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Abstract Repeated measures, or longitudinal data, are considered. The statistical
characteristics for each individual case are supposed to be governed by a structural
parameter, common to all, and an incidental parameter, specific to the individual. Intro-
ducing this terminology, Neyman and Scott studied the properties of estimators in a
likelihood framework. In this paper the model specification is taken to be more limited,
not sufficient to construct a proper likelihood function. The proposal here is to seek
an estimating function, based on the data and the structural parameter alone, whose
maximum has an identifiable limit as the sample size grows. Then a transformation of
the maximum is sought so that the modified version is a consistent estimator. Some
examples are worked through and asymptotic distributions of the resulting consistent
estimators are outlined to enable tests and confidence regions to be derived. Relative
efficiency of competing estimators is also considered.

Keywords Estimating functions - Incidental parameters - Neyman—Scott problem -
Repeated measures - Structural parameters

1 Framework

We suppose the data to comprise independent observation vectors y; = (i1, - .., Yir;)
fori = 1, ..., n; thus, there are n cases, or individuals, with r; values recorded for
the ith. For example, this is typical of repeated-measures, or longitudinal data, where
the y;; are recorded values of the same variable on the same individual at different
times (or at different points along some other dimension); see, e.g. Crowder and Hand
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536 M. Crowder

(1990) and Hand and Crowder (1996). Another example is provided by clustered data,
where the variable is recorded for different individuals in a homogeneous group, usu-
ally at the same time. We suppose that the joint probability distribution of y; depends
on parameter vectors ¢ and ¥/;, ¢ being common to all cases and y; specific to the ith.
When the joint probability or density functions, p(y;; ¢, ¥;), are known likelihood
methods can be brought to bear. Here, however, we do not assume such full knowl-
edge; the aim is to base estimation on more limited model specification, often given
as an expression for the mean of y;;, and perhaps its variance, in terms of ¢ and ;.

In the terminology of Neyman and Scott (1948) ¢ is the structural parameter and the
Y; are incidental parameters. They gave examples in which ¢ is consistently estimable
by maximum likelihood and others in which it is not; it goes almost without saying that
¥i, which appears in the distributions of only a finite number of observed quantities, is
not normally consistently estimable. Neyman and Scott went on to set out some condi-
tions to be satisfied by suitable estimating functions that would ensure consistency of
¢-estimation. Lancaster (2000) reviewed progress on the problem since Neyman and
Scott’s original paper. In essence, this is a classic problem that has remained unsolved
for over half a century. In this paper we propose a general approach to estimation of
¢ when the likelihood is not fully specified. We also consider the case where the inci-
dental parameters, the v;, are of interest in their own right, rather than just appearing
as nuisance parameters.

Most of the literature on eliminating nuisance parameters (the v; here) is likelihood-
based: marginal, conditional and profile likelihoods, pivotal functions, together with a
variety of refinements and approximations, form the core material in this field. Much of
the modern theory can be found in the book by Barndorff-Nielsen and Cox (1994). The
companion papers of Reid (1995) and Liang and Zeger (1995) give excellent reviews
of methods for eliminating nuisance parameters, the first via likelihood-based condi-
tioning and the second via estimating functions. However, they are mainly concerned
with nuisance parameters of finite dimension.

The theoretical results given below in Sect. 2 are expressed formally in terms
of asymptotic theory, but such analyses are regarded here just as a way of obtaining
usable approximations. In particular, they include a method for converting a convergent
¢-estimator into a consistent one, albeit one that is not necessarily efficient or optimal.
In Sect. 3 some examples and applications are worked through, in Sect. 4 some notes
on asymptotic inference for ¢ are made, and some discussion is given in Sect. 5.

2 Point estimation

We take as the first priority estimation of the structural parameter ¢. Once that is
achieved the v; can be addressed if required. It will usually be the case in practice
that some /; can be estimated better than others because there is more information on
some individuals than on others.

The focus here is on constructing an estimating function %,(¢), a function of
(1, ..., yn) and ¢, whose maximisation yields a convergent ¢-sequence, ¢3n. We
then seek to transform q@n into a consistent estimator for ¢, rather than modifying the
estimating function as in the vast majority of published work. Indeed, in the literature it

@ Springer



Repeated measures estimating functions with incidental parameters 537

often appears to be implicitly assumed that an unbiased estimating equation will yield
a consistent estimator; this is not necessarily so, even for so called ‘regular likelihood’
situations with a finite-dimensional parameter (e.g. Crowder 1986).

In what follows estimating functions are often derived in some way from a likeli-
hood-like function. Their use enables consideration of ¢, to be confined to the param-
eter space of ¢, assumed here to be compact. We then avoid having to deal with the
parameter space of 1/f(") = (Y1, ..., ¥,), whose dimension grows linearly with .
Portnoy (1988) obtained asymptotic results for the case where the number of parame-
ters grows with 7, but in a different way to that considered here: in his case, the whole
parameter set is involved in each observation, the model’s becoming more parameter-
rich as n grows.

In the absence of a likelihood, and with limited model specifications, the scope for
constructing suitable estimating functions is restricted. This means that we might have
to settle for one that produces an inconsistent estimator, qA&n One of the main themes
here is to show how ¢, can often be simply corrected to yield an estimator that is
consistent.

2.1 Methods for eliminating the ;

The general approach here is to base the estimating function on a suitable likelihood.
Roughly speaking, suitability is judged here as being relevant to the application and of
form simple enough for its performance to be assessed in terms of the limited model
specifications made. The likelihood selected is not presumed to arise from the true
stochastic mechanism underlying the observations, which is regarded as unknown: it
is just treated as a vehicle for inference. Where applicable, any of the standard methods
for eliminating nuisance parameters, here the v;, from a likelihood can be employed.

The simplest way of getting rid of the individual v; is just to replace them by a
single v, either a specified value or as a parameter to be estimated. Less crude is to
form a profile likelihood or, when available, a conditional or marginal likelihood.

Another method is to integrate the nuisance parameters out from a likelihood with
respect to some weight function. In the Bayesian approach this weight function would
be a prior distribution; in the case of random effects it would be the frequency dis-
tribution from which they are sampled. Berger et al. (1999) advocated this method:
they listed various good properties, including its being ‘safer’ than profile likelihood,
for instance, in that allowance is made for the uncertainty in the nuisance parame-
ters. However, in our case, the integration often destroys the required simplicity: see
Example 3 below.

