as the rankings improve. However, we see from the top two plots
that for heavy-tailed distributions, the effect of the rankings depends on the average
sample size. For small average sample sizes, the relative efficiency is highest when
the rankings are random, but for larger average sample sizes, the relative efficiency is
highest when the rankings are perfect. Considering Figs.5 and 6 as a whole, we see
strong evidence that the restricted mean estimator is preferable to the standard mean
estimator in the small-sample JPS setting.

The second simulation study also considered different parent distributions, differ-
ent types of rankings, and different average sample sizes N /m. The parent distribu-
tions used were (i) the normal distribution, (ii) the Gamma (5, 1) distribution, (iii) the
uniform distribution, and (iv) the Beta(1/2, 1/2) distribution. The types of rankings
used were (i) perfect rankings, (ii) random rankings, and (iii) perfectly wrong rank-
ings obtained by ranking the units in each set in an order exactly opposite to the true
ordering. For the first two types of rankings, the stochastic ordering assumption used
by Ozturk (2007) and Wang et al. (2008) holds, but for the third ranking type, that
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Table 2 Simulated efficiencies for the restricted JPS mean estimator and the isotonic mean estimator of
Wang et al. (2008) (WLS) relative to the standard JPS estimator for different types of rankings, different
underlying distributions, and different average sample sizes when m = 2

Type of rankings Distribution Est.  Average sample size Est.  Average sample size
2 3 4 5 2 3 4 5
Perfect Normal New 1.06 1.07 1.07 1.05 WLS 1.02 1.02 1.01 1.01
Gamma(5,1) New 1.07 1.09 1.08 1.06 WLS 1.02 1.02 1.01 1.01
Uniform New 1.02 1.02 1.02 1.0l WLS 1.03 1.03 1.02 1.0l
Beta(1/2,1/2) New 1.00 0.99 0.99 0.99 WLS 1.03 1.04 1.03 1.02
Random Normal New 1.10 1.11 1.08 1.06 WLS 1.08 1.10 1.08 1.07
Gamma(5,1) New 1.11 1.12 1.09 1.06 WLS 1.08 1.10 1.09 1.07
Uniform New 1.06 1.07 1.06 1.04 WLS 1.08 1.10 1.08 1.07
Beta(1/2,1/2) New 1.04 1.05 1.04 1.03 WLS 1.08 1.10 1.08 1.07
Wrong Normal New 1.06 1.07 1.07 1.05 WLS 0.94 0.87 0.81 0.79
Gamma(5,1) New 1.07 1.09 1.08 1.06 WLS 095 0.89 0.83 0.81
Uniform New 1.02 1.02 1.02 1.01 WLS 0.92 0.85 0.79 0.77

Beta(1/2,1/2) New 1.00 0.99 0.99 0.99 WLS 0.92 0.85 0.80 0.77

The three types of rankings are perfect rankings, random rankings, and perfectly wrong rankings

assumption fails. The set size was fixed at m = 2, and 100,000 samples were simulated
for each combination of parent distribution, type of ranking, and average sample size.
For each combination of factor levels, a relative efficiency value was computed just as
in the first simulation study. The results are presented in Table 2, which gives results
for the restricted estimator on the left side and results for the isotonic mean estimator
on the right side.

We see from Table 2 that when the stochastic ordering assumption fails, as it does
when the rankings are perfectly wrong, then the restricted estimator may significantly
outperform the isotonic mean estimator. Even when the stochastic ordering assump-
tion holds, however, the restricted estimator may be every bit as good as the isotonic
mean estimator. Under perfect rankings, the restricted estimator outperforms the iso-
tonic mean estimator when the data come from either of the two relatively heavy-tailed
distributions (normal and Gamma(5, 1)), but the isotonic mean estimator outperforms
the restricted estimator when the distribution is uniform or Bera(1/2,1/2). A simi-
lar pattern holds when the rankings are random, with the restricted estimator slightly
outperforming the isotonic estimator for normal and Gamma(5, 1) data, but not for
uniform and Beta(1/2, 1/2) data. Overall, the restricted JPS mean estimator seems
to be at least as effective as the isotonic mean estimator in this m = 2 setting.

