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Abstract Hierarchical linear models with a block circular covariance structure are
considered. Sufficient conditions for obtaining explicit and unique estimators for the
variance–covariance components are derived.Different restrictedmodels are discussed
and maximum likelihood estimators are presented. The theory is illustrated through
covariance matrices of small sizes and a real-life example.
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1 Introduction

Mixed linear models offer large flexibility in modeling data structures consisting of
multiple levels of nested groups. These models are also known as multilevel models
or hierarchical linear models (see e.g. Searle et al. 1992; Demidenko 2004). Hierar-
chically structured data naturally arise in various applications including sociology,
education, biology and life sciences.
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Whenmodeling such data it is important to take into account the sources of variation
present at different levels of the hierarchy (see Hox and Kreft 1994; Goldstein 2010).
The presence of symmetry in the data at one or several levels yields a patterned
dependence structure within or between the corresponding levels. Symmetry here
means that dependency between neighboring units remains the same (invariant) after
a re-arrangement of units. Properties of patterned covariance matrices in mixed linear
models which are obtained under symmetry assumptions have, for example, been
studied in Nahtman (2006), Nahtman and Rosen (2008), Rosen (2011) and Liang et
al. (2012).

In this article the following hierarchical mixed linear model is considered:

y = μ1p + Z1γ 1 + Z2γ 2 + ε, (1)

where y is a p × 1 vector of observations, p = n1n2, μ is an unknown constant,
γ 1 : n2 × 1, γ 2 : p × 1 and ε are independently normally distributed random vectors
with zero means and variances–covariance matrices Σ1 ≥ 0, Σ2 ≥ 0, and σ 2 I p,
respectively. Here Z1 = In2 ⊗1n1 , Z2 = In2 ⊗ In1 , 1s = (1, 1, . . . , 1)′, i.e. a column
vector of size s with all elements equal to one, I s is the identity matrix of order s, and
⊗ denotes the Kronecker product. Thus,

y ∼ Np(μ1p,Σ),

Σ = Z1Σ1Z′
1 + Σ2 + σ 2 I p.

(2)

The covariance matrix Σ in (2) may have different structures depending on Σ1 and
Σ2. In this article, the covariance matrix Σ1 : n2 × n2 is assumed to be compound
symmetric, i.e.

Σ1 = σ1 In2 + σ2(Jn2 − In2), (3)

where σ1 and σ2 are unknown parameters, J s = 1s1′
s , and the covariance matrix

Σ2 : p × p, in (2), is assumed to have a block circular pattern:

Σ2 =
[n1/2]∑

k=0

SC(k) ⊗ Σk+1, (4)

where the notation [·] stands for the integer part, Σk+1 is unstructured, and SC(k) :
n1 × n1 is defined in the following way:

(SC(k))i j =
{
1, if |i − j | = k or |i − j | = n1 − k,

0, otherwise,

where k ∈ {1, . . . , [n1/2]}. For notational convenience denote SC(0) = In1 .
The covariance structure defined in (4) has been studied by Olkin (1973). In this

article, we additionally impose the compound symmetry structure on Σk+1 in (4). To
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facilitate inference about parameters of interest, we will use the following expression
of Σ2:

Σ2 = In2 ⊗ Σ (1) + (Jn2 − In2) ⊗ Σ (2), (5)

where Σ (h) is a symmetric circular Toeplitz matrix, h = 1, 2. The equivalence of the
expressions (4) and (5), when Σk+1 is compound symmetric, is shown in Liang et al.
(2011).

Note that the matrixΣ (h) = (σ
(h)
i j ) in (5) depends on r , r = [n1/2]+1, parameters,

and for i, j = 1, . . . , n1, h = 1, 2,

σ
(h)
i j =

{
τ| j−i |+1+(h−1)r , if | j − i | ≤ r − 1,

τn1−| j−i |+1+(h−1)r , otherwise,

where the τ ′
qs are unknown parameters, and taking into account that h = 1, 2, the

index q = 1, . . . , 2r .
Estimation of parameters in (1) faces several challenges, among others identifiabil-

ity issues. For example, one cannot distinguish between τ1 and σ 2.Wewill show that to
obtain explicit maximum likelihood estimators (MLEs) with interpretable parameters,
the only possibility is to consider restricted models, i.e. constraints on the elements of
the factor(s) included in the model or, equivalently, on the corresponding covariance
matrix, must be imposed.

Several different kinds of constraints exist that are sufficient to guarantee the identi-
fiability of the covariance parameters which, however, yield different types of covari-
ance matrices. In particular, certain natural ways of constraining (reparameterizing)
a random factor that preserves the structure of the original covariance matrix will be
outlined, among others invariance assumptions. Reparameterization issues have been
considered, for example in VanLeeuwen (1997) and Nahtman (2006).

The organization of this article is as follows. In the next section, we provide some
results concerning spectral properties of block circular symmetric covariance matrices
and the estimation of eigenvalues. In Sect. 3, a new approach to finding identifiable
parameters and obtaining explicit MLEs for (co)variance parameters by considering
restricted models is presented. The model and the proposed approach are illustrated
with examples in Sect. 4 and a real data application in Sect. 5.

2 Maximum likelihood estimation

The main goal of the article is to find maximum likelihood estimators for the unknown
parameters μ and θ , θ = (σ 2, σ1, σ2, τ1, . . . , τ2r )

′ in model (1). Let y1, . . . , yn be
a random sample from Np(μ1p,Σ), and define Y = (y1, . . . , yn). Then, vecY ∼
Nnp(μ1np, In ⊗ Σ), where Σ is specified in (2), and vec(·) denotes the vectorization
operation putting columns underneath starting from the first. Using the loglikelihood
function

ln L(μ,Σ) = c − 1

2
|In ⊗ Σ | − 1

2
(vecY−μ1np)′(In ⊗ Σ)−1(vecY−μ1np),
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where c = − 1
2np ln (2π), the MLE for μ is easily derived, i.e.