Kalbfleisch and Sprott (1970, Sect. 4.2), independently of Andersen (1967),
proposed eliminating nuisance parameters by finding a function g(y;, ¢) whose dis-
tribution is independent of v;, so g(y;, ¢) is pivotal for 1;. They suggested that the
corresponding ‘likelihood function’, based on the random variables g(y;, ¢), might
be used for inference about ¢. Cox (1993) investigated the proposal further, focus-
sing on the question of whether the resulting estimating equation is unbiased. For us,
the drawback is that, to define a pivotal function, one strictly needs a full probability
framework.
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538 M. Crowder

2.2 Consistency

The first aspect that needs to be addressed is consistency of estimation. Once that
is established the (asymptotic) distribution of estimators is easier to deal with: see
Sect. 4.

The notation m, (¢) = Eg{h,(¢)} will be used, where E is the expectation taken
with respect to the true parameter (¢, wé") ); likewise, Pg will denote probability eval-

uated under (¢, w(g")). In general, m, will be a function of (¢, w(()")) as well as of
¢; for tidiness these extra arguments will be omitted. A scaling sequence, s, — 00,
is also needed so that sn’]mn(¢>) =0() asn — oo.

For the following result some conditions on /4, (¢) and m,, (¢) are required, involving
continuity and convergence. The literature contains a wide variety of such conditions:
the ones used here are framed to be as transparent as possible while suiting the present
purpose, in particular, in having to accommodate an infinite-dimensional parameter.

Condition C1 below comprises routine restrictions on the behaviour of the estimat-
ing function £, (¢). C1(iii) is a technical requirement necessary for a non-denumerable
¢-space: a version of it appears in the classic Wald (1949) paper. The crux of the matter
is separability of s, "1, (¢) as a process in ¢ (Doob 1953, Sect. I1.2); in the present case
it is justified by our assumed continuity of sn_lh,, (¢) in ¢ (Loeve 1963, Sect. 35.2A).

Condition C2 is more specifically focused on the case of incidental parameters.
In particular, we have to deal with the increasing set of arguments of m,(¢) as n
increases. So, in C2, G is used to denote either the infinite sequence (¥, ¥, ...) or
the probability distribution from which they are drawn, if that be the case. The latter
interpretation is the more relevant in many applications in which the ; are so called
random effects, latent variables or frailties. This was the point of view adopted by
Kiefer and Wolfowitz (1956) in their follow-up to Neyman and Scott (1948) work.

Condition C1 (behaviour of s, .

(i) Continuity: s, "1, (¢) is continuous in ¢, uniformly in .
(ii)) Convergence: s, U (@) — mp(¢) |— 0in (o, wé"))—probability for each ¢
asn — oo.
(i) Eofsupy_g<, sn_lh,, (¢")} exists for each ¢ and p > 0.

Condition C2 (existence of unimodal limiting mean function m)

@) sn_lm,, (¢p) — m(¢, G) as n — oo uniformly on the ¢-space.
(i) m(¢, G)hasaunique maximum pointat¢; = ¢1(G) suchthat, when | p—¢; |>
8, m(¢p, G) < m(¢1, G) — ns for some ns > 0.

Proposition 1 Under conditions C1 and C2, qgn — p ¢1 (in probability) as n — oo.
Proof This is given in Sect. 6. O

If 1 = ¢o the proposition gives a straightforward consistency result for ¢q. If
@1 # ¢o we have inconsistency. However, in the latter case it might be possible to
identify ¢ explicitly enough in terms of ¢y to see how to correct é» to obtain a consis-
tent estimator for ¢9. Given ¢ as a 1-1 function of ¢, say ¢; = f1(¢o), a consistent
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estimator of ¢ can be obtained by equating fi(¢o) to qg,,, SO 430 = ffl (qgn); see the
examples below.

The approach here is alternative to the usual one, in which a modification of the
estimating function, %, (¢), is sought that will yield better asymptotic properties. For
example, in the case of binary matched pairs, the mle of the odds ratio, ¢, tends in
probability to ¢% as the number of pairs increases (Andersen 1973; Breslow 1981).
Barndorff-Nielsen (1983) replaced the likelihood by a modified profile likelihood,
which produces an estimator with probability limit {(5¢o+ 1) /(o +35) }2; he observed
that, for a range of ¢-values, this limit is closer to the target value, ¢, than the former
qﬁg. However, in the spirit of the present paper, we could simply correct the raw mle
by taking its square root. Reid (1995) mentioned another example, this time involv-
ing unmatched pairs: y;1 and y;» are independent and exponentially distributed with
respective means ¢/; and ¢ /v;. The mle of ¢ converges to ¢ (7t /4), whereas the esti-
mator based on Cox and Reid (1987) approximate conditional likelihood gets closer,
with limit ¢g (77 /3). In our approach, either estimator can be converted to consistency
by simply rescaling. Firth (1993) was concerned with a rather more refined adjust-
ment, namely that of removing the O(n ~!) asymptotic bias from a maximum likelihood
estimator that is already consistent.

An examination of its proof shows that Proposition 1 can be easily generalised to
cases where ¢ is not a unique maximum point of m(¢, G), e.g. where there is a lack
of identifiability such as when a likelihood surface has a ridge. Then the small open
sphere surrounding ¢ into which qgn eventually migrates is replaced by an open set
containing all such ¢1-points. This is an approach exploited in Crowder (1986).

2.3 Consistency of individual estimators of ¢ and ¥;

As previously mentioned, the individual parameters, the v;, will sometimes be of
interest themselves. This would arise when they are to be used to make decisions
about individuals. For example, in a medical context y; might be associated with the
state of the ith patient, which is not directly observable. In that case v; is a latent char-
acteristic or frailty that one needs to estimate by monitoring the patient, i.e. obtaining
a sequence Y1, yi2, - . . of repeated measurements on him or her. In such situations
we expect r;, the number of observations on the ith case, to be large enough to give a
decent estimate of ;, at least for some individuals. In purely formal terms, we may
consider consistent estimation of v;, entailing r; — 0o. Though not explicitly ruled
out in their 1948 paper, this perhaps goes a little beyond the Neyman—Scott framework.

