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Abstract Weproposemethodology for exact statistical tests of hypotheses formodels
of network dynamics. The methodology formulates Markovian exponential families,
then uses sequential importance sampling to compute expectations within basins of
attraction and within level sets of a sufficient statistic for an over-dispersion model.
Comparisons of hypotheses can be done conditional on basins of attraction. Examples
are presented.

Keywords Basin of attraction · Biological network · Conditional test · Polynomial
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1 Introduction

In this paper, we develop methodology for exact statistical tests of hypotheses for
models of network dynamics.We introduce statistical models that include a dispersion
parameter to deal with real data, formulate conditional tests that respect a given test
size, and develop practical methods for computing expectations within level sets or
fibers of a sufficient statistic. The methods are applied to examples of biological
networks, including one on abscisic acid (ABA) signalling and another on cancer cell
signalling.

Biological networks are often modeled as discrete dynamical systems in order to
understand interactions and regulatory processes. Boolean models, a two-state con-
ceptual simplification, continue to be developed and used (Albert et al. 2003; Klamt et
al. 2006; Morris et al. 2010; Saez-Rodriguez et al. 2011; Stigler 2006; Thomas 1973,
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1998). Extensions to discrete states with more than two levels have been of interest, so
that on–off states may be refined to low–medium–high for example (Mendoza 2006).
In this paper we focus on the binary case but any discretization can be done similarly
(Dinwoodie 2012).

Regulatory network data has features that cause difficulties for rigorous statis-
tical inference: high dimensionality, over-dispersion, and lack of ergodicity due to
absorbing states and limit cycles. In addition, conceptually useful models are sim-
plified to the point that data from experiments on real networks have probability 0
under the model, a situation that may be called singular data since the model prob-
abilities and the empirical data are technically incompatible. Thus we introduce a
straightforward dispersed version of idealized dynamics, and we can view the data
as singular with respect to deterministic dynamics but lying within the support of
the distributions in the dispersed dynamical model. We develop conditional infer-
ence to do tests of controlled size α even with unknown nuisance dispersion parame-
ter φ in the model. Conditional tests generally require computation in level sets or
fibers of a sufficient statistic. This is a classical subject now for contingency tables
where the sufficient statistics are linear, and recent developments include connec-
tions with integer programming and commutative algebra (Aoki et al. 2012; Drton et
al. 2008; Riccomagno et al. 2000), and sequential importance sampling (Chen et al.
2006).

Biological network models are very different than log-linear models in several
key technical ways: the states are generally binary or ternary vectors instead of
integer; and the constraint equations for sampling are not linear. On the plus side,
the dynamical equations are generally lightly coupled, and by this we mean impre-
cisely that most equations depend on only a few indeterminates so equations are
not highly linked together or highly dependent. The methodology will use a com-
bination of elementary computational commutative algebra, and sequential impor-
tance sampling for computing exact conditional p values. Some of our methods
require a lexicographic Gröbner basis (Kreuzer et al. 2000) for a set of polynomi-
als, and while this is theoretically a hard and complex thing to compute it works
well on many real examples from the systems biology literature including those
in Sect. 6. Computations were done with Singular (Decker et al. 2011) but other
software such as Macaulay 2 (Grayson et al. 2012) is also suitable. Section 2 is
a self-contained discussion of attracting sets, which are simple for dynamical sys-
tems on a finite state space and fundamental for biological understanding. Section 3
presents a statistical model for dynamics that includes a dispersion parameter φ that
makes idealized dynamics compatible with noisy data. Section 4 is a technical sec-
tion on sequential importance sampling on a basin of attraction where some com-
putational commutative algebra is used, but for practical purposes it is only neces-
sary to understand the implementation in Example 2. This section is not new except
for the extension of Theorem 1 to limit cycles from earlier fixed point assump-
tions.

Section 5 has the new results and this section formulates the probability model, sets
up the problem of exact statistical inference, conditions on a sufficient statistic, and
computes conditional p values for exact tests. Finally Sect. 6 applies the method to
network examples with published data.
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Exact tests for singular network data 689

2 Attractors and basins of attraction

Attracting sets in discrete Boolean dynamics can be steady states (fixed points) or limit
cycles. In Li et al. (2006), limit cycles appear in a model of stomatal closure, but in
some cases only steady states are possible. In all of our real examples of Sect. 6 both
steady states and cycles appear. In this section we set up the notation for attracting
sets and establish basic properties, as one goal of this paper is to extend a previous
method (Dinwoodie 2012) for sampling points in the basin of attraction of a steady
state to any attracting set.