μ̂ = [1′
np(In ⊗ Σ−1)1np]−11′

np(In ⊗ Σ−1)vecY.

Since 1p is an eigenvector of Σ and 1np = 1n ⊗ 1p, we get

μ̂ = (1′
np1np)

−11′
npvecY = 1

np
1′
npvecY,

i.e. μ̂ is an OLS estimator.
The next step is to estimate θ . This will be achieved using the MLEs for the eigen-

values of Σ and the following theorem which concerns the linear representation of
distinct eigenvalues of Σ in terms of (co)variance components θ (see Liang et al.
2012).

Theorem 1 Let η be a vector of the 2r distinct eigenvalues of Σ defined in (2). Then
η can be expressed as:

η = Lθ, (6)

where

L = (B1
... B2), (7)

and

B1 =

⎛

⎜⎜⎝

1 n1 n1(n2 − 1)
1r−1 0r−1 0r−1
1 n1 −n1
1r−1 0r−1 0r−1

⎞

⎟⎟⎠ , B2 =
(
A (n2 − 1)A
A − A

)
,

0r−1 is a column vector of size r − 1 with all elements equal to zero, and A = (ai j )
is a square matrix of size r with

ai j =
{
2I (1< j<r) cos(2π(i − 1)(n1 − j + 1)/n1), if n1 is even,
2I (1< j≤r) cos(2π(i − 1)(n1 − j + 1)/n1), if n1 is odd

(8)

where I (·) is the indicator function and i, j = 1, . . . , r .

The maximum likelihood estimators of the eigenvalues in η, given in (6), as well
as their distributions will now be derived. Let D(η) be a diagonal matrix with the
distinct eigenvalues η1, . . . , η2r of multiplicities m1, . . . ,m2r ,

∑2r
i=1 mi = p, on

the main diagonal. Let Q be the orthogonal matrix where columns v1, . . . , v p are the
knownorthonormal eigenvectors generating the corresponding eigenspace. Thus,Σ =
QD(η)Q′. Due to the symmetry assumptions (compound symmetry and symmetric
Toeplitz), the eigenvectors vi , i = 1, . . . , p, are completely independent of the Σ

elements, see Liang et al. (2012).
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Replacing μ by its MLE, μ̂, we get for the likelihood function

L(μ, η) ≤ L(μ̂, η)

= (2π)−
1
2 pn|D(η)|− n

2 e− 1
2 tr{[D(η)]−1 Q′(Y−μ̂1p1′

n)(Y−μ̂1p1′
n)

′ Q},

where tr(·) denotes the trace of a matrix.
Let H = Q′(Y−μ̂1p1′

n)(Y−μ̂1p1′
n)

′ Q and Hd = diag(H) = (h j ). Then L(μ̂, η)

can be expressed in terms of ηi , i = 1, . . . , 2r , i.e.,

L(μ̂, η) = (2π)−
1
2 pn|D(η)|− n

2 e− 1
2 tr{[D(η)]−1Hd }

= (2π)−
1
2 pn

2r∏

i=1

η
−(nmi /2)
i exp

⎧
⎨

⎩−1

2

2r∑

i=1

η−1
i

k+mi∑

j=k+1

h j

⎫
⎬

⎭, (9)

where k = ∑i
l=1 ml−1 and m0 = 0. Taking the logarithm in (9) and differentiating

with respect to ηi , we obtain the following normal equations

∂ ln L(μ̂, η)

∂ηi
= −nmi

2

1

ηi
+ 1

2η2i

k+mi∑

j=k+1

h j = 0. (10)

Solving the equations in (10) yields the MLEs for ηi :

η̂i = 1

nmi

k+mi∑

j=k+1

h j , i = 1, . . . , 2r, (11)

since L(μ, η) ≤ L(μ̂, η) ≤ L(μ̂, η̂).
In the next proposition, the distribution of MLE for ηi will be derived.

Proposition 1 The MLEs of ηi , η̂i , are independent χ2 distributed random variables,
i = 1, . . . , 2r , with η̂1 ∼ η1

n χ2
(n−1), and η̂i ∼ ηi

nmi
χ2

(nmi )
, i = 2, . . . , 2r .

Proof Let Q be as in the proof of Theorem 1. Since 1p is an eigenvector of Σ ,
premultiplying vecY by In ⊗ Q′ we obtain

(In ⊗ Q′)vecY ∼ Npn(μ[1n ⊗ (
√
p, 0, . . . , 0 )′], In ⊗ D(η)),

where D(η) is a p × p diagonal matrix with the eigenvalues of Σ , given in Theorem
1, on the main diagonal, i.e. the model can be split into 2r independent models. Define
wi = (In ⊗ v′

i )vecY , where vi are the known eigenvectors of Σ , and let

ỹ1 = w1,

ỹi = vec(wi ,wn1−i+2),

ỹr+1 = vec(wn1+1,w2n1+1, . . . ,w(n2−1)n1+1),

ỹr+i = vec(wn1+i ,w2n1−i+2,w2n1+i ,w3n1−i+2, . . . ,w(n2−1)n1+i ,w(n2−1)n1−i+2),
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where i = 2, . . . , r . Then we have

ỹ1 ∼ Nn(
√
pμ1n, η1 In),

ỹi ∼ Nnmi (0, ηi Inmi ), i = 2, . . . , 2r,

where mi is the multiplicity of ηi (see Liang et al. 2012). It turns out that μ and η1
are estimated through ỹ1. The MLE of η1 is η̂1 = 1

n ỹ
′
1(In − 1

n 1n1
′
n)ỹ1, and the MLE

of ηi is η̂i = 1
nmi

ỹ′
i ỹi , i = 2, . . . , 2r . Hence, η̂1 ∼ η1

n χ2
(n−1), and η̂i ∼ ηi

nmi
χ2

(nmi )
,

i = 2, . . . , 2r , which completes the proof. �

An alternative method to estimate ηi , i = 1, . . . , 2r , is to use restricted maximum
likelihood estimation (REML), in which the basic idea is to eliminate the bias due to
mean parameters when estimating variance components (see Patterson and Thompson
1971; Searle et al. 1992; LaMotte 2007). In model (1) with only one mean parameter
μ, the REMLs for ηi ’s are the following

η̂1,REML = 1

n − 1
ỹ′
1

(
In − 1

n
1n1′

n

)
ỹ1,

and, for i = 2, . . . , 2r ,

η̂i,REML = 1

nmi
ỹ′
i ỹi .