Consistency of tﬁ(”) = (1/71, el lﬁ,,), i.e. of its n components simultaneously, is
problematic, requiring something like max;—1,._, | 1/A/,< — Yo |=p Oasn — oo. It
will often be the case in practice that consistency only obtains for some ;, i.e. those
for which y; is sufficiently informative. A fairly obvious result for an individual 1/},‘
can be framed as follows; in this, 1},@5 represents the v;-estimator for given ¢.

Proposition 2 Suppose that (i) (]Sn is consistent for ¢o, (ii) 1},'450 is consistent for V;o,
and (iii) Yig is continuous in ¢. Then é is consistent for ;.
n

Proof This is given in Sect. 6. O
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If ¢; can be estimated consistently from y;, the data on the ith individual, it
is likely that the same is true for ¢. Let (¢~>i, 1/},-) be the estimator from y; alone.
A question arises as to the relative merits of the individual estimators, the q;,, and
the overall one, ¢,: perhaps some sort of average of the $; might be preferred to
én. In fact, the following lemma shows that ¢n can be expressed as the standard
‘optimal linear combination’ of the ¢;. The estimating function whose maximisation
produces ((;3,-, 1/~f,') from y; i = 1,...,n) will be denoted by h,; = h,; (¢, ¥;), and
then (¢, ™) = X0 hni (9. Y1)

Proposition 3 When qgn and the g (i =1, ..., n)areall consistent for ¢y, an can be
expressed asymptotically as an optimally-weighted average of the ¢;:

n -1 n 2 2 2 -1 )
) s 0°hni 0~ hp; 0“hpi 0“hy;
~ wj Ww; Q; N w; = j— ,
- (Zm) (o) - - () o

in which the derivatives of hy; are evaluated at (¢o, Vo).

Proof An outline is given in Sect. 6 in which the formal assumptions are indicated.
]

It follows from the proposition that, if the ¢; are consistent for ¢, the weighted
average is (approximately) the overall estimator, ¢n, and this is also consistent. It
might be preferable in some practical situations to proceed in this way: the (n + 1)th
case produces w;1 and ¢~>n+1, and then the sums, Z;’zl w; and ZLl w,-d?i, can be
updated accordingly.

3 Examples and applications

The following examples are meant to bring out various aspects of the approach pro-
posed in this paper. We use the notation ry = »_7_, r;, and y; and sl.2 will denote the
sample mean and variance of (y;1, ..., Yir,), respectively. The routine conditions in
C1 will normally hold for these examples with s, = r4 and rlz > lr2 — 0 as
n — 00; some restrictions on the values of covariates might also be necessary. We
concentrate on C2 in these examples.

Example 1 Neyman and Scott (1948) gave a likelihood-based analysis of a variety of
models. To illustrate the approach here, albeit in a full likelihood context, we will just
consider briefly their first two examples.

In the first example the observations y;; (i = 1,...,n; j =1, ...,r;) are indepen-
dent, y;; having distribution N(¢, 1//1.2). The overall log-likelihood function is

1 n ri
W@y ") =—2 3 [r,» log2my7) + > (yij — ¢>2/w3].

i—1 j=1
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With the v; replaced by a single specified value, 1, we obtain an estimating func-
tion, say h,1(¢), whose maximisation yields the estimator ¢,; = r ! > rivie Since

Eo(¢n1) = ¢o, ¢,,1 is consistent for ¢, assuming that Varo(cj),,]) = r+2 Zl LY
tends to 0 as n — o00. As is often the case, this conclusion holds without assummg
that the y;; are normally distributed; only the forms of the mean and variance of the
yij enter the calculation.

To form the profile log-likelihood for ¢ we need the mle of 1//1.2 for given ¢:

=7 > i — )%
j=1

The resulting estimating function is

1 n
hio(@) = =35 D7 [1 +log(2m/r;) + log [ Z(yl] ¢) ”

11 j=1

and the associated mean function, m,»(¢) = Eo{h,2(¢)}, satisfies
1 n ri ri
(@) = ma (o) =5 Zf’iEo[log { > ij - ¢o>2} — log i > ij - ¢)2H.
i=1 j=1 j=1

Under (¢, 1//5") ), zri L (vij — ¢0)? and Zr’ L (vij — ¢)? have respective distribu-
tions sz X, and I/Ilo Xr, {ri(¢ — ¢0)?} (central and non-central Chi- squares). That
mu2 () — mn2(¢o) < 0 for ¢ # ¢ follows from the fact that x2(82) is stochastically
larger than Xr Hence, C2(ii) holds with ¢1 ¢o, and ¢,,2 is consistent for ¢, though
not an explicit function of the y;;, unlike ¢n 1.

Example 2 This is Neyman and Scott’s second example: it is the complement of their
first in that it is now the mean that is the incidental parameter. So, the observations are
independent, y;; having distribution N(v/;, ¢?). The overall log-likelihood function is

1
L@ ¥ ™) = =37 log(2rg?) — 597 52X - b
i=1 j=1
The estimating function with a single specified value, ¥, in place of the ¥; yields

n ri

b =1 DD ij =),

i=1 j=I

which has mean Eo(¢7)) = ¢§ + 12 (%), where n, (%) = ri' S ri(Yio — ¥)*.
Hence, in order to define a bias-corrected estimator, as ¢,211 — n,(¥), the value of
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542 M. Crowder

. (¥) is needed. Typically, the ;o are random effects, independently sampled from
distribution G, say with mean py and variance 0112/. In this case the basic identities

E(yij) = py, var(yij) = ¢*> + Gé, E(yijyir) = Ui + H«%p (J #k)

follow from the mean and variance specifications, and they can be used to construct
an unbiased estimator of 1, ({) as

n i
r-stl Zri(ri — 1)_1[91'2 + (i — DG — ) — "i_1 Zy?]]
i=1 /=1

The resulting bias-corrected estimator for ¢>§ then reduces to
n ri
22 -1 -1 2 )
=i S -0 30 -nr2);
i=1 j=l

qgg is consistent for ¢>§ if, for example, the y;; have finite fourth moment.
A profile log-likelihood for ¢ can be constructed from g@id) =y; as

l n
hio(@®) = =5 {m log(2?) + D (ri — 1>s3/¢2] :

i=1

This gives rise to the estimator
n
22 -1 2
by =17 D (i = s,
i=1

which has mean Eo(qgrzlz) = (1 - n/r+)¢g, so the bias-corrected version is

1—n/ r+)_1¢A>r212. This simple result fits into the general framework here as follows.
The mean function of %, (¢) satisfies

