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Abstract In this paper, we investigate the goodness-of-fit test of partial linear regres-
sion models when the true variable in the linear part is not observable but the surrogate
variable X̃ , the variable in the non-linear part T and the response Y are exactly mea-
sured. In addition, an independent validation data set for X is available. By a transfor-
mation, it is found that we only need to check whether the linear model is plausible or
not. We estimate the conditional expectation of X under a given the surrogate variable
with the help of the validation sample. Finally, a residual-based empirical test for the
partial linear models is constructed. A nonparametric Monte Carlo test procedure is
used, and the null distribution can be well approximated even when data are from
alternative models converging to the hypothetical model. Simulation results show that
the proposed method works well.
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1 Introduction

The following partial linear model has received considerable attention:

Y = X τ β + g(T ) + e, (1)

where Y is a scaler response variable, X and T are respectively d-dimensional and
m-dimensional covariates, β is a d-dimensional column vector denoting regression
coefficients, g(·) is an unknown measurable function, and e is the random error with
E(e|X, T ) = 0. Here and afterward τ stands for the transpose. The expectation of X
is assumed to be 0 without loss of generality, and m, the dimension of T , is assumed
to be 1 for simplicity. All the theoretical results below can be extended to the case
m > 1. There is a lot of literature on the estimation of this model. Among others,
Wang (2003) developed an estimating theory when there is measurement error in the
response and validation data are available.

To avoid wrong conclusions and make efficient inference, it is necessary to do a
model checking before performing any further statistical analysis. There are several
proposals available in the literature for model (1) under different scenarios. The null
hypothesis is

H0 : E(Y |X, T ) = X τ β + g(T ), (2)

for some β and g(·). When all involved variables, (Y, X, T ), are observable, Zhu
and Ng (2003), among others, were the first to consider testing this null hypothesis.
Relevant methods are found in Stute and Zhu (2005) for the single-index model, and
Stute et al. (2008) for parametric models.

In practice, we may encounter the situation where the covariates are not fully
observed. In the presence of validation sample, one observes independent replicates
(Xi , X̃i , Ti ), 1 ≤ i ≤ n. Independent of these validation data, the primary data set in
which the covariates measured with errors are sampled as (Y j , X̃ j , Tj ), n + 1 ≤ j ≤
n + N from (Y, X̃ , T ) rather than (Y, X, T ), where the relationship between X̃ and
X is not specified in this paper. This type of data set for errors-in-covariates models
with validation sampling may emerge when not all the covariates X for the full study
cohort can be exactly measured due to limited budget. If a surrogate covariate X̃ for
X exists, we can use it in the study.

Some strategies can be used to handle the scenarios with incompletely observed
data. In the situation that the covariates (X, T ) are exactly measured, but the responses
are missing, Sun andWang (2009) considered the testing problem for the null hypoth-
esis of (2). Xu et al. (2012) constructed a test to check the parametric structure of
g(·) when the responses are missing. Xu and Guo (2013) proposed a test for the case
where covariates are missing at random. Dai et al. (2010) considered the goodness-
of-fit test for a general linear model when the covariates are measured with errors
and an independent validation data set is observable. Wang (2003) investigated the
estimation of partial linear error-in-response models with validation data. For partial
linear errors-in-covariates models with validation data, the testing problem has been
paid less attention. This paper considers the goodness-of-fit test for the partial linear
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Nonparametric check for partial linear models 795

model, in which X is measured with error and both Y and T are measured exactly.
In addition, there is a surrogate variable X̃ for X . For this purpose, a residual-marked
process-based test is suggested and no condition about the relationship between X and
X̃ is assumed. As the limiting null distribution is intractable, nonparametric Monte
Carlo method (NMCT) proposed by Zhu (2005) is applied to calculate the p value.
Similarly as the conclusions in Zhu and Ng (2003), when (Y, X, T ) are exactly sam-
pled, the proposed test also has the desirable features: (i) the test is consistent for the
global alternatives; (ii) the local alternatives can be detected when it is distinct from
the null hypothesis at rate close to N−1/2 enough.

The rest of this paper is organized as follows. In Sect. 2, the test statistic will be
constructed and the asymptotic properties under the null and local alternative will be
investigated. Section 3 presents the NMCT procedure. In Sect. 4, numerical results are
reported to examine the performance of the test. The proofs of the asymptotic results
are postponed to the Appendix.

2 Test statistic construction

2.1 Motivation

Suppose that the validation data set {(Xi , X̃i , Ti )
n
i=1} is independent of the primary

sample set {(Y j , X̃ j , Tj )
n+N
j=n+1}. Further, similarly as the conditions in Wang (1999),

suppose that (X̃i , Ti ), i = 1, . . . , n and (X̃ j , Tj ), j = n + 1, . . . , n + N are i.i.d.
covariates, and that the connection between X and X̃ in the primary data set is the
same as that in the validation data set, although in the primary data set X is not
observable. We assume that X̃ and e in model (1) are independent. For instance, a
popular measurement error is ẽ with X̃ = X + ẽ which is independent of model error
e. When there exist measurement errors in covariates, regression calibration transfers
the errors-in-covariates model to a classical regression model (see among othersWang
1999 and Stute et al. 2007). Thus, model (1) can be rewritten as

Y = uτ (Ṽ )β + g(T ) + η, (3)

here Ṽ = (X̃ , T ), u(Ṽ ) = E(X |Ṽ ) and η = e + X τ β − uτ (Ṽ )β. Note that under the
null hypothesis, some elementary calculation yields that

E(η|Ṽ ) = E[E(e + X τ β − uτ (Ṽ )β|X, X̃ , T )|X̃ , T ]
= E[E(e|X, T ) + X τ β − uτ (Ṽ )β|X̃ , T ]
= uτ (Ṽ )β − uτ (Ṽ )β = 0. (4)

Also, by the condition that E(e|X, T ) = 0 and the independence between e and X̃
when X is given, we can derive easily that E(e | X̃ , T ) = 0 as

E(e|X̃ , T ) = E[E(e|X, X̃ , T )|X̃ , T ] = E[E(e|X, T )|X̃ , T ] = 0.
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796 W. Xu, L. Zhu

Model (3) can be further re-written as

Y − g1(T ) = (u(Ṽ ) − g2(T ))τ β + η, (5)

where g1(T ) = E(Y |T ) and g2(T ) = E(u(Ṽ )|T ). Hence, the testing problem is
converted to testing whether the linear model in (5) is plausible or not. Equation (4)
implies that E[η|X̃ , T ] = 0, and this yields that

E[ηI (X̃ ≤ x̃, T ≤ t)] = 0

for all x̃ and t .
Therefore, the corresponding empirical version of the left-hand side of (6) can be

used as the basis for constructing a test statistic:

TN (x̃, t) = 1√
N

n+N∑

j=n+1

(Y j − ûτ (Ṽ j )β̂ − ĝ(Tj ))I (X̃ j ≤ x̃, Tj ≤ t), (6)

where ĝ(T ) = ĝ1(T ) − ĝ2(T )τ β̂. The terms û(Ṽ ), β̂, ĝ1(T ), ĝ2(T ) and ĝ(T ) are the

estimators of u(Ṽ ), β, g1(T ), g2(T ) and g(T ), respectively, which will be specified
later. The proposed test statistic is defined as

CVN =
∫

(TN (X̃ , T ))2d FN (X̃ , T ), (7)

where FN is the empirical distribution based on {(X̃n+1, Tn+1), . . . , (X̃n+N , Tn+N )}.
The null hypothesis will be rejected under large observed values of CVN .