It is noteworthy that for i =2, . . . , 2r , η̂i,REML=η̂i,ML and η̂1,REML= n
n−1 η̂1,ML.Hence,

the difference betweenMLEs and REMLs of variance components inmodel (1) is very
small. Moreover, the problem of over parametrization always exists, no matter which
method, MLEs or REMLs, is applied. Therefore, in the subsequent, only the MLEs of
variance components will be considered.

Now using (11) we get the following estimator of Σ :

Σ̂ = QD(η̂)Q′.

Since the covariance matrix Σ is a linear combination of the three covariance
matricesΣ1,Σ2 and σ 2 I , the elements ofΣ are functions of the unknown parameters
in θ , i.e. Σ = Σ(θ). If the number of unknown parameters in Σ (size of θ) equals
the number distinct eigenvalues of Σ (size of η), the MLE for θ has an explicit
expression, e.g. see Szatrowski (1980), which can be obtained by solving the system
of linear equations (6) when η has been replaced by its MLE, and Σ̂ is a MLE.

The next proposition establishes a relationship between the number of elements in
θ and η.

Proposition 2 The difference between the number of unknown parameters in Σ and
the number of distinct eigenvalues of the covariance matrix Σ defined in (2) equals 3.

Proof Recall that Σ given in (2) is a linear combination of the three covariance matri-
ces, i.e.
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Σ = Z1Σ1Z′
1︸ ︷︷ ︸

2 parameters

+ Σ2︸︷︷︸
2r parameters

+ σ 2 I︸︷︷︸
1 parameter

. (12)

Thus there are 2r + 3 unknown parameters in Σ , whereas there are only 2r distinct
eigenvalues of Σ . �

According to Proposition 2we have to put at least three restrictions on the parameter
space to use the MLEs of the eigenvalues to estimate θ explicitly. Since σ 2 in (12) is
connected to the random error, a restriction on σ 2, i.e. σ 2 is a known constant, will
not be considered. Thus, there are two scenarios. Either one can put one constraint on
Σ1 and two constraints on Σ2 or alternatively one can put three constraints on Σ2.

Observe that η in (6) is not only a function of unknown covariance parameters in
θ , η = η(θ), but also a function of the distinct eigenvalues

λΣ1 = (λ
Σ1
1 , λ

Σ1
2 ),λΣ2 = (λ

Σ2
11 , . . . , λ

Σ2
1r , λ

Σ2
21 , . . . , λ

Σ2
2r ), and λI

of Σ1, Σ2 and σ 2 I , respectively, i.e. η = η(λΣ1 ,λΣ2 , λI ):

ηi = λI + n1λ
Σ1
h I (i ∈ {1, r + 1}) + λ

Σ2
h j ,

where h = 1 + I (i ≥ r + 1), j = i − r(h − 1) and i = 1, . . . , 2r .
It turns out that instead of putting constraints on θ , it is reasonable to impose

constraints on the eigenvalues of the covariance matrices Σ1 and Σ2. The advantage
of this approach is that the corresponding eigenvectors will specify the constraints to
be imposed on the factor, which usually are interpretable, and at the same time keep
the original symmetry assumptions. However, in practise the constraints are part of the
model assumptions which have to be verified against data. Below, we present model
restrictions which are called Scenario 1 and Scenario 2. Observe, that the maximum of
the likelihood will not be affected by the choice of the different scenarios. Therefore,
the likelihood cannot guide us which model should be used, only the observed data.

Scenario 1 One constraint is imposed on the spectrum of Σ1 and two constraints on
the spectrum of Σ2. Two possibilities for imposing constraints are given by

(i) λ
Σ1
g = 0, λΣ2

g1 = 0 and λ
Σ2
h1 = 0, g, h ∈ {1, 2}, g 	= h;

(ii) λ
Σ1
g = 0, λΣ2

h1 = 0 and λ
Σ2
i j = 0, g, h, i ∈ {1, 2}, g 	= h, j ∈ {2, . . . , r}.

In fact, the condition λ
Σ1
2 = 0 in (i) is very restrictive, since in this case σ1 = σ2 =

cov(γ1k, γ1l), k, l = 1, . . . , n2, i.e. the covariance matrix Σ1 in (3) becomes equal to
σ1 Jn2 . In the subsequent we will only consider the case when λ

Σ1
1 = 0 in (i).

Using the relationship between the eigenvalues λΣ2 of Σ2 and the elements of Σ2
(see Liang et al. 2012, Corollary 2.6), conditions (i) and (ii) can be expressed in terms
of constraints on θ as K iθ = 0, i = 1, 2, where
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K 1 =
⎛

⎝
0 1 (n2 − 1) 0r 0r
0 0 0 a1 (n2 − 1)a1
0 0 0 a1 − a1

⎞

⎠ , (13)

K 2 =
⎛

⎝
0 1 (n2 − 1) 0r 0r
0 0 0 a1 − a1
0 0 0 a j −(1 − n2)2−ha j

⎞

⎠ , (14)

and a1 : r × 1 and a j : r × 1 are the corresponding rows of the matrix A defined in
(8), h ∈ {1, 2} and j ∈ {2, . . . , r}.
Scenario 2 Three constraints are imposed on the spectrum of Σ2:

(iii) λ
Σ2
g1 = 0 and λ

Σ2
h j = 0, g = 1, 2, h ∈ {1, 2}, j ∈ {2, . . . , r}.