1
mp2($) — mn2(ho) = 3 {rylogp — (ry —n)(p — 1},

in which p = qb(z) /¢*. This expression takes its maximum value, —%{n + ry log
(1 —n/ry)}, at p = pmax = r+/(ry —n). But, log(l —x) < —x for0 < x < 1,
so the maximum value exceeds —%{n + r+(—n/r+)} = 0. Thus, condition C2(ii),
essentially that m,»(¢) < my,2(¢o) for ¢ # ¢o, fails here. However, we can identify
1 from ¢F/¢? = pmax as ¢7 = ¢3(1 — n/ry). It follows that (1 — n/r)~'$2, is
consistent for ¢g. The correction factor, (1 — n/r,)~!, does not depend on G in this
case, so the method is successful in this respect.
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A maximum conditional likelihood estimator (mcle) can be constructed by condi-
tioning on the y;, which are sufficient for the y; (for known ¢). The mcle is found to
be identical to the bias-corrected version of ¢52-

Example 3 Suppose that the y;; are independent event-counts with means A;; =
yietii ¢ For simplicity, the covariates, x;;, are taken to be scalar, with dim(¢) = 1.
The literature contains many examples of such data. In Gesch et al. (2002) y;; is the
number of misdemeanors of a young offender in custody during period j, the x;; are
binary, with x;; = O representing the administration of a placebo and x;; = 1 that of
a nutritional supplement. The focus there was on the parameter ¢, representing the
effect of the supplement, and the /; were treated as random effects to be integrated out
over an assumed frequency distribution. However, the 1; themselves would clearly
also be of potential interest in assessing individuals’ levels of behaviour.

In order to construct a suitable estimating function let us begin with a simple Poisson
model, for which the log-likelihood function is

n o
L, v ™) = ZZ(—AU + yij log A;j —log yij!).

i=1 j=1

The derived estimating function, with a single specified i replacing the v, is given
by

hat(9) = D >~ {=9ei? + yij log(ye™i?) — log yi;!} ,

i=1 j=1
for which the corresponding mean function satisfies

n

M ($) — ma1(po) = D [V {rio(@) — Tio(b0)} + VioTi1 ($0) (@ — po)] .

i=1

m (@) = D A=Y (@) + Yiot1 ($0)} . my($) = —¥ > Tia(9),

i=1 i=1

where 1 (¢p) = Z;’;l x{‘jexi-/"’5 for k = 0, 1, 2. Hence, even though m/,, (¢) < 0 for
all ¢, by taking ¥ > 0, so that a unique maximum of m,1 (¢) exists, it is a non-explicit
function of ¢g; moreover, it depends on the ;. So, the crude, single-yy method does
not produce a useful result in this case.

The profile log-likelihood, which we adopt as a second estimating function, is based
on Yig = r;iyi/Tio(¢). Thus,

n ri
ha(@) = > D" {=ige™? + vij log(ige™?) — log it}

i=1 j=1

and the associated mean function satisfies
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ma($) — maa(d0) = D_ Viogi(9),
i=1

where

8i (@) = —Tio(Po){log Tio(¢) — log Tio (o)} + Ti1(d0) (¢ — Po)-

Now,

g1 (@) = —7io(¢o) {

_Tio(¢o)
Tio(9)?

Ti(@) Ti1(¢0)] and
Tio(@)  Tio(do)

HOE [ro@)t29) — 7197}

50 g;(¢0) = 0 and g/'(¢) < O for all ¢, by the Cauchy-Schwartz Inequality. Hence,
¢o is the global maximum of g;(¢), and therefore of m,,2(¢) too. It follows now that
¢1 = ¢g in C2, so q3n2 is consistent for ¢y.

Under a Poisson model, for known ¢, the y; are sufficient for the v, so a condi-
tional likelihood can be formulated. However, this just produces the same estimator
as the profile likelihood just given.

To apply the integrated likelihood method, a natural (conjugate) choice of weight
function would be a gamma density for the ;:

pW) =T @)y Ty e rVi,

in which y and t are taken as given. The resulting integrated log-likelihood function,
based on a negative binomial probability function for the event counts, is

ily(¢) = Z [log I'(z + yij) — log {yi;!T'(x)} + T log y + x;;yij$
i=1

—(t + yij) log(y +¢e"i?)].

But now it is difficult to proceed as before with this form armed only with a basic
specification of the mean of y;;. However, il}, (¢) is linear in y;;, so it is easy to evaluate

n
EO{ll;l((ﬁ)} = inj(y + Cxij¢)_1(y1ﬂioexif¢0 _ TCX[j¢).

i=1

This expression is not zero at ¢ = ¢y, so the estimating equation, { l;, (¢) = 0, 1is biased,
suggesting that the associated estimator is inconsistent. The bias could be removed,
by subtracting the mean from i/, (¢), but the result would then be a function of ;g
as well as of ¢ and ¢g. Alternatively, a value, ¢, for which Eo{il/,(¢1)} = 0 could be
sought numerically as a function of ¢y. However, the previous approach, based on the
profile likelihood, is much more straightforward.
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Example 4 Suppose that the y;; are independent, y;; having some unspecified con-
tinuous distribution on (v, c0) with mean v; 4+ ¢. This could serve as a model for
clusters of survival times where the actual zero-time is unrecorded for each cluster. As
a basis for constructing an estimating function we will use the exponential distribution.
The corresponding (non-regular) log-likelihood function is

(g, ¥ ™) =D { —rilogp — ¢~ "ri (i — ¥i) + log I(yi.min = Y1)},

i=1
where y; min = min(y;, ..., yir;) and I(.) is the indicator function.