It is worth mentioning that this test statistic is not scale-invariant, which seems
to violate a very important requirement for test statistic construction. However, we
will see that when we use a Monte Carlo procedure to determine p values, it is self-
standardized. This is a desirable feature as we need not estimate variance with a
complex structure. We will see this in the next section.

2.2 Estimation of β and g(T )

As described above, several unknowns need to be estimated under the assistance of
the validation data. First the nonparametric kernel estimator û(Ṽ ) of u(Ṽ ) in (3) is
defined as

û(Ṽ ) =
∑n

i=1 Xi K1((Ṽi − Ṽ )/bn)
∑n

i=1 K1((Ṽi − Ṽ )/bn)
(8)

for any Ṽ . Here, K1(·) is a d + 1-dimensional kernel function, and bn is a bandwidth
to be selected.

123
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The estimators for g1(T ) and g2(T ) we use are defined as

ĝ1(T ) =
n+N∑

j=n+1

W j (T )Y j , and ĝ2(T ) =
n+N∑

j=n+1

W j (T )û(Ṽ j ),

where

W j (T ) = K2((T − Tj )/hN )
∑n+N

j=n+1 K2((T − Tj )/hN )
,

K2(·) is a one-dimensional kernel function, and hN is also a bandwidth to be selected
later.

For β, we use an estimator β̂ which is the minimizer of the following over all β:

n+N∑

j=n+1

[
Y j − ûτ (Ṽ j )β − ĝ(Tj )

]2
.

It has a closed form as

β̂ =
⎛

⎝ 1

N

n+N∑

j=n+1

(û(Ṽ j ) − ĝ2(Tj ))(û(Ṽ j ) − ĝ2(Tj ))
τ

⎞

⎠
−1

× 1

N

n+N∑

j=n+1

(û(Ṽ j ) − ĝ2(Tj ))(Y j − ĝ1(Tj )).

Consequently, an estimator of g(T ) is

ĝ(T ) = ĝ1(T ) − ĝτ
2 (T )β̂.

Remark 1 Du et al. (2011) developed an estimating approach for nonparametric func-
tionwithmeasurement errors in covariates, under the case that the explanatory variable
is univariate. This paper does not investigate how to get the nonparametric estimator
when the dimension of explanatory variable is more than one. In our paper, in the
case that T is not observable, the corresponding data set is then constructed by a val-
idation dataset {(Xi , X̃i , T̃i , Ti )

n
i=1} and a primary sample set {(Y j , X̃ j , T̃ j )

n+N
j=n+1}.

Corresponding to (2.1) in the paper for constructing statistics, under this data set with
t unobservable, we have

Y = E(X |X̃ , T̃ )β + E(g(T )|X̃ , T̃ ) + η̃, (9)

where η̃ = e + X τ β + g(T ) − E(X |X̃ , T̃ )β − E(g(T )|X̃ , T̃ ). Because both the
terms E(X |X̃ , T̃ ) and E(g(T )|X̃ , T̃ ) in (9) are nonparametric functions of X̃ , T̃ , it
is difficult to estimate them. As a result, it is not easy to check the corresponding
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798 W. Xu, L. Zhu

model when T is not observable and it deserves further study. Another issue is about
curse of dimensionality whenwe use nonparametric estimationwith high-dimensional
Ṽ = (X̃ , T ) such as that in (8). In our approach, the estimation still suffers from this
problem, and thus it is of importance to investigate this in a further study.

2.3 Asymptotic properties of the test statistics

We now state the asymptotic properties of TN (x̃, t) and CVN . To well present the
results, let UI (x̃, t) = E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)], � = E{(u(Ṽ ) − g2(T ))(u(Ṽ ) −
g2(T ))τ } and

J1(Y, X̃ , T ; x̃, t)

= (Y − uτ (Ṽ )β − g(T ))I (X̃ ≤ x̃, T ≤ t) − (Y − g1(T ))F[X̃ |T ]I (T ≤ t)

−UI (x̃, t)�−1(u(Ṽ ) − g2(T ))[u(Ṽ ) − g2(T )]τ β,

J2(X̃ , X, T ; x̃, t)

= (X − u(Ṽ ))τ β I (X̃ ≤ x̃, T ≤ t) − UI (x̃, t)�−1(u(Ṽ ) − g2(T ))

{(X − u(Ṽ ))τ β},
J (Yk, X̃k, Tk, x̃, t)

=
√

n + N√
N

J1(Yk, X̃k, Tk; x̃, t)I (k > n)

−
√

N (n + N )

n
J2(X̃k, Xk, Tk; x̃, t)I (k ≤ n),

where F(X̃ |T ) is the conditional distribution of X̃ given T .

Theorem 1 Under H0 and the conditions in “Appendix”, we have that

TN (x̃, t) = 1√
N

n+N∑

j=n+1

J1(Y j , X̃ j , Tj ; x̃, t) −
√

N

n

n∑

i=1

J2(X̃i , Xi , Ti ; x̃, t)

= 1√
n + N

n+N∑

k=1

[√
n + N√

N
J1(Yk, X̃k, Tk; x̃, t)I (k > n)

−
√

N (n + N )

n
J2(X̃k, Xk, Tk; x̃, t)I (k ≤ n)

]
+ op(1)

= 1√
n + N

n+N∑

k=1

J (Yk, X̃k, Tk, x̃, t) + op(1)

converges in distribution to T (x̃, t) as N goes to infinity in the Skorokhod space
D[−∞,+∞]p+1, where T (x̃, t) is a centered continuous Gaussian process with the
covariance function
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E(T (x̃1, t1)T (x̃2, t2)) = E(J (Y, X̃ , T, x̃1, t1)J (Y, X̃ , T, x̃2, t2)).