Condition (iii) can also be expressed as K 3θ = 0, where

K 3 =
⎛

⎝
0 0 0 a1 (n2 − 1)a1
0 0 0 a1 − a1
0 0 0 a j −(1 − n2)2−ha j

⎞

⎠ , (15)

and a1 : r× 1 and a j : r× 1 are the corresponding rows of matrix A defined in (8).

For a better understanding the meaning of restrictions (i)–(iii), their implications
for the factors γ 1 and γ 2 in model (1) will be studied. Let v : n2 × 1 be any non-zero
vector satisfying v′1n2 = 0, and let {v j } be the eigenvectors corresponding to r distinct
eigenvalues of Σ (h) specified in (5), h = 1, 2 and v j 	= 1n1 . Then Scenario 1 and
Scenario 2 can be formulated as follows:

Scenario 1: (alternative formulation)
(iv) 1′

n2γ 1=0, 1′
pγ 2=0 and (v ⊗ 1n1)

′γ 2=0;
(v) 1′

n2γ 1=0, (v ⊗ 1n1)
′γ 2=0 and (vh−1 ⊗ v j )

′γ 2=0, h∈{1, 2}, j ∈{2, . . . , r}.
Scenario 2: (alternative formulation)

(vi) (vg−1⊗ 1n1)
′γ 2=0 and (vh−1⊗ v j )

′γ 2=0, g=1, 2, h ∈{1, 2}, j ∈ {2, . . . , r}.
It is noteworthy that the restrictions in Scenario 1 and Scenario 2 only yield different

reparameterizations of θ due to θ = (K ′
i )
oθ∗

i , but they result in the same estimate of
η (invariance to reparameterization of θ ), since η = L(K ′

i )
oθ∗

i and L(K ′
i )
o is of full

rank, i = 1, 2, 3.

3 Explicit MLEs of variance parameters

In the previous section, different types of restrictions were described to derive
estimable (co)variance components. These restrictions will be shown to yield explicit
MLEs of the (co)variance parameters. Let θ∗ be the vector of the unknown parameters
in model (1) under any restriction given by Scenario 1 or Scenario 2, i.e., (i)–(iii).

Theorem 2 Model (1) has explicit MLEs for θ if one of the conditions (i)–(iii) holds.

Proof The restriction K iθ = 0, i = 1, 2, 3, on θ in η = Lθ is equivalent to θ =
(K ′

i )
oθ∗

i , where (K ′
i )
o : (2r + 3) × 2r is a matrix in which columns generate the
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On estimation in hierarchical models 781

orthogonal complement to the column vector space of K ′
i and θ∗

i : 2r × 1 is the vector
of unknown parameters in model (1) which is determined by restrictions (i)–(iii) given
in Scenario 1 and Scenario 2. If L(K ′

i )
o is invertible then θ∗

i can be estimated. Now
observe that r(L(K ′

i )
o) = r(L′ : K ′

i ) − r(K ′
i ), and r(K

′
i ) = 3. Due to the structure

of L and K i , given in (7) and (13)–(15), respectively, e.g.

(L′...K ′
1) =

⎛

⎝
1 1′

r−1 1 1′
r−1 0 0 0

n1 0′
r−1 n1 0′

r−1 1 0 0
n1(n2−1) 0′

r−1 −n1 0′
r−1 (n2−1) 0 0

A′ A′ 0′
r a′

1 a′
1

(n2−1)A′ −A′ 0′
r (n2−1)a′

1 −a′
1

⎞

⎠

we find that r(L′...K ′
i ) = 2r +3. Thus, r(L(K ′

i )
o) = (2r +3)−3 = 2r , i.e. the matrix

L(K ′
i )
o is of full rank, and therefore is invertible. Hence, η = Lθ = L(K ′

i )
oθ∗

i and
θ∗
i = (L(K ′

i )
o)−1η. ��

Corollary 1 The MLEs for the vector of the unknown parameters θ∗
i , i = 1, 2, 3, in

model (1) under any restriction given by Scenario 1 or Scenario 2 are the following

θ̂
∗
i = (L(K ′

i )
o)−1η̂, (16)

where K i , i ∈ {1, 2, 3} is given in (13)–(15).

Corollary 2 The estimator θ̂
∗
i , i = 1, 2, 3, is a linear combination of independent

χ2-distributed random variables.

Proof Follows from (16) and Proposition 1. ��

Theorem 3 The MLEs obtained for θ under conditions (i)–(iii) given in Scenario 1
and Scenario 2 are unique.

Proof In η = L(K ′
i )
oθ∗

i the vector of unknown parameters θ∗
i is determined by

restrictions (i)–(iii) given in Scenario 1 and Scenario 2, and η and L are fixed by the
structure of the covariance matrix Σ specified in (2). Uniqueness of (K ′

i )
o yields the

uniqueness ofMLEs for θ . Assume, that there exist twomatrices (K ′
i )
o
1 and (K ′

i )
o
2 such

that(K ′
i )
o
jθ

∗
i =θ , j=1, 2. Then, L[(K ′

i )
o
1 − (K ′

i )
o
2]θ∗

i =0, and since L : (2r +3)×2r
with r(L) = 2r , [(K ′

i )
o
1−(K ′

i )
o
2]θ∗

i = 0whichmeans that (K ′
i )
o
1 = (K ′

i )
o
2. Therefore,

the matrix (K ′
i )
o is unique, and the theorem is established. �

Up to now it has been shown that there exist one unique (K ′
i )
o, i = 1, 2, 3, but no

explicit expression for it has been given.