It is difficult to specify an appropriate single value for ¥ here in general. In the spe-
cial case where the y;; are non-negative, ¥ = 0 can be tried. This gives the estimating
function

Bt () = —ry(logd +¢~'5),

where y = r;I >0, riyi is the overall sample mean. The resulting estimator is
qgnl = y, which has mean E0(¢A>n1) = ¢o + n,, Where n, = r;I z;l:l riYio. Thus,
the bias-corrected version, q3n1 — 1N, depends on the ;9. We can try to construct an
estimate of 7,,, based on the y; min, as follows. Assume that Eg(y; min) = ¥io+¢ov(r;)
for some function v(.): this will be the case for any distribution on (v;0, 00) in which
¢ is a scale parameter. Then,

n
Eo (r+1 Zri)’i,min) = Ny + Goby,

i=1

where b,, = r;l Z?:l riv(r;), which leads to a bias-corrected estimator for ¢ based
on

Eo [r;‘ > riGi - yi,min>} = (1= by)go.

i=1

So, the lack of knowledge about 7, has been transferred, via estimation, to a lack of
knowledge about v(.). In general, as r; increases from 1 to oo, v(r;) decreases from
1 to O; for example, if the y;; are actually exponentially-distributed, v(r;) = ri_l and
then b, = n/r4.In pragmatic vein, one could try to gain some idea of the form of v(.)
by plotting the points (r;, y; — ¥i min): these will lie around the curve (r, ¢o{1 —v(r)}),
which increases monotonically from (1,0) to (oo, ¢o).

For a profile log-likelihood we have 1},-¢ = Yi.min, SO an alternative estimating
function is

hua (@) = —rylogd — ¢~ D" ri(Fi — yimin)-

i=1
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Maximisation of 4,2 (¢) yields q@nz = r;l Z?:l ri (¥i — Yi.min), similar to the previous
estimator.

A maximum conditional likelihood estimator can be derived by noting that under
the exponential model, for known ¢, y; min is sufficient for ¥; and has density function
ri¢p~le7i0=Vi/¢ on (y;, 00). The resulting conditional log-likelihood function is

n

clu(@) = = > {logri + i = Dlogd +ri¢ ™ Gi = yimin)} -

i=1

But this just produces ¢uc = (r4 —n) "' 37_ 7i(; — Yimin), essentially the same
estimator again.

Example 5 Suppose that y;1 and y;» are independent, non-negative variates with means
¢ and ¢ /i, respectively; this is an example from Reid (1995). The log-likelihood
based on exponential distributions for y;; and y;> is

(g, ¥ ™) = =2nlogd — ™' D" (vir /i + yia ).
i=1

The estimating function with a single specified ¢ yields ¢A>,,1 = %()71 /U 4+ W),
in terms of the sample means, and

. 1 .
Eo(¢n1) = §<Z50n_l > Wio/¥ + ¥/ Vio)-
i=1

The estimator-bias depends on the g, but we can derive Vio/¥ + ¥ /Yo > 2,
S0 E0(¢n1) > q>0 Treating ¢ as a parameter to be estimated produces estimators

Y = 51/52 and G2 = /3132: thus, g2 < Pyt and
n n
Eo($7,) = b5 (n‘1 Zwio)(n—l Zw;ﬁ) > ¢p.
i=1 i=1
A profile log-likelihood follows from 1}12¢ = yi1/yi2 as
n
ha3(¢) = —2nlogp — 267" >~ \/yirvia,

i=1

and maximisation of /,,3(¢) produces ¢n3 =n"! Zl oV Yi1Yi2- Reid (1995) pomted
out that, when the y-distributions actually are exponential, bn3 — Eo(duz) = 47'r¢0

In our case, taking ¢; and ¢/v; as scale parameters for y;; and y;», E0(¢n3) =

don1n2, where nry = Eo(y/yik/do) (k = 1,2). Although 111, will not generally be
known,
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mm < ¢y 'VEo(yiNEo(i2) = 1,

50 Eo($n3) < 0.

The alternative estimators together yield, asymptotically,

O3 < G0 < Gp2 < Pu1.

However, none of these general methods produces the rather obvious estimator 43,, =
n! >'_1 Yityi2, which is unbiased for qbg. So, according to the proposal here, we

2172 . .
take d)n/ as our consistent estimator.

Example 6 A typical example of longitudinal data occurs when we have many short
time series, e.g. in monitoring hospital patients. Suppose that the ith individual gives
rise to an AR(1) process:

Yij = Qyi,j—1 + Vieij.

The ¢;; represent ‘white noise’: they are assumed to be independent innovations with
mean 0 and variance 1. The regression parameter, ¢, is homogeneous between series,
but the variability, or volatility, represented by ;, varies between them. Taking a nor-
mal distribution for the noise gives a log-likelihood, conditional on the initial levels,
the yjo, as

1 n ri
(¢, ¥ ™) = —3 D> {log@ry?) + (yij — byij-1)* /i)

i=1 j=1
The log-likelihood, with v; replaced by a single v, is

1 B n ri
hnt (@) = =5 174 10g@uy) + Y72 30D (i — ¢yi 1)
i=1 j=1
SO 43,11 is just the least-squares estimator. The resulting mean function is given by
1 n n ri
Mt (@) == 1 re log@ry?) ™2 3 rivip+v Ao — )2 3 > BoO7; )t
i=1 i=1 j=I

where we have used Eq(e;;y;, j—1) = 0. This quadratic in ¢ has a unique maximum at

$0, and so ¢, is consistent for ¢.
The profile log-likelihood for ¢ provides an alternative estimating function:

1 .
hno(@) = =5 > ri{l +log@u i)},
i=1

in which I/A/lqu = rl-_1 Z;-izl (yij — #vi, j—1)*. For this, the mean function satisfies
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1 « . .
mn(9) = muo(o) = =5 > ri{Bollog ) — Eo(log iy, }.

i=1

As in Example 1, under the assumption of a normal distribution for the ¢;;, the expres-
sion involves central and non-central Chi-squares, and is therefore negative for ¢ # ¢o.
In fact, this assessment will hold provided only that the el.z. have a density monotone
decreasing from its maximum at zero. Hence, m,»(¢) has a maximum at ¢ and so
the associated estimator, ¢3,,2 is consistent for ¢y.

Example 7 Cox (1993) gave an example in which, in our notation, r; = 2, and y;1 and
yi> are independently normal with respective means ¥; and ¢/;, and unit variances;
this is also Example 3 of Morton (1981). Cox examined two possible pivotal functions:

210, @) = iz — ¢yin) /(L +¢HV? and g2(3i, ¢) = yi2 — byin;

g1 (i, $)isN(0, 1) and g2 (vi, ¢) is N(0, 1+¢?). The corresponding ‘log-likelihoods’
are

l n
I (@) = =3 D (vi2 = @yi)*/(1+¢%) and (@) = i (§) = glog(l +97).

i=1

Now, maximisation of 4,1(¢) with respect to ¢ looks like weighted least-squares,
which is well-known to give rise to inconsistency; on the other hand, maximisation
of h,2(¢) looks like Gaussian estimation, which corrects weighted least-squares by
adding the log-variance term, thus eliminating the bias in the estimating equation (e.g.
Crowder 1986, Example 2.2). However, because of the structure here, in particular
because y;1 is not a fixed covariate, the opposite is true: it turns out that it is ;1 (¢),
rather than /1,5 (¢), that gives an unbiased estimating equation.