Therefore, CVN converges in distribution to CV := ∫
T (X̃ , T )2d F(X̃ , T ) with F(·, ·)

being the distribution function of (X̃ , T ).

To study the power performance of the test, consider the following sequence of
alternative models:

H1n : Y = X τ β + g(T ) + CN G(X, T ) + ε, (10)

where E(ε|X, T ) = 0 and the functionG(·) satisfies E(G2(X, T )) < ∞. Let G̃(Ṽ ) =
E(G(X, T )|Ṽ ), model (10) can be rewritten as

⎧
⎨

⎩

Y = uτ (Ṽ )β + g(T ) + CN G̃(Ṽ ) + ζ,

ζ = ε + X τ β − uτ (Ṽ )β + CN G(X, T ) − CN G̃(Ṽ ),

u(Ṽ ) = E(X |Ṽ ).

(11)

The following theorem shows how sensitive the test is against the local alternatives.

Theorem 2 Assume that the conditions of Theorem 1 hold. Then under H1n of (10),
if CN

√
N → 1, TN (x̃, t) converges in distribution to T (x̃, t) + G∗(x̃, t), where

G∗(x̃, t) = −E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)]�−1
(

E{G̃(Ṽ )(X − u(Ṽ )]τ β}
+E{G̃(Ṽ )[u(Ṽ ) − g2(T )]}

)
+ E{G̃(Ṽ )I (X̃ j ≤ x̃, Tj ≤ t)}

is a non-random shift function and CVN converges in distribution to
∫
(CV (x̃, t) +

G∗(x̃, t))2d F(x̃, t). If CN Nr → a with −1/2 < r < 0 and a �= 0, TN (x̃, t) converge
to infinity in probability.

Theorem 2 means that the test can distinct the local alternatives from the null
hypothesis at the rate N−r with 0 < r ≤ 1/2. This rate is the possible fastest rate in
goodness-of-fit testing.

3 Monte Carlo approximation for null limiting distribution

Theorem 1 shows that the limiting null distribution is intractable. The assistance from
Monte Carlo approximation is often helpful, and the nonparametric Monte Carlo test
(NMCT) procedure in Zhu (2005) is promising. This method has been successfully
applied to model checking such as Zhu and Ng (2003). An important feature is that
NMCT is a self-scale invariant procedure, and thus standardization of test statistic is
not necessary and then the variance need not to be estimated.

The following three steps present the procedure for determining p values.
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800 W. Xu, L. Zhu

(I) Denote ek(k = 1, 2, . . . , n + N ) as independent variables with mean zero and
variance one, and let En+N := (e1, . . . , en+N ). The conditional counterpart of
TN (x̃, t) is defined as

T̃N (EN ; x̃, t) = 1√
n + N

n+N∑

k=1

ek Ĵ (Yk, X̃k, Tk, x̃, t)

where Ĵ (Yk, X̃k, Tk, x̃, t) is the estimator of J (Yk, X̃k, Tk, x̃, t), which is
defined as

Ĵ (Yk, X̃k, Tk, x̃, t) =
√

n + N√
N

Ĵ1(Yk, X̃k, Tk; x̃, t)I (k > n)

−
√

N (n + N )

n
Ĵ2(X̃k, Xk, Tk; x̃, t)I (k ≤ n),

where

Ĵ1(Y, X̃ , T ; x̃, t)

= (Y − ûτ (Ṽ )β̂ − ĝ(T ))I (X̃ ≤ x̃, T ≤ t) − (Y − ĝ1(T ))F̂[X̃ |T ]I (T ≤ t)

−ÛI �̂
−1(û(Ṽ ) − ĝ2(T ))[û(Ṽ ) − ĝ2(T )]τ β̂, Ĵ2(X̃ , X, T ; x̃, t)

= (X − û(Ṽ ))τ β̂ I (X̃ ≤ x̃, T ≤ t) − ÛI �̂
−1

× (û(Ṽi ) − ĝ2(Ti )){(Xi − û(Ṽi ))
τ β̂},

and ÛI , �̂ and F̂[X̃ |T ] are the estimators of UI , � and F[X̃ |T ], respectively.
That is,

ÛI (x̃, t) = 1

N

n+N∑

k=n+1

ûτ (Ṽk)I (X̃k ≤ x̃, Tk ≤ t),

�̂ = 1

N

n+N∑

k=n+1

(û(Ṽk) − ĝ2(Tk))(û(Ṽk) − ĝ2(Tk))
τ ,

F̂[X̃ |T ] = 1√
N

n+N∑

k=n+1

Wk(T )I (X̃k ≤ X̃).

The resultant conditional test statistic is

C̃V N (En) =
∫

T̃N (EN ; x̃, t)2d FN (x̃, t).
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Nonparametric check for partial linear models 801

(II) Generate m sets of En+N , say E (i)
n+N , i = 1, . . . , m, and get the correspond-

ing m values of C̃V N (En+N ). Without loss of generality, denote them as
C̃V N (E (i)

n+N ), i = 1, . . . , m.

(III) The p value is estimatedby p̂ = nk/(m+1).Here nk = ∑m
i=1 I{C̃V N (E (i)

n+N )≥CV N }
with I{C̃V N (E (i)

n+N )≥CV N } being an indicator function. Reject H0 when p̂k ≤ α

for a pre-specified level α.

For the consistency of this NMCT, we can refer to Zhu (2005) for details.
The following Theorem 3 indicates that the conditional distribution based on the

Monte Carlo algorithm can avoid this trouble at least under local alternatives.

Theorem 3 Suppose that the conditions in Theorem 1 hold. Under H0 and H1n with
CN → 0, for almost all sequences

{(Yn+1, X̃n+1, Tn+1), . . . , (Yn+N , X̃n+N , Tn+N ), . . .},

the conditional distribution of ˜CV N (En+N ) converges to the limiting null distribution
CV in Theorem 1.

This theorem indicates that the NMCTmakes the approximate distribution close to
the null distribution, even under the local alternatives. This is an desirable feature in
goodness-of-fit testing.

4 Numerical analysis

To examine the performance of the test, we conduct several simulation studies. Let
K (t) = (15/16)(1− t2)2 I (t2 ≤ 1), K1(ṽ) = K (t)

∏d
i=1 K (x̃i ) and K2(t) = K (t) as

the kernel functions. See Härdle and Mammen (1993), and Zhu and Ng (2003) for the
use of these kernels. Note that selecting an optimal bandwidth in hypothesis testing is
still an open problem and is beyond the scope of this paper. In this section, we choose
the bandwidth as hN = σ̂ (T )N−1/3 with σ̂ (T ) being the empirical estimator of the
standard deviation of variable T , which satisfies condition C.5 in Appendix. Similarly,
the bandwidth bn is chosen to be bn = σ̂ (Ṽ )n−1/3.