Proposition 3 The structure of the matrix (K ′
1)

o is uniquely determined by the choice
of restrictions given in (i) in Scenario 1 and equals
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(K ′
1)

o =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−(n2−1) 01

−2 − 2 . . . − 1

Ir−1

−2 − 2 . . . − 1

0 Ir−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

Proof Due to the relationship λΣ2 = B2τ (Liang et al. 2012), we have

λ
Σ2
i j = a j (τ 1 − (1 − n2)

2−iτ 2),

where a j is the j th row of the matrix A defined in (8), i = 1, 2, j = 1, . . . , 2r ,
and τ = (τ ′

1, τ
′
2)

′ with τ 1 = (τ1, . . . , τr )
′, τ 2 = (τr+1, . . . , τ2r )

′. According to (i)

in Scenario 1, λ
Σ2
11 = 0 and λ

Σ2
21 = 0, which yields the following system of linear

equations

λ
Σ2
11 = a1(τ 1 − (1 − n2)τ 2) = 0,

λ
Σ2
21 = a1(τ 1 − τ 2) = 0,

(18)

where a1 = (1, 2, . . . , 2, 1)′.
Solving the system of equations (18) yields

a1τ 1 = 0, (19)

a1τ 2 = 0, (20)

which is the equivalent representation of restrictions λ
Σ2
11 = 0 and λ

Σ2
21 = 0 yet in

terms of τ = (τ 1, τ 2)
′.

The restrictions on the elements of Σ2 in (19)–(20) can specifically be expressed
as

τ1 = −2
r−1∑

i=2

τi − τr , (21)

τr+1 = −2
r−1∑

i=2

τr+i − τ2r , (22)

which together with the constraint σ1 = −(n2 − 1)σ2, as a consequence of λ
Σ1
1 = 0,

yields a restricted vector of parameters

θ∗
1 = (σ 2, σ2, τ2, . . . , τr , τr+2, . . . , τ2r )

′

of length 2r .
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The matrix (K ′
1)

o satisfying θ = (K ′
1)

oθ∗
1 is then constructed as a block-diagonal

matrix comprising four blocks which correspond to the unknown parameters σ 2,
(σ1, σ2), τ 1 and τ 2 in θ . The structure of these blocks is determined by the restrictions
in (i), i.e. σ1 = −(n2 − 1)σ2 and those obtained in (21)–(22).

It is easy to check that in model (1) the vector of unknown (co)variance parameters

θ = (σ 2, σ1, σ2, τ1, . . . , τr , τr+1, . . . , τ2r )
′,

under restrictions (i) given in Scenario 1, i.e. K 1θ = 0, where

K 1 =
⎛

⎝
0 1 (n2 − 1) 0r 0r
0 0 0 a1 (n2 − 1)a1
0 0 0 a1 −a1

⎞

⎠

=
⎛

⎝
0 1 (n2 − 1) 0 0 . . . 0 0 0 0 . . . 0 0
0 0 0 1 2 . . . 2 1 (n2 − 1) 2(n2 − 1) . . . 2(n2 − 1) (n2 − 1)
0 0 0 1 2 . . . 2 1 −1 −2 . . . −2 −1

⎞

⎠ ,

becomes

θ∗
1 = (σ 2, σ2, τ2, . . . , τr , τr+2, . . . , τ2r )

′,

and (K ′
1)

oθ∗
1 = θ , where the matrix (K ′

1)
o is defined in (17). �

As an illustration consider

(K ′
1)

oθ∗
1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −(n2 − 1) 0 0 0 0
0 1 0 0 0 0
0 0 −2 −1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −2 −1
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

σ 2

σ2
τ2
τ3
τ5
τ6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2

−(n2 − 1)σ2
σ2

−τ2 − τ3
τ2
τ3

−τ5 − τ6
τ5
τ6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us now consider (ii) in Scenario 1, i.e. λΣ2
21 = 0 and λ

Σ2
k j = 0, k ∈ {1, 2}, j ∈

{2, . . . , r} (when λ
Σ1
1 = 0) which due to λΣ2 = B2τ equal

λ
Σ2
21 = a1(τ 1 − τ 2) = 0,

λ
Σ2
k j = a j (τ 1 − (1 − n2)2−kτ j ) = 0.

(23)
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From (23) the following two restrictions on the elements of Σ2 can be obtained

τr+1 = 2−ña j2

ñ(2 − a j2)
τ1+2

r−1∑

i=3

(a ji −ña j2)

ñ(2 − a j2)
τi + (2a jr −ña j2)

ñ(2 − a j2)
τr

−2
r−1∑

i=3

(
a ji −a j2

2 − a j2

)
τr+i −

(
2a jr −a j2

2 − a j2

)
τ2r , (24)

τr+2 = ñ − 1

ñ(2 − a j2)
τ1+

r−1∑

i=2

2ñ−a ji

ñ(2 − a j2)
τi + ñ−a jr

ñ(2 − a j2)
τr

−
r−1∑

i=3

2−a ji

2 − a j2
τr+i − 1−a jr

2 − a j2
τ2r , (25)

where ñ = (1 − n2)2−k , k ∈ {1, 2}, and a ji is defined in (8), i, j = 1, . . . , r .
The specified restrictions in (24)–(25) together with the constraint σ1 = −(n2 −

1)σ2, as a consequence of λ
Σ1
1 = 0, yield a restricted vector of parameters

θ∗
2 = (σ 2, σ2, τ1, . . . , τr , τr+3, . . . , τ2r )

′

of length 2r .
The matrix (K ′

2)
o is then constructed as a block-matrix comprising four blocks

which correspond to unknown parameters σ 2, (σ1, σ2), τ 1 and τ 2. The structure of
these blocks is determined by the restrictions in (ii), i.e. σ1 = −(n2 − 1)σ2 and those
relations presented in (24)–(25). Thematrix (K ′

2)
o is presented in the next proposition.