5 An example
As an illustration of the restricted mean estimator developed in Sect.4, we use the

estimator to estimate the mean body fat percentage for a certain population of men.
Our main data set, taken from the StatLib Datasets Archive (2009), consists of
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Table 3 Standard and restricted

JPS estimates of the overall CDF Body fat Rank Yalue of Yalue of
for the body fat percentage data percentage F() Fr ()
8.3 2 0.125* 0.127
14.7 1 0.375* 0.320
18.7 3 0.458* 0.432
19.2 4 0.521* 0.516
20.4 4 0.583* 0.581
21.8 2 0.708* 0.696
29.0 3 0.792* 0.789
31.6 4 0.854* 0.855
Stars indicate points where the 329 4 0.917* 0.912
in-stratum CDF values do not 33.6 3 1.000 1.000

satisfy the constraints (1)

measurements of body fat percentage and various body circumference measurements
for 252 men. We think of these 252 men as a random sample from a much larger
population, and we apply JPS to the set of 252 men to obtain an estimate. The gold
standard measurement of body fat percentage requires underwater weighing, which
is much more expensive than making body circumference measurements. Thus, it is
natural to apply RSS or JPS in this setting. We chose to use hip circumference as
the variable for ranking. Using set size m = 4, we drew a JPS of size N = 10. The
ordered measured data values and the corresponding ranks are given in the left-most
two columns of Table 3.

Using the measured data values and the corresponding ranks, we computed both
the standard JPS CDF estimate F (-) and the restricted CDF estimate F "(.). These
values are given in the right-most two columns of Table 3. We see from the table
that apart from the bottom line, where both CDF estimates are necessarily 1, the
two estimates never coincide. Thus, the standard in-stratum CDF estimates violate
the constraints (1) at every point where it is possible for those constraints to be vio-
lated. One of the biggest deviations occurs at the third ordered value 18.7, where
n = (1,2,3,4)and x = (1, 1, 1, 0). At that point, the standard in-stratum CDF esti-
mates are (I:] (18.7), ..., ﬁ4(18.7)) = (1.000, 0.500, 0.333, 0.000), and the restricted
estimates are (ﬁf(18.7), R 1:2{(18.7)) = (0.896, 0.478, 0.320, 0.035), which sat-
isfy the constraints (1). Integrating, we find that the estimates for the population mean
are 1" = 20.72 and 1 = 21.04.

6 Conclusions and possible extensions

In this paper, we have shown that strata arising from ranking information must satisfy
additional constraints that need not hold for strata that arise in other ways. We have
also shown that by taking advantage of these additional constraints, we can obtain
better small-sample estimates of the in-stratum CDFs using either RSS or JPS. In the
JPS case, we can also obtain better small-sample estimates of the overall CDF and

@ Springer



Constrained estimation using judgment post-stratification 787

the population mean. More efficient estimation of the overall CDF and the population
mean is of obvious importance, and better estimation of in-stratum CDFs is also valu-
able. For example, better estimates of the in-stratum CDFs give better information
about the ranking process, and they can be used to create statistical procedures that are
calibrated to account for the effect of inaccuracies in the rankings (see Ozturk 2007).
In comparing the restricted estimator to the standard EDF-based estimator, we have
focused on the case m = 2 for computational convenience. However, our work with
larger set sizes (m > 2) suggests that gains of comparable or larger magnitude are
available for larger values of m.

While Ozturk (2007) and Wang et al. (2008) used a stochastic-ordering assumption
to obtain more efficient inference, the gains offered by our methods do not require
any additional assumptions. Nonetheless, our new methods are sometimes every bit
as effective as methods that do make a stochastic-ordering assumption. For exam-
ple, we saw in Sect.4 that when m =2, our new JPS mean estimator is just as good
as the isotonic mean estimator due to Wang et al. (2008) when the rankings are random
or perfect, and significantly better when the stochastic ordering assumption is vio-
lated. Another approach to incorporating stochastic ordering constraints might involve
imposing those constraints on top of the constraints (1) that we have used in this paper.
For example, if the constraint p; > p» is believed to hold in the m = 2 setting depicted
in Fig. 1, then the estimate of (p;, p»2) could be required to fall in that portion of the
pictured region that lies below the line p; = p;. Maximizing the log likelihood (5)
over all vectors p of in-stratum CDF values that satisfy all constraints might then lead
to even better estimates of the in-stratum CDF values and the overall CDF value.