Consider a state space

� := {x = (x1, . . . , xd), x j = 0, 1} = {0, 1}d ,

a d-fold product of binary on-off states.
Let F = (F1, . . . , Fd) be a transition map or transition function or update function

on �, where Fj : � → {0, 1} and F : � → �. This map is deterministic, and the
real time step which it represents can depend on many factors (Saez-Rodriguez et al.
2007). Randomized versions called asynchronous updates are of interest (Saadatpour
et al. 2010), but we do not treat that extension in this paper.

For a state x, define the limiting set

Ax = ∩∞
k=1 ∪∞

n=k Fn(x) (1)

where Fn is the n-fold composition of F .
The resulting sets, as x varies in the state space {0, 1}d are disjoint and are the

limiting sets or attractor sets of the system.

Proposition 1 Ax ∩ Ay = ∅ or Ax = Ay.

Proof Suppose Ax ∩ Ay �= ∅ and let z ∈ Ax ∩ Ay. This implies that z = Fnk (x) =
Fmk (y) for increasing sequences nk,mk, k = 1, 2, 3, . . .. Then if x′ ∈ Ax, it follows
that x′ = Fik (x) = Fik−n1(z) = Fik−n1(Fm1(y)) and thus x′ ∈ Ay. By symmetry,
Ay ⊂ Ax as well.

A steady state p = (p1, . . . , pd) ∈ � has the defining property that F(p) = p, a
cycle of length 1. Define the set of points that eventually lead to a steady state p:

Bp := ∪∞
k=1{x : Fk(x) = p}

where Fk is the k-fold composition of the map F . More generally, define the basin of
attraction BA of any attractor (1) as

BA := ∪∞
k=1{x : Fk(x) ∈ A}. (2)

Clearly, if p is a steady state, then Ax = {p} for all x ∈ Bp, the basin of attraction
of p.

The invariance of the attractor follows immediately from the Definition 2.1.
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Proposition 2 If y ∈ Ax, then F(y) ∈ Ax.

Proof If y ∈ Ax then there is an increasing sequence n1 < n2 < n3 < · · · with
y = Fn1(x) = Fn2(x) = · · · , and this then implies that F(y) = Fnk+1(x), k ≥ 1 and
so F(y) ∈ Ax. �

Proposition 3 All attractor sets Ax are fixed points or cycles.

Proof It is enough to show that the map F does not leave invariant any strict subset of
Ax. Let B ⊂ Ax with F(B) ⊂ B. If y ∈ Ax, then y = Fnk (x), n1 < n2 < n3 < · · ·
and similarly if b ∈ B then b = Fmk (x). This means that y = Fnk−m1(b), nk > m1
and thus y ∈ Ab. By Proposition 1, it follows that Ax = Ab ⊂ B, where the last
containment follows by the invariance of B. Thus any invariant subset B of Ax must
be all of Ax. �

Proposition 4 For any basin of attraction BA, x ∈ BA if and only if Ax = A.

Proof Suppose x ∈ BA. Then there is a k ≥ 1 with Fk(x) ∈ A. Since A is invariant, it
follows that Fn(x) ∈ A for all n ≥ k, and hence Ax = ∩k≥1 ∪n≥k Fn(x) ⊂ A—then
by Proposition 1 Ax = A.

Conversely, suppose Ax = A. To show that x ∈ BA(= BAx), it is sufficient to show
that Fnk (x) = x0 for a sequence n1 < n2 < n3 < · · · and any point x0, because
the point x0 must then be in Ax. But this property is immediate since the infinite
sequence Fn(x) in the finite set {0, 1}d must visit some point x0 an infinite number of
times. �

Proposition 4 clarifies that a point xwill hit its attracting set at some finite time (unlike
the situation in continuous dynamics), and this is used in the algorithm of Theorem 1.

Example 1 An example of dynamics with limiting cycles is given in Table 1 of Saadat-
pour et al. (2010) for a 13-node subnetwork of a guard cell ABA signalling network.
With 13 nodes each getting an indeterminate s1, . . . , s13, the dynamics are

F1 = s11, F2 = s1, F3 = s2, F4 = s2, F5 = s4, F6 = s3, F7 = s11, F8 = s7,

F9 = (s5 · s6) + s8 − s5 · s6 · s8, F10 = s11,

F11 = s9 · (1 − s10), F12 = 1 − s11, F13 = s11.