To examine the sensitivity of the bandwidth selection, we consider several values
of the bandwidth: hN0 = hN = σ̂ (T )N−1/3, hN1 = 0.5σ̂ (T )N−1/3 and hN2 =
2σ̂ (T )N−1/3 for fixed bn = σ̂ (Ṽ )n−1/3.

Study 1. Consider the model

{
Y = Xβ + (T 2 − 1/3) + aX2 + e
X̃ = X + ζ,

where X , T , e and ζ are independent respectively from the standard normal distribu-
tion, the uniform distribution on [0, 1], the standard normal distribution and a normal
distributionwithmean zero and standard deviation 0.50. The value of parameter β = 1
in the simulation. The null hypothesis holds if and only if a = 0.0.
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802 W. Xu, L. Zhu

Table 1 Simulated size and power with the sample size N = 100 and n = 100, and different a in Study 1
for the model Y = Xβ + (T 2 − 1/3) + a X2 + e, X̃ = X + ζ

a hN1 hN0 hN2

0.000 0.058 0.054 0.052

0.100 0.078 0.064 0.076

0.200 0.086 0.088 0.084

0.300 0.174 0.160 0.168

0.400 0.250 0.230 0.238

0.500 0.368 0.344 0.384

0.600 0.508 0.462 0.478

0.700 0.636 0.658 0.628

0.800 0.760 0.716 0.738

0.900 0.810 0.794 0.798

1.000 0.884 0.878 0.856

Each simulation experiment is repeated 1,000 times, and to determine critical val-
ues, the NMCT procedure is repeated 1,000 times. In general, the results show that the
test is not very sensitive to different bandwidth. For space saving, we only present the
simulated results with n = 100 and N = 100 in Table 1. From it, we can see that the
power with smaller bandwidth hN1 is slightly higher than that with other bandwidths,
but not significantly.

The size and power of the test are simulated with a = 0.0, 0.1, 0.2, . . . , 1.0, and the
sample sizes N = 100, 200, 300 and n = 100, 150. Also, each simulation experiment
is repeated 1,000 times, and to determine critical values, the NMCT procedure is
repeated 1,000 times. hN0 = hN = σ̂ (T )N−1/3 is used. The simulation results are
summarized in Table 2.We can see that the test canmaintain the significance level well
in general. For power performance, the larger the value of a is, the more the power.
This is reasonable. For fixed n and a, the power is higher under larger sample size N .
For example, in the case n = 50 and a = 0.5, the values of the power are respectively
0.206, 0.400 and 0.520 under N = 100, N = 200 and N = 300. Similarly, for fixed
N and a, the power performance is also better under larger validation data sample size
n.

To examine the power performance when X and T are correlated, we further con-
sider the above setting with the Pearson correlation coefficient 0.50 between X and T .
The results are reported in Table 3. The results suggest that the trend is very similar as
that in Table 2. It is reasonable that the larger the parameter a is, the more powerful
the test is. Also large sample size leads to higher power. Compared with Table 2, we
can see that when N is small, the correlation does not seem to significantly affect the
power performance, whereas it does when N is large, say, N = 300.

Study 2. Consider a high-frequency model in the nonparametric component:

{
Y = Xβ + sin(2πT ) + aX2 + e
X̃ = X + ζ,
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Table 2 Simulated size and power with the sample size n = 50 and n = 100, and different a in Study 1
for the model Y = Xβ + (T 2 − 1/3) + a X2 + e, X̃ = X + ζ

a n = 50 n = 100

N = 100 N = 200 N = 300 N = 100 N = 200 N = 300

0.000 0.056 0.058 0.059 0.054 0.056 0.056

0.100 0.068 0.076 0.116 0.064 0.070 0.088

0.200 0.084 0.100 0.124 0.088 0.152 0.198

0.300 0.118 0.142 0.254 0.160 0.296 0.362

0.400 0.138 0.248 0.366 0.230 0.456 0.636

0.500 0.206 0.400 0.520 0.344 0.702 0.838

0.600 0.296 0.494 0.688 0.462 0.836 0.968

0.700 0.354 0.642 0.808 0.658 0.940 0.986

0.800 0.480 0.800 0.892 0.716 0.974 0.992

0.900 0.556 0.830 0.956 0.794 0.988 1.000

1.000 0.618 0.926 0.982 0.878 0.996 1.000

Table 3 Simulated size and power when X and T are correlated in Study 1

a n = 50 n = 100

N = 100 N = 200 N = 300 N = 100 N = 200 N = 300

0.000 0.058 0.052 0.047 0.058 0.052 0.046

0.100 0.081 0.062 0.064 0.088 0.073 0.060

0.200 0.086 0.073 0.070 0.120 0.128 0.133

0.300 0.097 0.130 0.132 0.163 0.209 0.265

0.400 0.116 0.202 0.219 0.256 0.376 0.546

0.500 0.231 0.306 0.352 0.357 0.578 0.777

0.600 0.254 0.448 0.574 0.440 0.801 0.913

0.700 0.370 0.608 0.771 0.601 0.886 0.990

0.800 0.439 0.752 0.908 0.688 0.960 0.996

0.900 0.586 0.876 0.953 0.796 0.997 1.000

1.000 0.642 0.916 0.990 0.883 0.994 1.000

where X , T , e and ζ are respectively from the t distribution with freedom 4, the
standard normal, standard normal and normal distributionwithmean zero and standard
deviation 0.50. The value of parameter is also β = 1. The null hypothesis holds if and
only if a = 0.0.

The simulation results are summarized in Table 4. The conclusions may be very
similar to those obtained from Table 2 of Study 1. We then do not repeat the relevant
comments.

For readers who are interested in our method, the Matlab codes will be provided
upon request.
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Table 4 Simulated size and power with the sample size n = 50 and n = 100, and different a in Study 2
for the model Y = Xβ + sin(2πT ) + a X2 + e, X̃ = X + ζ

a n = 50 n = 100

N = 100 N = 200 N = 300 N = 100 N = 200 N = 300

0.000 0.038 0.058 0.058 0.036 0.052 0.054

0.100 0.060 0.096 0.160 0.064 0.070 0.140

0.200 0.100 0.142 0.210 0.102 0.200 0.268

0.300 0.150 0.264 0.368 0.174 0.304 0.518

0.400 0.174 0.380 0.550 0.240 0.474 0.784

0.500 0.214 0.464 0.672 0.300 0.714 0.882

0.600 0.292 0.556 0.788 0.438 0.800 0.922

0.700 0.316 0.662 0.816 0.488 0.858 0.952

0.800 0.380 0.752 0.888 0.566 0.862 0.940

0.900 0.416 0.766 0.882 0.616 0.902 0.946

1.000 0.458 0.768 0.890 0.620 0.906 0.950

5 Appendix: Proofs of the theorems

The following conditions are assumed.