Proposition 4 The structure of the matrix (K ′
2)

o is uniquely determined by the choice
of restrictions given in (ii) in Scenario 1 and equals

(K ′
2)

o =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−(n2−1) 01

Ir

b1 b2 . . . br−1 br br+3 . . . b2r−1 b2r
c1 c2 . . . cr−1 cr cr+3 . . . c2r−1 c2r

0 Ir−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where bi and ci are the coefficients defined in (24)–(25) for τr+1 and τr+2, respectively.

Finally let us consider (iii) in Scenario 2, i.e. λ
Σ2
11 = 0, λ

Σ2
21 = 0, and λ

Σ2
k j = 0,

k ∈ {1, 2}, j ∈ {2, . . . , r} which due to λΣ2 = B2τ can be expressed as follows

λ
Σ2
11 = a1(τ 1 + (n2 − 1)τ 2) = 0,

λ
Σ2
21 = a1(τ 1 − τ 2) = 0,

λ
Σ2
k j = a j (τ 1 − (1 − n2)2−kτ j ) = 0.

(26)
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The restrictions on the eigenvalues in (26) can be expressed in terms of the elements
of Σ2 in the following way

τ1 = −2
r−1∑

i=2

τi − τr , (27)

τr+1 = −2

ñ
τ2 − 2

ñ

r−1∑

i=3

a ji − 2

(a j2 − 2)
τi − 2(a jr − 1)

ñ(a j2 − 2)
τr

+2
r−1∑

i=3

a ji − a j2

a j2 − 2
τr+i + 2a jr − a j2

a j2 − 2
τ2r , (28)

τr+2 = 1

ñ
τ2 + 1

ñ

r−1∑

i=3

a ji − 2

(a j2 − 2)
τi + a jr − 1

ñ(a j2 − 2)
τr (29)

−
r−1∑

i=3

a ji − 2

a j2 − 2
τr+i − a jr − 1

a j2 − 2
τ2r , (30)

where ñ = (1 − n2)2−k , k ∈ {1, 2}, and a ji is defined in (8), i, j = 1, . . . , r .
Specified restrictions in (27)–(30) yield a restricted vector of parameters

θ∗
3 = (σ 2, σ1, σ2, τ2, . . . , τr , τr+3, . . . , τ2r )

′

of length 2r .
The matrix (K ′

3)
o is then constructed as a block-matrix comprising four blocks

which correspond to the unknown parameters σ 2, (σ1, σ2), τ 1 and τ 2. The structure
of these blocks is determined by the restrictions in (iii), i.e. those presented in (27)–
(30). Hence, the following proposition can be stated.

Proposition 5 The structure of the matrix (K ′
3)

o is uniquely determined by the choice
of restrictions given in (iii) in Scenario 2 and equals

(K ′
3)

o =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
I2 0

Ir

b1 b2 . . . br−1 br br+3 . . . b2r−1 b2r
c1 c2 . . . cr−1 cr cr+3 . . . c2r−1 c2r
d1 d2 . . . dr−1 dr dr+3 . . . d2r−1 d2r

0 Ir−3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where bi , ci and di are the coefficients defined in (27)–(30) for τ1, τr+1 and τr+2,
respectively.
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4 Example

In the next example, Propositions 3, 4 and 5 are illustrated, i.e., based on the MLEs
for the eigenvalues η, via L and (K ′

i )
o, i = 1, 2, 3, the explicit estimators of the

parameters in model (1) are obtained. When n1 = 4, model (1) becomes

y ∼ N4n2(μ14n2 ,Σ),

Σ = Z1Σ1Z′
1 + Σ2 + σ 2 I4n2 ,

where Σ1 = σ1 In2 + σ2(Jn2 − In2) and Σ2 = In2 ⊗ Σ (1) + (Jn2 − In2) ⊗ Σ (2),

where

Σ (1) =

⎛

⎜⎜⎝

τ1 τ2 τ3 τ2
τ2 τ1 τ2 τ3
τ3 τ2 τ1 τ2
τ2 τ3 τ2 τ1

⎞

⎟⎟⎠ , Σ (2) =

⎛

⎜⎜⎝

τ4 τ5 τ6 τ5
τ5 τ4 τ5 τ6
τ6 τ5 τ4 τ5
τ5 τ6 τ5 τ4

⎞

⎟⎟⎠ .

Using Theorem 1, the distinct eigenvalues of Σ are given by η = Lθ , where
θ = (σ 2, σ1, σ2, τ1, τ2, τ3, τ4, τ5, τ6)

′ and

L =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 4 4 (n2 − 1) 1 2 1 n2 − 1 2 (n2 − 1) n2 − 1
1 0 0 1 0 −1 n2 − 1 0 − (n2 − 1)
1 0 0 1 −2 1 n2 − 1 −2 (n2 − 1) n2 − 1
1 4 −4 1 2 1 −1 −2 −1
1 0 0 1 0 −1 −1 0 1
1 0 0 1 −2 1 −1 2 −1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

According to Proposition 2, the number of distinct eigenvalues of Σ equals 6, and
the number of unknown parameters in Σ is 9. Thus, as noted previously, the model
is overparametrized. Let now impose the restriction (i) in Scenario 1, i.e. λ

Σ1
1 = 0,

λ
Σ2
11 = 0 and λ

Σ2
21 = 0. In this case, σ1 = −(n2 − 1)σ2, τ1 = −2τ2 − τ3 and τ4 =

−2τ5 − τ6. The condition λ
Σ1
1 = 0 implies that we have the “smallest possible”

covariance between the elements in Σ . Moreover, the eigenvalue restriction on Σ2
implies that bothΣ (1) andΣ (2) are weakly diagonally dominant. Diagonal dominance
is connected to stability of a system and hasmany applications. In this restrictedmodel,
let θ∗