There is one fixed point 0000000000010 with basin of attraction counting 108 points,
and two attractors in the form of limit cycles of size 4, given by

1000001011001

0100000100010

0011000010010

0000110000110

1100001111001
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0111000110010

0011110010110

1000111011101

The two basins of attraction have sizes 1,704 and 6,380.

3 One-parameter dispersion model

Idealized, simplified interaction and regulatory rules F are useful conceptual tools.
However these dynamics usually do not fit data for several reasons: (1) the actual
multivariate time series do not exactly follow the dynamics because the rules are only
approximate, (2) there is noise in the original continuous measurements, which leads
to corrupted binary values in discretized data, (3) an intervention or experiment is
deliberately stimulating or inhibiting the network to provide data for modeling. We
may call data that is incompatible or inconsistent with a deterministic model singular
data, as its probability or likelihood is 0. Comparing two idealized theories in this
setting is our goal.

In this section we define a probability model that interpolates between pure iid
noise and the exact deterministic dynamics. This will make the likelihood of the data
positive, help account for uncertainties in measurement modeling, and then permit
likelihood based methods of inference. We introduce a dispersion parameter in a way
that is standard in generalized linear model theory and has some similarities with the
categorical data version in Diaconis et al. (1985).

For dispersion parameter φ, define a transition probability kernel on � by

K (x, y) = e− 1
φ ‖F(x)−y‖2

(1 + e−1/φ)d
, φ ∈ (0,∞). (3)

When φ → ∞, the distribution approaches coin flipping for y, and when φ → 0 it
approaches the deterministic dynamics y = F(x). Onemay parametrizewith θ = 1/φ

if desired, but using φ is more consistent with notation for dispersion parameters in
exponential families where larger φ corresponds to more variance in the response.

Let μ denote a known initial probability distribution on �, giving probability dis-
tribution Pμ,F,φ on �n+1:

Pμ,F,φ(x0:n = (x0, x1, . . . , xn) ) = μ(x0)
n∏

i=1

K (xi−1, xi )

which simplifies to

Pμ,F,φ(x0:n) = μ(x0)
e− 1

φ

∑n
i=1 ‖F(xi−1)−xi‖2

(1 + e−1/φ)dn
. (4)
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We will consider φ to be a nuisance parameter, and the dynamics F to be the “para-
meter” of interest for testing.

To estimate φ (which is useful to determine how well the pure dynamics fit the data
because a better map F is related to a smaller dispersion φ), note that we can solve
explicitly for its maximum likelihood estimator φ̂:

p̂ :=
∑n

i=1 ||F(xi−1) − xi ||2
nd

1

φ̂
= log

(
1 − p̂

p̂

)
, 0 < p̂ < 1/2.

The model (3) means that perturbations or errors occur with odds e−1/φ homoge-
neously in time (index i = 1, . . . , n) and space (coordinate indices j = 1, . . . , d),
and when they occur they are built into the process affecting future transitions (a state
space model would be more appropriate for noisy observations where the true state is
not randomly perturbed). This would roughly correspond to a situation where homo-
geneous interventions are made on a network to keep generating data for observation
or reverse engineering. In experiments such as the hcc1954 data described in Bender
et al. (2011), there are many different interventions that affect the network in different
ways, so homogeneity in the perturbations may be too idealized.

4 Sequential importance sampling

In this section we describe a sequential importance sampling algorithm for computing
expectations on the initial state x0 ∈ BA ⊂ �, for basin of attraction BA. The value of
computations within basins of attraction is evident in work such as Albert et al. (2003)
and Saadatpour et al. (2010). The mathematical method is based on constructing the
set of polynomials that vanish on the basin of attraction (its ideal), then sampling
roots sequentially with a nonlinear version of back substitution. The algebraic tools
are outlined in Kreuzer et al. (2000) and Riccomagno et al. (2000).