C.1 � = E{(u(Ṽ ) − g2(T ))(u(Ṽ ) − g2(T ))τ } is a positive definite matrix;
C.2 g1(t), g2r (t) (the r th component of g2(t) for r = 1, . . . , d), g(t) and u(Ṽ ) satisfy

the Lipschitz condition of order one;
C.3 The density of T , say r(t), exists and satisfies

0 < inf
0≤t≤1

r(t) ≤ sup
0≤t≤1

r(t) < ∞.

C.4 There exists a constant C > 0 such that N/n ≤ C .
C.5 As N → ∞,

√
NhN → ∞,

√
Nh2

N → 0. As n → ∞, nb2(d+1)
n → ∞ and

nb2k
n → 0 for k > d + 1.

C.6 (i) The density of Ṽ , say fṼ (ṽ), exists and satisfies

∞∑

N=1

N P[ fṼ (Ṽ ) ≤ ηN ] < ∞

for a positive constants sequence ηN > 0. (ii) fṼ (ṽ) has bounded partial deriv-
ative of order one.

C.7 supṽ E[Y 2|Ṽ = ṽ] < ∞ and E(‖X‖2) < ∞.
C.8 The kernel functions K1(·) and K2(·) are bounded with bounded support, and

K1(·) and K2(·) are kernels of order k(k ≥ 2).

Remark 2 Conditions C.1 and C.7 are the necessary conditions for consistency of
relevant parametric estimators. Conditions C.2, C.8 and C.5 are typically needed for
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the asymptotic property of the nonparametric estimators. Condition C.3 avoids the
cumbersome proofs for the theorems. Without it, a truncation technique is needed
because certain denominators in the estimator are close to zero.

Lemma 1 Under H0 and H1n with all the above conditions, we have

�̂ → � a.s. (12)

Proof of Lemma 1 Under H0, Wang (1999) proved the relevant asymptotic property
of �̂ in (12). We now prove that in (12) under H1n . Note that

�̂ = 1

N

n+N∑

j=n+1

(û(Ṽ j ) − ĝ2(Tj ))(û(Ṽ j ) − ĝ2(Tj ))
τ ,

with

û(Ṽ ) =
∑n

i=1 Xi K1((Ṽi − Ṽ )/bn)
∑n

i=1 K1((Ṽi − Ṽ )/bn)
, ĝ2(T ) =

n+N∑

j=n+1

W j (T )û(Ṽ j ),

we know that �̂ depends only on the covariates, but not the response. Hence, the
limiting behavior of �̂ under H1n is the same as that under H0. The proof is finished.


�

From the following lemma, we can also get the asymptotic representation of√
N (β̂ − β) under H0 when CN = 0 although it is about the asymptotic result under

H1n .

Lemma 2 Under H1n and the above conditions, we have

√
N (β̂ − β)

= 1√
N

�−1
n+N∑

j=n+1

[u(Ṽ j ) − g2(Tj )][CN G̃(Ṽ j ) + ζ j − (Y j − g1(T̃ j ))]

−
√

N

n
�−1

n∑

i=1

[u(Ṽi ) − g2(Ti ) − CN G̃(Ṽi )](Xi − u(Ṽi ))
τ β

+ 1√
N

(
�̂−1 − �−1

) n+N∑

j=n+1

CN (u(Ṽ j ) − g2(Tj ))G̃(Ṽ j )

+ 1√
N

(
�̂−1 − �−1

) n∑

i=1

CN G̃(Ṽi )(Xi − u(Ṽi ))
τ β + op(1). (13)
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806 W. Xu, L. Zhu

Proof of Lemma 2. Denote
√

N (β̂ − β) = �̂−1A and G̃(Ṽ j ) = E(G(X, T )|Ṽ j ). We
have

A = 1√
N

n+N∑

j=n+1

(û(Ṽ j ) − ĝ2(Tj ))(Y j − ĝ1(Tj ) − [û(Ṽ j ) − ĝ2(Tj )]τ β)

= 1√
N

n+N∑

j=n+1

(u(Ṽ j ) − g2(Tj ) + û(Ṽ j ) − u(Ṽ j ) + g2(Tj ) − ĝ2(Tj ))

×
(

CN G̃(Ṽ j ) + ζ j + g1(Tj ) − ĝ1(Tj ) − [û(Ṽ j ) − u(Ṽ j )

+ g2(Tj ) − ĝ2(Tj )]τ β
)
,

which can be further decomposed as

A = 1√
N

n+N∑

j=n+1

([u(Ṽ j ) − g2(Tj )][CN G̃(Ṽ j ) + ζ j ] + [û(Ṽ j ) − u(Ṽ j )]

× [CN G̃(Ṽ j ) + ζ j ]
+ [g2(Tj ) − ĝ2(Tj )][CN G̃(Ṽ j ) + ζ j ] + [u(Ṽ j ) − g2(Tj )][g1(Tj ) − ĝ1(Tj )]
+ [û(Ṽ j ) − u(Ṽ j )][g1(Tj ) − ĝ1(Tj )] + [g2(Tj ) − ĝ2(Tj )][g1(Tj ) − ĝ1(Tj )]
− [u(Ṽ j ) − g2(Tj )][û(Ṽ j ) − u(Ṽ j )]τ β − [û(Ṽ j )−u(Ṽ j )][û(Ṽ j )−u(Ṽ j )]τ β
−[g2(Tj ) − ĝ2(Tj )][û(Ṽ j ) − u(Ṽ j )]τ β + [u(Ṽ j ) − g2(Tj )][ĝ2(Tj )

− g2(Tj )]τ β
+ [û(Ṽ j ) − u(Ṽ j )][ĝ2(Tj ) − g2(Tj )]τ β + [g2(Tj ) − ĝ2(Tj )][ĝ2(Tj )

−g2(Tj )]τ β
)

=: A1 + A2 + A3 + A4 + A5 + A6 − A7 − A8 − A9 + A10 + A11 + A12. (14)

For the term A2 in (14), we note that

û(Ṽk) − u(Ṽk)= l̂(Ṽk)

f̂ Ṽ (Ṽk)
− l(Ṽk)

fṼ (Ṽk)