1 = (σ 2, σ2, τ2, τ3, τ5, τ6)
′. The distinct eigenvalues of Σ , η, can be written in

the form η = L(K ′
1)

oθ∗
1, where, using the expression in (17),

(K ′
1)

o =

⎛

⎜⎜⎜⎜⎜⎝

1
−(n2−1) 01

−2 − 1
I2

−2 − 1

0 I2

⎞

⎟⎟⎟⎟⎟⎠
,
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which yields

⎛

⎜⎜⎜⎜⎜⎜⎝

η1
η2
η3
η4
η5
η6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 0 −2 −2 2(1 − n2) 2(1 − n2)
1 0 −4 0 4(1 − n2) 0
1 −4n2 0 0 0 0
1 0 −2 −2 2 2
1 0 −4 0 4 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

σ 2

σ2
τ2
τ3
τ5
τ6

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The explicit MLE of θ∗
1 equals

θ̂
∗
1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1

4n2
0 0 − 1

4n2
0 0

1
4 0 − 1

4n2
0 0 1

4

(
1
n2

− 1
)

1
4 − 1

2n2
1

4n2
0 1

2

(
1
n2

− 1
)

1
4 (1 − 1

n2
)

0 0 − 1
4n2

0 0 1
4n2

0 − 1
2n2

1
4n2

0 1
2n2

− 1
4n2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η̂, (31)

and η̂ was presented in (11).
Let us now impose restriction (ii) in Scenario 1, for example, λΣ1

1 = 0, λΣ2
21 = 0

and λ
Σ2
22 = 0. Now, σ1 = −(n2 − 1)σ2, τ4 = τ1 − τ3 + τ6 and τ5 = τ2 + τ3 − τ6.

Then, τ6 − τ3 = τ4 − τ1 = τ2 − τ5. Thus, the absolute difference between the
elements in Σ (1) and Σ (2) is the same, meaning that random mechanisms generating
Σ (1) and Σ (2) are similar and proportional to each other. In this restricted model, let
θ∗
2 = (σ 2, σ2, τ1, τ2, τ3, τ6)

′. The distinct eigenvalues ofΣ , i.e. η, can be written with
the help of

(K ′
2)

o =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
−(n2−1) 01

I3

1 0 −1 1

0 0 1 1−1
1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

which is followed by η = L(K ′
2)

oθ∗
2, or

⎛

⎜⎜⎜⎜⎜⎜⎝

η1
η2
η3
η4
η5
η6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 n2 2n2 n2 0
1 0 n2 0 −n2 0
1 0 n2 −2n2 4 − 3n2 4(n2 − 1)
1 −4n2 0 0 0 0
1 0 0 0 0 0
1 0 0 0 4 −4

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

σ 2

σ2
τ1
τ2
τ3
τ6

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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The explicit MLE of θ∗
2 is

θ̂∗
2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 − 1

4n2
1

4n2
0

1
4n2

1
2n2

1
4n2

0 − 3+n2
4n2

1
4

(
1 − 1

n2

)

1
4n2

0 − 1
4n2

0 1
4

(
1 − 1

n2

)
1
4

(
1
n2

− 1
)

1
4n2

− 1
2n2

1
4n2

0 1
4

(
1
n2

− 1
)

1
4

(
1 − 1

n2

)

1
4n2

− 1
2n2

1
4n2

0 1
4n2

− 1
4n2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η̂, (32)

where η̂ is given in (11).
Suppose condition (iii) in Scenario 2 holds, for example, λ

Σ2
11 = 0, λΣ2

12 = 0 and

λ
Σ2
21 = 0. Hence, τ1 = −2τ2 − τ3, τ4=−2τ5 −τ6, τ4 = − 1

n2−1τ1 + 1
n2−1τ3 + τ6 and

τ5 =− 1
n2−1τ2 − 1

n2−1τ3 − τ6. The two last conditions are equivalent to τ4 + 1
n2−1τ1 =

1
n2−1τ3 + τ6 and τ5 + 1

n2−1τ2 = −( 1
n2−1τ3 + τ6). Thus, Σ (1) and Σ (2) are weakly

diagonal dominant, and the absolute value of the difference between the covariances
in Σ (1) and Σ (2) is the same. For this model, let θ∗

3 = (σ 2, σ1, σ2, τ2, τ3, τ6)
′. The

distinct eigenvalues of Σ , η, can be written in the form of η = L(K ′
3)

oθ∗
3, where

(K ′
3)

o =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0I2
−2 −1

I2
− 2

1−n2
− 2

1−n2
1

0 1
1−n2

1
1−n2

−1
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

and we have
⎛

⎜⎜⎜⎜⎜⎜⎝

η1
η2
η3
η4
η5
η6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 4 4(n2 − 1) 0 0 0
1 0 0 0 0 0
1 0 0 0 4 4(n2 − 1)
1 4 −4 0 0 0
1 0 0 2n2

1−n2
2n2
1−n2

0

1 0 0 4n2
1−n2

4
1−n2

−4

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

σ 2

σ1
σ2
τ2
τ3
τ6

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The explicit MLE of θ∗
3 is

θ̂∗
3=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1

4n2
− 1

4 0 1
4

(
1 − 1

n2

)
0 0

1
4n2

0 0 − 1
4n2

0 0

0 1
4 − 1

4n2
0 0 1

4

(
1
n2

− 1
)

0 1
4

(
1 − 2

n2

)
1

4n2
0 1

2

(
1
n2

− 1
)

1
4

(
1 − 1

n2

)

0 − 1
2n2

1
4n2

0 1
2n2

− 1
4n2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η̂, (33)

where η̂ is given by (11).