Before explaining the details, let us say how the approach in this section differs
from existing methods for studying attractors, such as found in BoolNet (Müssel et
al. 2010). Rather than complete enumeration and listing of states in an attracting set,
a process whose work grows exponentially in the number of dimensions or nodes
d, the algebra constructs the polynomials that vanish on the attracting set. In many
real examples, the polynomials are few and simple to understand. For example, in the
signalling network of Example 7, each fixed point has an attracting basin of size 8,192.
Complete enumeration does not reveal that each is simply a cylinder set obtained by
restricting three coordinates 1, 8, and 11, but the polynomial characterization shows
sixteen polynomials only three of which say more than the states are binary. For the
limit cycle in that example (the 1 of 16 that was analyzed), just 19 polynomials are
needed, only three of which are nontrivial. While the algebra can in theory be hard
or practically impossible, in real examples the standard polynomial basis typically
has size on the order of d, rather than the 2d states, and its computation is fast. Its
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Exact tests for singular network data 693

use in sampling requires importance reweighting (Theorem 2), but that is a small
inconvenience in return for the insight and memory efficiency.

Let A be an attractor of interest, possibly a limit cycle, and let μ have support on
its basin of attraction BA. We will use twice as many indeterminates as the number
of coordinates d. Define the ring of polynomials R := C[s1, . . . , sd , t1, . . . , td ] =
C[s, t], and define ideals

I01 = 〈s21 − s1, . . . , s
2
d − sd , t

2
1 − t1, . . . , t

2
d − td〉

Fst = 〈F1(s) − t1, F2(s) − t2, . . . , Fd(s) − td〉
Fts = 〈F1(t) − s1, F2(t) − s2, . . . , Fd(t) − sd〉
IA = ∩p∈A〈t1 − p1, . . . , td − pd〉.

Define the ideal I1 by

I1 = (Fst + IA + I01) ∩ C[s].

Define recursively a sequence of ideals I2, I3, I4, . . . by

J = (Fts + Ii + I01) ∩ C[t] (5)

Ii+1 = (Fst + J + I01) ∩ C[s], i = 1, 2, 3, . . . (6)

Stop the iteration when dim R/(Ii + I01) repeats in order to get the polynomials
that vanish on the basin of attraction BA [see Dinwoodie (2012) for proofs in the case
of a steady state and examples].

Theorem 1 There exists i� < ∞ such that dim R/(Ii� + I01) = dim R/(Ii�+1 + I01),
and for such an integer

I (BA) = Ii�

as an ideal within C[s].
Proof Here we only sketch the main steps. Observe first that IA is the ideal of the
attracting set A containing a finite number of pointsp = (p1, . . . , pd). The elimination
ideal I1 is the ideal for the points x that reach A in one time step, using indeterminates
s. Then the following ideal J is for the points x that reach A in two time steps, using
indeterminates t. The elimination operation does not add unwanted partial solutions
(solutions that do not match up with points that reach A from the previous time step),
because the Extension Theorem applies when the univariate polynomials in the ideal
I01 are added. All the ideals Ii + I01 are radical and 0-dimensional so the dimension
of the vector space R/(Ii + I01) counts solutions. When the number of solutions
stops increasing, then the procedure has found all points that will reach A in forward
iterations of F . �


Now map the polynomials in Ii� to C[s] in the obvious way (s j → s j , t j → 0) so
IBA is the ideal of polynomials in s1, . . . , sd that vanish on the basin of attraction BA,
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the ideal of the variety. Note also that the univariate polynomials s2j − s j all belong to
the ideal I (BA).

For sequential sampling from BA we adapt the “backward” method from (Din-
woodie 2011). Let

{ f1, . . . , fg} (7)

be a lexicographic Gröbner basis for I (BA) with indeterminate ordering s1 > s2 >

· · · > sd .
The proposal distribution, from which we generate an iid sample of size N in

BA ⊂ �, will be close to uniform. The proposal distribution q will be expressed as a
product of successive conditional distributions

q(x) = qd(xd) · qd−1(xd−1|xd) · qd−2(xd−2|xd , xd−1) · · · q1(x1|xd , . . . , x2)

just as a random point Xk := (Xk,1, Xk,2, . . . , Xk,d) ∈ BA will be generated sequen-
tially: Xk,d , Xk,d−1, . . . , Xk,1, k = 1, . . . , n.

The unnormalized weights wk are defined by wk = μ�(Xk)/q(Xk), where μ� is a
convenient possibly unnormalized version of the probability distribution μ. The SIS
Monte Carlo estimate for EBA ( f (X)) is given by

ÊBA ( f (X)) := 1

N

N∑

k=1

f (Xk)
wk

w̄
. (8)

The law of large numbers says that

w̄ = 1

N

N∑

k=1

μ�(Xk)

q(Xk)
→

∑

x∈BA

μ�(x)
q(x)

q(x) = μ�(BA) (9)

which implies the consistency of the estimator ÊBA ( f (X)):

ÊBA ( f (X)) → 1

μ�(BA)

∑

x∈BA

f (x)
μ�(x)
q(x)

q(x) =
∑

x∈BA

f (x)μ(x) = EBA ( f (X)).