= l̂(Ṽk)−u(Ṽk) f̂ Ṽ (Ṽk)

fṼ (Ṽk)
− (l̂(Ṽk) − u(Ṽk) f̂ Ṽ (Ṽk))( f̂ Ṽ (Ṽk)− fṼ (Ṽk))

fṼ (Ṽk) f̂ Ṽ (Ṽk)
,

where

l̂(ṽ) = 1

nbd+1
n

n∑

i=1

Xi K1

( Ṽi − ṽ

bn

)
, f̂ Ṽ (ṽ) = 1

nbd+1
n

n∑

i=1

K1

( Ṽi − ṽ

bn

)
.
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Then

A2 = 1√
N

n+N∑

j=n+1

l̂(Ṽ j ) − u(Ṽ j ) f̂ Ṽ (Ṽ j )

fṼ (Ṽ j )
[CN G̃(Ṽ j ) + ζ j ] + op(1)

= 1√
N

n+N∑

j=n+1

1

nbd+1
n

n∑

i=1

(Xi − u(Ṽ j ))K1

(
Ṽi −Ṽ j

bn

)

fṼ (Ṽ j )
[CN G̃(Ṽ j ) + ζ j ] + op(1)

=
√

N

n

n∑

i=1

n+N∑

j=n+1

1

Nbd+1
n

(Xi − u(Ṽ j ))K1

(
Ṽi −Ṽ j

bn

)

fṼ (Ṽ j )
[CN G̃(Ṽ j ) + ζ j ] + op(1)

=
√

N

n

n∑

i=1

CN G̃(Ṽi )(Xi − u(Ṽi ))
τ β + op(1). (15)

Deal with the term A3. It can be calculated that

A3 = − 1√
N

n+N∑

j=n+1

[ĝ2(Tj ) − g2(Tj )][CN G̃(Ṽ j ) + ζ j ]

= − 1√
N

n+N∑

j=n+1

[
n+N∑

k=n+1

Wk(Tj ){û(Ṽk) − u(Ṽk)}
]

[CN G̃(Ṽ j ) + ζ j ]

− 1√
N

n+N∑

j=n+1

[
n+N∑

k=n+1

Wk(Tj )u(Ṽk) − g2(Tj )

]
[CN G̃(Ṽ j ) + ζ j ]

= − 1√
N

n+N∑

j=n+1

n+N∑

k=n+1

Wk(Tj )
l̂(Ṽk) − u(Ṽk) f̂ Ṽ (Ṽk)

f̂ Ṽ (Ṽk)
[CN G̃(Ṽ j ) + ζ j ] + op(1).

= A3,1 + A3,2 + A3,3 + A3,4 + op(1),

where the definitions of the terms A3,i (i = 1, 2, 3, 4) are as follows

A3,1 = − 1√
N

n+N∑

j=n+1

n+N∑

k=n+1

Wk(Tj )
(1/nbd+1

n )
∑n

i=1(Xi − u(Ṽi ))K1((Ṽi − Ṽk)/bn)

f̂ Ṽ (Ṽk)

×[CN G̃(Ṽ j ) + ζ j ]I [ f̂ Ṽ (Ṽk) >
1

2
fṼ (Ṽk) ≥ 1

2
η′

N ],

A3,2 = − 1√
N

n+N∑

j=n+1

n+N∑

k=n+1

Wk(Tj )

× (1/nbd+1
n )

∑n
i=1(u(Ṽi ) − u(Ṽk))K1((Ṽi − Ṽk)/bn)

f̂ Ṽ (Ṽk)
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×[CN G̃(Ṽ j ) + ζ j ]I [ f̂ Ṽ (Ṽk) >
1

2
fṼ (Ṽk) ≥ 1

2
η′

N ],

A3,3 = − 1√
N

n+N∑

j=n+1

n+N∑

k=n+1

Wk(Tj )
l̂(Ṽk) − u(Ṽk) f̂ Ṽ (Ṽk)

f̂ Ṽ (Ṽk)
[CN G̃(Ṽ j ) + ζ j ]

×I [ f̂ Ṽ (Ṽk) <
1

2
fṼ (Ṽk), fṼ (Ṽk) ≥ η′

N ],

A3,4 = − 1√
N

n+N∑

j=n+1

n+N∑

k=n+1

Wk(Tj )
l̂(Ṽk) − u(Ṽk) f̂ Ṽ (Ṽk)

f̂ Ṽ (Ṽk)
[CN G̃(Ṽ j ) + ζ j ]

×I [ fṼ (Ṽk) ≤ η′
N ].

Following the derivations for D[r ]
N11, D[r ]

N12, D[r ]
N13 and D[r ]

N14 on Page 58 of Wang
(1999), we can obtain that A3,1 = op(1), A3,2 = op(1), A3,3 = op(1) and A3,4 =
op(1), respectively. Consequently,

A3 = op(1). (16)

Denote

q̂(t) = 1

NhN

n+N∑

k=n+1

Yk K2

(Tk − t

hN

)
, f̂t (t) = 1

NhN

n+N∑

k=n+1

K2

(Tk − t

hN

)
.

For A4 in (14), it can be decomposed as

A4 = − 1√
N

n+N∑

j=n+1

[u(Ṽ j ) − g2(Tj )] (q̂(Tj ) − g1(Tj ) f̂t (Tj ))

ft (Tj )
+ op(1)

= − 1√
N

n+N∑

j=n+1

[u(Ṽ j ) − g2(Tj )] 1

NhN

n+N∑

k=n+1

(Yk − g1(Tj ))K2

(
Tk−t
hN

)

ft (Tj )
+ op(1)

= − 1√
N

n+N∑

k=n+1

[u(Ṽk) − g2(Tk)](Yk − g1(Tk)) + op(1). (17)

Consider A7 in (14). We have
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A7 = 1√
N

n+N∑

j=n+1

[u(Ṽ j ) − g2(Tj )][û(Ṽ j ) − u(Ṽ j )]τ β

= 1√
N

n+N∑

j=n+1

[u(Ṽ j ) − g2(Tj )]
(

l̂(Ṽ j ) − u(Ṽ j ) f̂ Ṽ (Ṽ j )

fṼ (Ṽ j )

)τ

β + op(1)

= 1√
N

n+N∑

j=n+1

1

nbd+1
n

n∑

i=1

[u(Ṽ j )−g2(Tj )]

⎛

⎜⎜⎝

(Xi−u(Ṽ j ))K1

(
Ṽi −Ṽ j

bn

)

fṼ (Ṽ j )

⎞

⎟⎟⎠

τβ+op(1)

=
√

N

n

n∑

i=1

[u(Ṽi ) − g2(Ti )](Xi − u(Ṽi ))
τ β. (18)

We can similarly prove that all the other terms in (14) are equal to op(1):

Ai = op(1), i = 5, 6, 8, 9, . . . , 12. (19)

From (15), (16), (17), (18) and (19), we obtain

A = 1√
N

n+N∑

j=n+1

[u(Ṽ j ) − g2(Tj )][CN G̃(Ṽ j ) + ζ j − (Y j − g1(T̃ j ))]

−
√

N

n

n∑

i=1

[u(Ṽi ) − g2(Ti ) − CN G̃(Ṽi )](Xi − u(Ṽi ))
τ β + op(1).