It is straightforward to show that %,1(¢) gives a consistent estimator. Its mean
function satisfies

My (§) = —g{l + (¢ — 60)2/(1 + ¢7),
My (@) = —nnu(p — o) (1 + do) /(1 + )%,

where 1, = n! Zf’:l wizo. Thus, m,’11 (¢o) = 0, so ¢1 = ¢g in C2; the other root,
¢ = —1/¢o, of m,;(¢) = 0 can be ignored since m,1 (—1/¢o) < mu1(¢o).

As Cox (1993) pointed out, /1,2 (¢) does not yield an unbiased estimating equation.
However, our primary interest in this example is to take /,2(¢) and show how it can
lead to a consistent estimator via Proposition 1. The mean function for /,,2(¢) and its
derivative are given by

1
ma(@) = =31 {1+ 00 — 902 (1 +¢) ™" +log(1 + 97} .

M (@) = =11+ 607 {na(1+ $90) (@ — d) + 9 (1 + D]
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Thus, m/,(0) = nn,¢o and m/ ,(do) = —ngo(1 + ¢3) "', which shows that, whether
¢o is positive or negative, m;> (¢) has amaximum between 0 and ¢g. Assume that n, —
nasn — oo, where 7 is known or consistently estimated, e.g. by n~! > (yl.z1 - 1.
Then,

1
n (@) > (@) = =3 {1416 — 9021 +¢) ! +log(1 + 7).

Like my»(¢), the function m;(¢) has a maximum between 0 and ¢q. It could also
have a second maximum, depending on the number of real roots of the cubic equation
m5(¢) = 0; in either case ¢ is defined as the dominant maximum. Then a consistent

estimator for ¢ can be identified as follows: first compute (]3,,2 that maximises /1,2 (¢);
then solve the equation fi(¢o) = @2, that is, ﬁ1’2(¢n2) = 0, for ¢p. This equation is
quadratic,

M (fn2 — d0) (1 + Puago) + P2 (1 + ¢2,) = 0,

and the ¢g-root that maximises mnz(qunz) is selected.
Replacing ¥; by a single i in the log-likelihood for this model gives

n

1
hu3(9) = —nlog(2m) = 2 >~ {1 = ) + iz = #¥)?}.

i=1

Treating i also as a parameter to be estimated, maximisation of 4,3 produces ¢3,,3 =
¥y2/y1 and @n = y1, in terms of the sample means. Assuming that T = lim,,_, n1
Z?:l Yio exists, y1 —p T and y» — ) ¢o7, and so ¢A5n3 is consistent for ¢y.

As is commonly the case, the asymptotic results depend mainly on the specifications
for the first two moments of (y;1, yi2), not on the normal distributional assumption.

4 Inference for ¢9 based on the asymptotic distribution of 4;0
Routine methods for obtaining confidence regions for and performing tests on ¢ are

based on the asymptotic distribution of $o, which is addressed in Sect. 4.1. In the
subsequent sections efficiency comparisons and practical issues are discussed.

4.1 Asymptotic distribution of do

We make standard assumptions; I here denotes the unit matrix.

Condition C3

(i) For some sequence {v,} of positive-definite matrices, v,, 1/ 2h;(¢>1) —4 N, I).
(i) For some sequence {w;} of non-singular matrices, w;lh;’(dn) —, —1.
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Normally, v, can be taken as varg{h,, (¢1)} and w, as Eo{—h (¢1)}.
The estimating equation & ,’1 (¢) = 0 can be expanded about ¢1, rather than the more
usual ¢, to obtain

0 = Il (¢n) = hly (1) + L () (bn — D1),

where ¢, lies between ¢ and qgn Now, q@n —p ¢1 under C1 and C2, and then it
follows from C3 that

b — 1 ~ wy, (1) ~a N{O, w;, v, (w, )T}

For the consistency-corrected estimator, 430 = ffl (qAS,,), we have ¢30 ~4 N(¢o, cn),
where ¢, = uwn_lv,,(w,jl)TuT with u = f{(d)o)_l; in application, ¢ and ¢ are
replaced by their estimates in the matrix expressions. So, ¢, 172 (¢A>o — ¢po) is an asymp-
totically-pivotal function from which approximate confidence regions and tests for ¢
can be generated in the usual way.

A more direct route is to invert the function 4/, (¢) (e.g. Boos 1980). Thus, for a
given set B,

—-1/2
Po{v, /

), (¢1) € B} = Pl1 € ga(B)} = Po[¢o € f; {gn(B)}].

where g, is the inverse function to v, I/ zh;, (¢); here, fl_1 {g,(B)} is a random subset
of the ¢-space. An approximate confidence region is obtained for ¢ on applying the
asymptotic normal distribution of v, 1/ 2h;l (¢1)- A typical choice for B would be an
origin-centred sphere of given probability content under N(O, /). For example, sup-
pose that dim(¢) = 1. Then, v,, 1/ 2h;(¢>1) is asymptotically N(0, 1) under (¢, wé") ),
and so Po{v, 1/ zhﬁl(qbl) < x} ~ ®(x), where & is the standard normal distribution
function. Hence, assuming that f1(.) and //,(.) are monotone increasing functions,

Po[do < £ Hga(0)}] = Pold1 < ga(x)} = Poluy *h,($1) < x} ~ D (x).

So, for example, an approximate 95% confidence interval for ¢y can be obtained as

[f] Hen(—=1.96)}, £ Hgn(1.96)}1.

4.2 Efficiency comparisons

Absolute efficiency is difficult to determine in the absence of a likelihood; likewise,
it is not much use to know that the optimal estimating function is the likelihood when
we do not have a likelihood. However, the relative efficiency of competing consis-
tent estimators, when more than one is available, can be assessed by comparing their
asymptotic variances.