(10)

When μ� is the unnormalized constant 1, then SIS can be used for approximate
counting as is well-known: w̄ → |BA|.

The SIS procedure for sampling from a nonempty BA using an initial Groebner
basis computation is described next.

(SIS) Sequential Importance Sampling on BA:

1. Compute a reduced lexicographic Groebner basis for I (BA) with variable order
s1 > s2 > · · · > sd in C[s].

2. For sample size N , let the index k run from 1 to N :
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Exact tests for singular network data 695

(a) Using the polynomials from the lex basis that only involve sd , determine which
of {0, 1} solve the system and let nd ∈ {1, 2} be the number of values in {0, 1}
that solve the equations. Then uniformly sample Xd from the set of roots, and
let qd(Xd) = 1/nd .

(b) Continue for indices j = 1, . . . , d − 1 to count (by substitution of 0 and 1) the
number of solutions nd− j to the equations in the lex basis that involve variables
sd− j , . . . , sd , with sd− j+1 = Xd− j+1, . . . , sd = Xd . Choose Xd− j uniformly
from the nd− j solutions, and set qd− j (Xd− j |Xd− j+1, . . . , Xd) = 1/nd− j .

(c) Complete X = (X1, . . . , Xd) ∈ BA when X1 is chosen and q1(X1|Xd , . . . , X2)

is computed.
(d) SetXk = (X1, . . . , Xd) and lk = − log(qd(Xd))−· · ·−log(q1(X1|Xd , . . . , X2)).

The following result is from Dinwoodie (2011), and is essentially an application
of the Extension Theorem (Cox et al. 1998), using the elements of I01 to satisfy
certain technical conditions, and accounting for the proposal probabilities. While the
lexicographic Gröbner basis is considered computationally hard, the nature of the
equations in biological networks usually gives tractable systems.

Theorem 2 Sequential importance sampling in (SIS) above always produces an ele-
ment Xk ∈ BA if BA �= ∅ , and when μ is constant on BA the importance sampling
weights wk are

wk = elk .

Example 2 To make the method above concrete, consider a simple example on d = 2
nodes, where the dynamics are F1(x1, x2) = F2(x1, x2) = x1x2. There are two fixed
points, and attractor A = {00} has basin of attraction equal to B00 = {00, 01, 10}. Its
ideal is generated by lex Gröbner basis {s21 − s1, s1 · s2, s22 − s2} which is the key to
sampling. There is one equation that involves only the last indeterminate s2, and it is
solved by both 0,1, so nd = n2 = 2. Suppose we choose 0 for its value, giving partial
solution ∗0. Then replacing s2 by 0 in the other equations gives equations s21 − s1, 0,
so again two choices are possible and n1 = 2. Thus the weights w on 00 and 10 are
both 4, the reciprocal of 1

2 · 1
2 . On the other hand if the first choice was x2 = 1, giving

partial solution ∗1, the updated equations become s21 − s1, s1. These are only solved
by s1 = 0 for complete solution 01 with weight 2, the reciprocal of 1

2
1
1 . The sequential

sampling will generate solutions 00, 01, 10, with frequencies proportional to 1/4, 1/2,
1/4, and the weights are the reciprocals.

Thus an expectation of a function f with the respect to the uniform distribution
μ� = 1 on B00 is computed as

EB00( f (X)) :=
∑

x∈B00

f (x)
3

= f (00)
w00

3
· 1
4

+ f (01)
w01

3
· 1
2

+ f (10)
w10

3
· 1
4

where the weights are given by w00 = 4, w01 = 2, w10 = 4, and the normalizing 3
corresponds to the average w̄ from the expectation of the weights
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w̄ ≈ 3 = w00 · 1
4

+ w01 · 1
2

+ w10 · 1
4
.

Then it is clear that the reweighting of the integrand f compensates for the unequal
frequencies from the sampling procedure.

5 Exact conditional hypothesis tests

We use the term “exact test” in the sense that the size α of the test is guaranteed to be
as advertised—it does not come from asymptotic results with unknown convergence
rates possibly not uniform over the parameter φ. The technical proof of the exactness
is stated in Proposition 5. This result is generally not stated but exists as a folk theorem
(Guo et al. 1992, p. 363). We state it completely to clarify the p value formula and to
show that the conditioning is not so much a Bayesian approach as one which makes a
rejection region by considering each level set of a sufficient statistic.