Combining with Lemma 1 for the asymptotic property of �̂, we have

√
N (β̂ − β) = 1√

N
�−1

n+N∑

j=n+1

[u(Ṽ j ) − g2(Tj )][CN G̃(Ṽ j ) + ζ j − (Y j − g1(T̃ j ))]

−
√

N

n
�−1

n∑

i=1

[u(Ṽi ) − g2(Ti ) − CN G̃(Ṽi )](Xi − u(Ṽi ))
τ β

+ 1√
N

(�̂−1 − �−1)

n+N∑

j=n+1

CN (u(Ṽ j ) − g2(Tj ))G̃(Ṽ j )

+ 1√
N

(�̂−1 − �−1)

n∑

i=1

CN G̃(Ṽi )(Xi − u(Ṽi ))
τ β + op(1).

The proof is concluded. 
�

123



810 W. Xu, L. Zhu

Proof of Theorem 1 Under H0, the test statistic in (6) can be decomposed as

TN (x̃, t) = 1√
N

n+N∑

j=n+1

ε j I (X̃ j ≤ x̃, Tj ≤ t)

− 1√
N

n+N∑

j=n+1

(û(Ṽ j ) − u(Ṽ j ))
τ β I (X̃ j ≤ x̃, Tj ≤ t)

−
⎛

⎝ 1

N

n+N∑

j=n+1

uτ (Ṽ j )I (X̃ j ≤ x̃, Tj ≤ t)

⎞

⎠√
N (β̂ − β)

− 1√
N

n+N∑

j=n+1

(ĝ(Tj ) − g(Tj ))I (X̃ j ≤ x̃, Tj ≤ t)

− 1√
N

n+N∑

j=n+1

(û(Ṽ j ) − u(Ṽ j ))
τ (β̂ − β)I (X̃ j ≤ x̃, Tj ≤ t)

=: TN ,1 − TN ,2 − TN ,3 − TN ,4 − TN ,5. (20)

We have, for TN ,2 in (20),

TN ,2 = 1√
N

n+N∑

k=n+1

(l̂(Ṽk)−u(Ṽk) f̂ Ṽ (Ṽk))
τ β

fṼ (Ṽk)
I (X̃k ≤ x̃, Tk ≤ t)

− 1√
N

n+N∑

k=n+1

( f̂ Ṽ (Ṽk)− fṼ (Ṽk))(l̂(Ṽk)−u(Ṽk) f̂ Ṽ (Ṽk))
τ β

fṼ (Ṽk) f̂ Ṽ (Ṽk)
I (X̃k ≤ x̃, Tk ≤ t)

= 1√
N

n+N∑

k=n+1

(l̂(Ṽk) − u(Ṽk) f̂ Ṽ (Ṽk))
τ β

fṼ (Ṽk)
I (X̃k ≤ x̃, Tk ≤ t) + op(1)

= 1√
N

n+N∑

k=n+1

1

nbd+1
n

n∑

i=1

K1((Ṽi − Ṽk)/bn)(Xi − u(Ṽk))
τ β

fṼ (Ṽk)

×I (X̃k ≤ x̃, Tk ≤ t) + op(1)

=
√

N

n

n∑

i=1

(Xi − u(Ṽi ))
τ β I (X̃i ≤ x̃, Ti ≤ t) + op(1). (21)

Recall the definition of q̂(t) and f̂t (t) as follows,

q̂(t) = 1

NhN

n+N∑

j=n+1

Y j K2

(Tj − t

hN

)
, f̂t (t) = 1

NhN

n+N∑

j=n+1

K2

(Tj − t

hN

)
.
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For TN ,4 in (20), we have the following decomposition:

TN ,4 = 1√
N

n+N∑

k=n+1

(ĝ1(Tk) − g1(Tk))I (X̃ j ≤ x̃, Tj ≤ t)

− 1√
N

n+N∑

k=n+1

(ĝ2(Tk) − g2(Tk))
τ β I (X̃ j ≤ x̃, Tj ≤ t)

= 1√
N

n+N∑

k=n+1

(q̂(Tk) − g1(Tk) f̂t (Tk))

ft (Tk)
I (X̃ j ≤ x̃, Tj ≤ t)

− 1√
N

n+N∑

k=n+1

( f̂t (Tk)− ft (Tk))(q̂(Tk)−g1(Tk) f̂t (Tk))

ft (Tk) f̂t (Tk)
I (X̃ j ≤ x̃, Tj ≤ t)

− 1√
N

n+N∑

k=n+1

(ĝ2(Tk) − g2(Tk))
τ β I (X̃ j ≤ x̃, Tj ≤ t)

= 1√
N

n+N∑

k=n+1

(q̂(Tk) − g1(Tk) f̂t (Tk))

ft (Tk)
I (X̃ j ≤ x̃, Tj ≤ t)

− 1√
N

n+N∑

k=n+1

(ĝ2(Tk) − g2(Tk))
τ β I (X̃ j ≤ x̃, Tj ≤ t) + op(1)

=: TN ,41 − TN ,42 + op(1).

For TN ,42 in (22), it can be proved that

TN ,42 =− 1√
N

n+N∑

k=n+1

n+N∑

j=n+1

W j (Tk)(E[u(Ṽk)|Tk]−E[u(Ṽ j )|Tj ])τ β I (X̃ j ≤ x̃, Tj ≤ t)

− 1√
N

n+N∑

k=n+1

n+N∑

j=n+1

W j (Tk)(E[u(Ṽ j )|Tj ] − u(Ṽ j ))
τ β I (X̃ j ≤ x̃, Tj ≤ t)

+ 1√
N

n+N∑

k=n+1

n+N∑

j=n+1

W j (Tk)(û(Ṽ j ) − u(Ṽ j ))
τ β I (X̃ j ≤ x̃, Tj ≤ t)

=op(1).