Previous work on JPS has shown that JPS is more flexible than RSS in that ran-
kers can be permitted to declare ties. This continues to be true for the methods pre-
sented in this paper. When estimating the CDF in a situation where ties have been
declared, one simply allows the in-stratum sample sizes n = (ny, ..., n,) and the
counts X = (xy, ..., X;;) defined in Sect. 3 to be noninteger values. One then defines
the likelihood L (p|n, x) using exactly the formula (4) that was used earlier, and one
maximizes the log likelihood over the same convex set K to obtain estimates of the
in-stratum CDF values and the overall CDF value.

7 Appendix: The optimization algorithm

Our algorithm for maximizing the log likelihood (5) over the space K consists of two
parts. The first part of the algorithm is a procedure, motivated by Theorems 1 and 2,
for maximizing the log likelihood /(p|x, n) over the space K, where the overall CDF
value is fixed at 7. The second part of the algorithm is a procedure for finding the value
of r where the maximizing log likelihood value is largest. We describe these two parts
below.

Suppose that 7 is fixed. Our procedure for maximizing the log likelihood (5) over
the space K, consists of starting at a point in K,, making a series of moves, each
of which increases the value of /(p|x, n) while keeping p inside the space K, and
stopping when no further increases of significant size are possible. Implementing the
algorithm requires computing quantities that are related to the directional derivatives
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of [(p|x, n). Since /(p|x, n) is given by (5), we have that

d . X
L iy, my = 2 )
dpi pi 1=pi
It thus follows that the derivative of [(p|x, n) at p = (p1, ..., pm) in the direction of
q=(q1,...,9m) € K, is given by
o (xi (= xp)
D(p,q) = e 7 C_p).
Pa=) (p_ — ) (gi = i)

i=1 !

The value D(p, q) is positive if and only if moving from p in the direction of q would
increase the value of /, and D(p,v) < O for all vertices v of K, if and only if p
maximizes /(p|x, n) over K. Our maximization procedure is as follows.

Procedure 1: Maximize /(p|x, n) over K, using the following steps.
Step I Set p; =rfori =1,...,m. Thenp € K,.

Step Il For each vertex vj of K, find the directional derivative D(p, vj). Note that by
Theorem 2, the space K, has m! distinct vertices.

Step 11l If none of the derivatives D(p, vj) is bigger than some cut-off value, say
0.00001, then stop, taking the current value of p as the maximizer. Otherwise,
compute the weighted average vector

> D@ VI (D(P. V) > 0) vy
> DI (D(P.vj) > 0)

Vmove =

where I (A) is the indicator for the event A.

Step IV Replace p with the convex combination p’ = (1 — A)p + AVmeve that maxi-
mizes /(-|x, n). This convex combination can be found via bisection by determining
the value A € (0, 1] such that D((1 — X)pP + AVmove, Vmove) = O.

Step V If the distance from the new value for p to the previous value for p is suf-
ficiently small, then stop, taking the new p as the maximizer. Otherwise, return to
Step 11

Procedure 1 is used inside of Procedure 2, which is a method for finding the over-
all CDF value r for which maxyek, [(p|X, n) is largest. Procedure 2 takes advan-
tage of the fact that since /(p|x, n) is a concave function of p, the function r —
maxpek, [(PIX, n) is a univariate concave function of . Once we obtain the value r
for which maxpek, /(p|x, n) is maximal, we find the restricted estimate arg maxpe g
[(pIx, n) as arg max,cx [(p|x, n).

Procedure 2: Find the value of r that maximizes maxpcg, /(p|x, n) using the following
steps.
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StepI Setcy = 0,c¢c5 = 1, and ¢3 = 1/2. Compute I3 = maxpek,, [(p|x, n) using
Procedure 1. ‘

Step Il Setcy = (c1+c¢3)/2and ¢4 = (c3+c¢5)/2. Compute [, = maxpek,, [(p|x, n)
and /4 = maxpc Ke, I(p|x, n) using Procedure 1.

Step Il Leti be the index such that /; is the maximum of {/», I3, [4}. Determine new
values for ¢y, ¢3, cs, and [3 by setting (¢}, ¢, ¢§) = (ci—1, ¢i, ciy1) and [ = 1;.

Step IV If the distance between the new c5 and the new c; is smaller than some cut-off
value, say 0.0005, then stop, concluding that r = c3 leads to the maximum value for
maxpek, [(plX, n). Otherwise, return to Step II.
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