We will use Example 7, which has three competing estimators, for illustration.
Recall that, conditionally on v, y1; and yy; are, respectively, distributed as N (v, 1)
and N(¢;, 1). In order to obtain simulated results, in addition to ones based on the
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Fig. 1 The left-hand column shows n * asvar(h,;) (j = 1,2, 3) plotted against ¢g: ‘asvar’ means the
asymptotic variance of the estimator associated with £,,;, for the three estimating functions of Example 7,
calculated by the asymptotic formula given in Sect. 4.1. The right-hand column shows the corresponding
sample variances, n * simvar(h,,;) from 1,000 simulated samples of size 50

asymptotic formulae, we take the v; to be independently sampled from N(1, 1); a
non-zero mean for v; avoids identifiability problems with ¢.

The algebraic forms of the three sets of w, and v, were derived and coded in
Matlab, and the left-hand column of Fig. 1 gives plots of them, scaled by n, against
¢o. It appears that h,,» gives slightly smaller asymptotic variances than 4, and that
they both dominate /,3. The asymptotic variances tend to be smaller in the vicinity of
¢ = 0 though h,,1 has a slight hump there; the added log-term in &, appears to give
a slight advantage.

The right-hand column in Fig. 1 gives the corresponding plots for simulated data.
The simulations comprised 1,000 samples, each of n = 50 pairs (y1, y2). For each
sample the three estimators are computed as follows. The equation /), (¢) = O is a
quadratic, yielding ¢,1 = r = 72 + 1, where r = 3.(y5 — %)/ > vi1vi2; there
is thus one positive and one negative root. However, it is easy to choose between
them, for instance by noting that y;y,» will most probably have the sign of ¢y.
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Computation of 43,12 is more involved, as described earlier. The function h,3 pro-
duces the very simple estimator 43,13 = y2/y1. The plotted variances are computed
as the average mean-square differences between (/30 and ¢o, again scaled by n. The
values are a little larger than the asymptotic ones but follow similar patterns.

In summary, it seems that /,7, the function that gives a biased estimating function
and an inconsistent sequence requiring transformation, is the one that yields the best
estimator.

4.3 Some practical issues

Unfortunately, with the type of limited model specification assumed here, analytic
evaluation of v, and w,, will often not be possible. For instance, in Example 2 we have

ho(@) = —ry¢ ™ 467> (i = st hp(@) =ri¢™> =3¢~ D (ri — Ds}.

i=1 i=1

For w,, we need Eg (siz) and, with the specifications made for Eo(y;;) and varg(y;;),
we have

wy = —rad 367 (4 — Mg = 20717/ (r =),

using ¢12 =({1—-n/ r+)¢§. For v,, we need var (siz), which cannot be evaluated solely
from the specifications made for the mean and variance of y;;. Under the normal
distribution,

v =970 D200 — Dy = wy;

i=1

then, since u = (1 —n/ry)~"2, ¢, = $¢3/ry. But this evaluation goes beyond the
basic model specifications.

There seems to be no easy answer to the problem, though some pragmatic sugges-
tions can be made. The estimating functions considered here tend to be of the general
form

ha(®) = > ui(yis ),

i=1

in which the y; are independent vectors of lengths ;. Consider the special case in
which the u; are identically distributed; this will be so when the y; are identically
distributed, entailing equal r; and the u;’s being the same function for all i. Then, in
h,(¢) = D", du;/d¢, the summands are identically distributed and so their sample
covariance matrix will provide a consistent estimator of n~'v,; the estimator qZAJn is
inserted for ¢ here. For instance, in Example 4, dim(¢) = 1 and h,2(¢) = > u;,
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in which u; = —r;i{log¢ + ¢>—1()7i — Yi.min)}. Then, assuming that r; = r for all
i, we can use the sample variance of the quantities r{zj:l_1 — ¢1‘2(yi — Yimin)} (G =
1, ..., n),in which ¢ is replaced by qgnz. Likewise, the sample mean of the quantities
—32ui/8¢2can be used to estimate n~'w,,. When the r; are not all equal it might be
feasible to partition the cases into groups of equal ; and aggregate the separate sample
means and covariances; it might be desirable to weight the groups according to their
sizes.

The r; will tend to be equal when there is some fixed regime or design governing the
acquisition of data on individuals. Otherwise, unequal r; might result from variation
in individual circumstances. For instance, it might be that more frequent monitoring
of a patient is called for as a result of some unforeseen condition. Previously, it has
been assumed that the r; are given, i.e. the probability statements are all conditional
on the r; appearing in the current data. Consider now the case where the r; are them-
selves regarded as random effects. Provided that there are no other individual effects
on which the estimating function is conditioned, such as covariates, the u;-derivatives
can be regarded as independently sampled from common populations. Then their sam-
ple mean and covariance can be used to estimate v, and w, as described above. No
doubt, there will be stronger justification for this approach in some situations than in
others but, where the case can be made, it appears to solve the problem of assessing
the asymptotic distribution of $o and of asymptotic inference about ¢y.

5 Discussion

The strategy suggested here for constructing a consistent estimator for the structural
parameter ¢ departs from the usual practice. Most standard methods attempt to mod-
ify a likelihood function so that it will produce a better estimator of the parameter
of interest while reducing the effect of nuisance parameters. Here, because of limited
model specification, we do not assume that a correct likelihood function is available,
and so there is restricted choice for useful estimating functions. We apply any available
estimating function without modification, even though it might be unsatisfactory as it
stands, but then try to modify the estimator that it produces. This works best when ¢
is simply related to ¢ but the method can still be applied when the relation can only
be realised numerically; this was the case in Example 7.

Although the model specification is assumed here not to be sufficient to formu-
late a correct likelihood function, we can use working likelihoods from which useful
estimating functions can be derived. The examples in Sect. 3 are meant to illustrate
the procedure in a variety of settings. In particular, some of them reveal how certain
aspects of G, the sequence or distribution of the v;, might be needed to establish the
properties of the estimators. The charge can be levelled that sometimes the approach
works and sometimes it does not. But this is to be expected: if there were a panacea
it would probably have been discovered by now. So, the approach suggested here
gets all the way in some cases, and gets a long way towards a solution in others. The
examples presented in Sect. 3 illustrate this varying success rather than just being a
specially-selected set of favourable showcases.
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The framework here has been described as repeated measures but the formal results
of Sect. 2 apply more generally. Thus, y; = (y;1, ..., Yir;) can have any multivariate
joint distribution, the y;; not necessarily being observations of the same attribute on
an individual.