123



On estimation in hierarchical models 789

This section shows that analysis of hierarchical models is a complicated issuewhich
has to be further exploited. Usually model parameters are the objects which we would
like to receive knowledge about. Moreover, it has been shown that we need to put
restrictions on the parameter space. However, if we do not have a specific data set with
specific hypotheses it is not clear what restrictions should be imposed. In this article,
a few different restrictions have been exploited. It appeared that there exist non-trivial
differences among them. For example, consider the estimate of σ̂ 2 in (31), (32) and
(33). In (31) σ̂ 2 = η̂1, in (32) σ̂ 2 = η̂5 and in (33) σ̂ 2 = η̂2. Thus, depending on
the model assumption we obtain different estimators, which is in accordance with the
different interpretations of the parameters of the models.

5 A real data example

To illustrate the results presented in this article, data were analyzed which consist of
petal length measurements of a specific Kalanchoe plant. In Table 1 the petal length
measurements made on 11 plants from the same greenhouse are presented. From each
plant, there have been randomly chosen three flowers where each flower has four
petals. Table 1 displays the measurements.

As the arrangement of petals is circular within each Kalanchoe flower, it is reason-
able to assume that the correlation between the observations on any two petals within a
single flower is a function of the number of petals between them. Therefore, a circular
covariance structure is applied to describe the intra-flower correlation. The compound-
symmetric covariance structure is assumed to describe the inter-flower correlation. It
is supposed that all Kalanchoe plants, since they come from the same greenhouse,
have the same mean. Hence, the following mixed linear model is fit to data:

yi = μ112 + Z1γ 1 + Z2γ 2 + εi , (34)

Table 1 Petal length measurements (mm) made on flowers from a specific Kalanchoe plant are presented

Plants/petals
F 1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d 4a 4b 4c 4d 5a 5b 5c 5d 6a 6b 6c 6d

I 8.6 8.6 7.8 8.0 7.8 8.0 8.0 7.1 6.7 7.7 8.1 7.3 7.6 7.0 7.9 6.7 5.8 6.9 6.7 6.4 6.5 7.2 7.0 6.5

II 7.1 6.7 7.5 8.5 6.4 7.8 6.6 6.8 7.7 7.5 7.8 6.4 7.5 7.6 6.9 8.0 6.8 8.0 7.2 6.6 7.9 7.5 6.9 7.6

III 7.2 6.5 6.8 7.3 7.7 7.3 6.5 6.6 7.5 7.9 7.1 7.2 6.2 6.5 6.9 5.9 9.4 8.5 8.1 9.4 7.2 6.0 6.7 7.8

Plants/petals

F 7a 7b 7c 7d 8a 8b 8c 8d 9a 9b 9c 9d 10a 10b 10c 10d 11a 11b 11c 11d

I 7.6 7.0 8.0 7.7 6.6 6.2 7.0 6.1 7.3 6.6 6.4 6.0 6.5 7.3 7.9 6.9 7.4 5.9 6.9 6.5

II 8.0 6.7 7.1 8.6 7.2 6.7 7.1 6.7 7.5 8.0 9.1 7.8 7.6 7.8 7.8 7.9 7.2 8.6 7.8 8.0

III 7.7 7.8 7.7 7.2 6.6 6.7 6.2 7.0 7.5 7.3 8.2 8.1 7.5 7.6 7.6 7.7 8.2 8.0 9.3 8.7

Plants, labeled 1, 2, . . . , 11, where on each plant three flowers (F), labeled I, II, III, with four petals, labeled
a, b, c, d, have been collected
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where yi : 12 × 1 is a vector of observations on plant i , i = 1, . . . , 11, μ is a general
mean, Z1 = I3 ⊗ 14 and Z2 = I3 ⊗ I4 are the incidence matrices for the random
effects, γ 1 and γ 2, respectively, γ 1 = (γ1, γ2, γ3)

′: 3× 1 is the random vector repre-
senting the effect of the hth flower, h = 1, 2, 3, of the i th plant, γ 2 = (γ11, . . . , γ34)

′:
12 × 1 is the random vector representing the effect of the j th petal, j = 1, 2, 3, 4,
on the hth flower from the i th plant and εi is the vector of random errors, including
model errors. Furthermore, assume that γ 1, γ 2 and εi are independently distributed
as N3(0,Σ1), N12(0,Σ2) and N12(0, σ 2 I12), correspondingly. The matrices Σ1 and
Σ2 are defined in (3) and (5), respectively and the covariance matrix of yi equals
Σ = Z1Σ1Z′

1 + Σ2 + σ 2 I12.
To illuminate the proposed technique for estimation of variance components in

model (34) we apply the restrictions specified in Scenario 2 (iii). The MLE for the
general mean μL is μ̂L = 7.341 and for the distinct eigenvalues ηL we obtain

η̂L = (1.013, 0.250, 0.119, 1.582, 0.346, 0.238)′.

Restrictions (iii) in Scenario 2 imply that the following parameters are estimated:
θ∗=(σ 2, σ1, σ2, τ2, τ3, τ6)

′. The MLE of θ =(σ 2, σ1, σ2, τ1, τ2, τ3, τ4, τ5, τ6)
′ equals

θ̂ = (0.250, 0.286,−0.047, 0.019, 0.013,−0.045,−0.026, 0.010, 0.006)′,

where τ̂1 = −2τ̂2− τ̂3, τ̂4 = (τ̂3− τ̂1)/2+ τ̂6 and τ̂5 =−(τ̂2+ τ̂3)/2− τ̂6. All estimates
make sense, i.e. none of the variances is negatively estimated. When comparing the
estimates with the estimates of Scenario 1 (i) and (ii) with estimates of Scenario 2 (iii)
it is seen that σ̂ 2 is smallest when Scenario 2 (iii) holds (σ̂ 2 = 0.250). For the other two
cases σ̂ 2 equals either 1.013 or 0.346. Since σ̂ 2 is independent of the other parameter
estimates, σ̂ 2 mimics the model error. Therefore, it may be stated that among the
alternatives discussed in this article Scenario 2 (iii) fits the Kalanchoe plant data best.
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