As a result, the term TN4 in (20) can be further derived as

TN ,4

= 1√
N

n+N∑

k=n+1

(q̂(Tk) − g1(Tk) f̂t (Tk))

ft (Tk)
I (X̃ j ≤ x̃, Tj ≤ t) + op(1)
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= 1√
N

n+N∑

k=n+1

1

nbd+1
n

n∑

i=1

K1((Ṽi − Ṽk)/bn)(Xi − u(Ṽk))
τ β

fṼ (Ṽk)

×I (X̃k ≤ x̃, Tk ≤ t) + op(1)

= 1√
N

n+N∑

j=n+1

(Y j − g1(Tj ))E[I (X̃ ≤ x̃)|Tj ]I (Tj ≤ t) + op(1). (22)

For TN ,5 in (20), we have

TN ,5 = op(1). (23)

Together with (20), (21), (22), (23) and Lemma 2 under H0, it can be obtained that

TN (x̃, t)

= 1√
N

n+N∑

j=n+1

ε j I (X̃ j ≤ x̃, Tj ≤ t) −
√

N

n

n∑

i=1

(Xi − u(Ṽi ))
τ β I (X̃i ≤ x̃, Ti ≤ t)

− 1√
N

n+N∑

j=n+1

(Y j − g1(Tj ))E[I (X̃ ≤ x̃)|Tj ]I (Tj ≤ t)

−E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)]√N (β̂ − β) + op(1)

= 1√
N

n+N∑

j=n+1

ε j I (X̃ j ≤ x̃, Tj ≤ t) −
√

N

n

n∑

i=1

(Xi − u(Ṽi ))
τ β I (X̃i ≤ x̃, Ti ≤ t)

− 1√
N

n+N∑

j=n+1

(Y j − g1(Tj ))E[I (X̃ ≤ x̃)|Tj ]I (Tj ≤ t)

−E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)]�−1
( 1√

N

n+N∑

j=n+1

(u(Ṽ j ) − g2(Tj ))ε j

−
√

N

n

n∑

i=1

(u(Ṽi ) − g2(Ti ))(Xi − u(Ṽi ))
τ β

− 1√
N

n+N∑

j=n+1

(u(Ṽ j ) − g2(Tj ))(Y j − g1(T̃ j ))
)

+ op(1)

= 1√
N

n+N∑

j=n+1

(
ε j I (X̃ j ≤ x̃, Tj ≤ t) − (Y j − g1(Tj ))F[X̃ |Tj ]I (Tj ≤ t)

−E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)]�−1(u(Ṽ j ) − g2(Tj ))[ε j − (Y j − g1(T̃ j ))]
)

−
√

N

n

n∑

i=1

(
(Xi − u(Ṽi ))

τ β I (X̃i ≤ x̃, Ti ≤ t) − E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)]�−1
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×(u(Ṽi ) − g2(Ti )){(Xi − u(Ṽi ))
τ β}

)
+op(1)

= 1√
n + N

n+N∑

k=1

J (Yk, X̃k, Tk, x̃, t) + op(1), (24)

where J (Yk, X̃k, Tk, x̃, t) is defined inTheorem1.HenceTN (x̃, t) converges toT (x̃, t)
in distribution in the Skorokhod space D[−∞,+∞]p+1. Here T (x̃, t) is a centered
continuous Gaussian process with the covariance function

E(T (x̃1, t1)T (x̃2, t2)) = E(J (Y, X̃ , T, x̃1, t1)J (Y, X̃ , T, x̃2, t2)).

According to the continuous mapping theorem, CVN converges in distribution to
CV := ∫

T (X̃ , T )2d F(X̃ , T ). Hence, Theorem 1 is proved.

Proof of Theorem 2. Under the local alternatives H1n in (11), similarly as the deriva-
tion under H0, we have

TN (x̃, t) = 1√
N

n+N∑

j=n+1

(ζ j + CN G̃(Ṽ j ))I (X̃ j ≤ x̃, Tj ≤ t)

−
√

N

n

n∑

i=1

(Xi − u(Ṽi ))
τ β I (X̃i ≤ x̃, Ti ≤ t)

− 1√
N

n+N∑

j=n+1

(Y j − g1(Tj ))E[I (X̃ ≤ x̃)|Tj ]I (Tj ≤ t)

−E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)]√N (β̂ − β) + op(1). (25)

Note the asymptotic property of
√

N (β̂ − β) in (13) under H1n . We have

TN (x̃, t)

= 1√
N

n+N∑

j=n+1

(ζ j + CN G̃(Ṽ j ))I (X̃ j ≤ x̃, Tj ≤ t)

−
√

N

n

n∑

i=1

(Xi − u(Ṽi ))
τ β I (X̃i ≤ x̃, Ti ≤ t)

− 1√
N

n+N∑

j=n+1

(Y j − g1(Tj ))E[I (X̃ ≤ x̃)|Tj ]I (Tj ≤ t)

−E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)]

×
( 1√

N
�−1

n+N∑

j=n+1

[u(Ṽ j ) − g2(Tj )][CN G̃(Ṽ j ) + ζ j − (Y j − g1(T̃ j ))]
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−
√

N

n
�−1

n∑

i=1

[u(Ṽi ) − g2(Ti ) − CN G̃(Ṽi )](Xi − u(Ṽi ))
τ β

+ 1√
N

(�̂−1 − �−1)

n+N∑

j=n+1

CN (u(Ṽ j ) − g2(Tj ))G̃(Ṽ j )

+ 1√
N

(�̂−1 − �−1)

n∑

i=1

CN G̃(Ṽi )(Xi − u(Ṽi ))
τ β

)
+ op(1). (26)

In the case that CN = N−1/2, the term TN (x̃, t) in (26) can be further calculated as
follows:

TN (x̃, t)

= 1√
N

n+N∑

j=n+1

(
ζ j I (X̃ j ≤ x̃, Tj ≤ t) − (Y j − g1(Tj ))F[X̃ |Tj ]I (Tj ≤ t)

−E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)]�−1(u(Ṽ j ) − g2(Tj ))[ζ j − (Y j − g1(T̃ j ))]
)

−
√

N

n

n∑

i=1

(
(Xi − u(Ṽi ))

τ β I (X̃i ≤ x̃, Ti ≤ t) − E[uτ (Ṽ )

×I (X̃ ≤ x̃, T ≤ t)]�−1(u(Ṽi ) − g2(Ti )){(Xi − u(Ṽi ))
τ β}

)

−E[uτ (Ṽ )I (X̃ ≤ x̃, T ≤ t)]�−1
(

E{G̃(Ṽ )(X − u(Ṽ ))τ β}
+E{G̃(Ṽ )[u(Ṽ ) − g2(T )]}

)
+ E{G̃(Ṽ )I (X̃ j ≤ x̃, Tj ≤ t)} + op(1)

= T (x̃, t) + G∗(x̃, t) + op(1). (27)

Here, the definition of G∗(x̃, t) is in Theorem 2. As a result, when CN = N−1/2,
TN (x̃, t) converges to T (x̃, t) + G∗(x̃, t) in distribution. In the case that CN = Nr

with r > −1/2, we have

TN (x̃, t) → ∞. (28)

According to (27) with CN = N−1/2 and (28) with CN = Nr (r > −1/2), Theorem
2 is proved. 
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