6 Proofs and details

6.1 Consistency

The proof of Proposition 1 is based on the classic method of Wald (1949), but to
extend it to the present case a preliminary lemma is needed. We use S(¢, p) = {¢’ :|

¢’ — ¢ |< p} to denote an open sphere of radius p centred at ¢.

Lemma 1 Assume that Conditions CI1 and C2 hold, and let | ¢ — ¢1 |> 6. Given
€ > 0, one can find p(¢, €) > 0 and n(¢, 8, €) so that

Po{ sup hn(¢/)—hn(¢1)20}<e foreach n > n(¢,5,€¢) and 0<p<p(e,€).
lg'~¢l<p

Proof Let

ap = sup hn(d)/) —hy (@), by =hu(P) —mu(P), cn=mu(d1) — hu(d1),
|¢'—dl<p

dy = s, {ma(91) — ma ()} .

Then the probability in the statement of the lemma is equal to Py (a;,, + b, +cn > spdy).
Now,

dy = {5, ' m(@1) — m(Pp1)} — (s, 'mu(@) — ()} + (i (g1) — m(g)} .

By C2, the first two terms are each less than 4—1‘775 in modulus for n > n(§), and the
third term is greater than ns. Then, for n > n(§), d, > %775 > 0 and so

—1 1 —1 1 6 —1
Pols, a, > gdn <Pols, an > g ) < %EO(Sn a),

which tends to 0 as p — 0 (by monotone convergence, resulting from Condition
C1(i)). So, p = p(¢, €) can be found to ensure that Po(sn’lan > %dn) < %e. For the
other two quantities, b,, and ¢, it follows from C1(ii) that one can find n(¢, €) so that,
forn > n(¢p, €),

_1 1 1 _1 1 1
Po \s, bn = gdn < 36 and Py (s, ¢y > gdn < 36.
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Hence, taking n(¢, §, €) = max{n(d), n(¢, €)}, forn > n(¢, §, €),

1 1
Po(a, + by, + cn = spdy) <Py [(sn_lan > §d”) U (sn_lbn > §d”)

Proof of Proposition 1 By monotone convergence

Eo [ sup sn_lhn(qb’)] — sn_lm,,(¢) as p — 0.
|¢'—dl<p

But, for ¢ # ¢, one can find n; (independent of ¢) such that s, U, () < m(¢y) for
n > ni, by Condition C2. Thus, we can define pg > 0 such that, forn > ny,

Eo[ sup sglhn(¢’>]<m(¢1).
[¢'—dl<pyp

The collection of sets S(¢, py) forms an open covering of Sy, the compact ¢-space.
Thus, there is a finite sub-covering, say S, . . ., Sk, of the compact subset Sy — S(¢1, 8)
and

sup  h,(¢) = max suph (@).
lo—1]=5 =Lkos;

Now, | ¢, — ¢1 |< & is implied by sup s =5 hn (@) < hn(1), 50
Po(| ¢ — ¢1 |< 8) > Po[ sup  hy(¢) < hn(¢>1)]

[p—¢11=48

= PO [ .maX Suphn(¢) < hn(¢1)]
j=1,....k S;
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j=1

k
1—Poy U sup h, (¢) = hy (1)

j=15i

v

k
1=>"P isuphn(qs) — ha(¢1) = o] :

=1 Sj

It now follows from Lemma 1 that, for n > n(8, €), the last expression exceeds 1 — ke,
which can be made arbitrarily close to 1 by choice of €. O

Proof of Proposition 2 From
| 1/Afl-qgn — Vio |=| 1&,»(,;” — Vigy | + | Yigo — Vio |
follows
Po(| W4, = Vio 1> 8) < Poll Yy, — Vigy | + | Vigy — Wio 1> 8)
< Po(| Y5, — Vigy > 8/2) + Pol igy — Wio |> 8/2).

Under the conditions assumed both probabilities tend to zero as n — oo. O

6.2 Relation between overall and individual estimators of ¢

Outline proof of Proposition 3. The assumptions here, informally stated, are that 4,
and the h,,; are twice continuously differentiable and that the orders of magnitude of
the various random quantities are similar to those in regular likelihood theory, hence
the O, (1) terms. The overall estimator, (an, 12(")) from the whole sample, satisfies
the equations:

dhy dhy  [8%hy
=99 |y = s + [Tq)z(% —¢0) +O0p(1)
= [ 0%hu -
P — U 0,1, 1
+l§[a¢aw,-(¢’ Vi0) + O ( )] (1
where aa;gnxpi,- is the matrix with (j, k)th element szgf/j;k and the partial derivatives

on the right-hand sides of these equations are all evaluated at (¢o, Vo). Again, for
i=1,...,n,

oh, i dhni  0%h, - Zhp -
= IV |(¢n,w(n))— v |(¢m1/,i)— A Py (n — ¢0) + 31,01-2 Yi — Vio)

+0, (D). 2)
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On the other hand, the estimator (J)i, 1},-) from y; alone satisfies

0 _ 8hm 8hm 8 hm . O 1 3
=5 l600= G4+ g7 @ — 90 le —Yi0) +0,(1)  (3)
and
0= Ol )+ +0,(1). @
e = aw awla¢ — o aw2 (Wi — Yi0) + 0p(1). (
Sum (3) overi = 1, ..., n and subtract the result from (1a):
O—an{azh"’ (bn — i — i) + 0, (1) ©)
gz T a¢at/fz R
From (2) and (4)
3%hy, g
8¢,8¢(¢" i) + 31//2 L6 — U0 + O, (D),
from which,
R G [ O hai G _ Gy +0 (1)]
A (el B P v i &

On substitution into (5) this yields

-1
" A Zhy  0%hu [ 9%hai 92h,;
0= w; —¢;)+0,(1)}, where w;= — )
;{ i$a—d)+0, (1} =55 sgau\aye ) 39s

and the required expression follows. We assume that w; ((ﬁ —$) = O(r; x r;l/ 2)
and so dominates O (1) for large r;. That the weights w; provide the optimal linear

combination follows from

-1

azhm' 82hni
. 0% APV
var(¢;, Vi) - 32hm, 821’1"[
Ipidg oyl
32Ny
wr! ! (_'“) o]
_ ApIY;
! 3%h; wl vl 92 Ohni : (%) vt
© Nowaag) TN Nayiag ) \agaw )
where v; = 8321];?' So, var(¢;) ~ w,'_l~ .
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