The probability model of Sect. 3 gives likelihood function LF,φ in the two unknown
parameters F,φ of the form:

LF,φ := Pμ,F,φ(x0, x1, . . . , xn) = μ(x0)
e− 1

φ

∑n
i=1 ‖F(xi−1)−xi‖2

(1 + e−1/φ)dn
.

Let TF (x0:n) := ∑n
i=1 ‖F(xi−1)−xi‖2 measure the distance between ideal dynamics

F and data x0:n . The data x00:n is singular with respect to the ideal dynamics whenever
TF (x00:n) > 0. TF is a sufficient statistic for φ. Then the conditional distribution on
�n+1 given TF = t is proportional to μ(x0):

Pμ,F,φ{x0:n | TF (x0:n) = t} = μ(x0)∑
TF (y0:n)=t μ(y0)

∝ μ(x0). (11)

We will be interested in initial distributions μ that are supported on certain attractors.
Suppose the dynamics F could be one of two choices, G0 or G1 giving hypotheses

H0 : F = G0 (12)

H1 : F = G1 (13)

with unknown nuisance parameter φ ∈ (0,∞).
A likelihood ratio test might be best if φ were known, but there are two practi-

cal difficulties: how to calibrate the test statistic for size α, and dealing with φ the
unknown dispersion parameter. Note that the assumptions of Wilks’ theorem that
give a χ2 asymptotic distribution for the likelihood ratio statistic are not satisfied
(Bickel et al. 2007, p. 395). Another point here is that in maximizing a likelihood ratio
maxφ LG1,φ/maxφ LG0,φ, the two maximizers φ̂ could be different, and the larger
φ̂ should be considered as evidence against the corresponding dynamics G1 or G0.
This information would not be considered in a standard likelihood ratio procedure but
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Exact tests for singular network data 697

posterior densities of φ would be useful. Conditional inference handles both prob-
lems of exactness and unknown φ, but it is necessary to be able to compute in fibers
{x0 ∈ BA} ∩ {TG0 = t}. For this we use sequential importance sampling as described
below.

The conditional p value V can be used as a test statistic to give a size α test in the
traditional frequentist sense. This is because the V test statistic cuts out a rejection
subset {V ≤ α} of size at most α (not depending on the nuisance parameter) from
each level set of the sufficient statistic, and the parametric distribution just weights
the various level sets differently depending on φ. A case study for practical issues
of conditional p values for categorical data is Guo et al. (1992), and the proposition
below is essentially in Casella and Berger (2002, p. 399).

Let T = TG0 − TG1 and define the p value test statistic V on observed data x00:n by

V = V (x00:n) := Pμ,G0,φ(T ≥ T (x00:n) | TG0 = TG0(x
0
0:n)) (14)

which is a conditional p value using the conditional likelihood ratio.

Proposition 5 With p value V defined above, the test that rejects H0 when V ≤ α

has size at most α for any 0 < α < 1 regardless of φ.

Proof Suppose the true dynamics are given by G0, so the probability distribution on
�n+1 is Pμ,G0,φ. Then the conditional distribution given TG0 = t is proportional to
μ(x0). The test statistic V defines a rejection region R given by

R = ∪t≥0Rt

Rt := {x00:n ∈ T−1
G0

(t) : V (x00:n) ≤ α}
= {x00:n ∈ T−1

G0
(t) : Pμ,G0,φ(T ≥ T (x00:n) | TG0 = t) ≤ α}.

Now using the mutual exclusiveness of the Rt , we get

Pμ,G0,φ(R) =
∑

t≥0

Pμ,G0,φ(Rt | TG0 = t) · Pμ,G0,φ(TG0 = t)

and it is sufficient to show Pμ,G0,φ(Rt |TG0 = t) ≤ α for each t . This is in fact a
standard result for discrete random variables put into their own cdf, a slight variation
on the continuous version where the resulting distribution is exactly uniform.

To simplify notation, fix t and let π denote the conditional mass function of x0:n ∈
Rt and let gt denote the mass function of TG0 using the conditional distribution on Rt ,
and let x denote a trajectory x00:n . Then

Pμ,G0,φ(Rt | TG0 = t) = Pμ,G0,φ

{
x00:n ∈T−1

G0
(t) : Pμ,G0,φ(T ≥ T (x00:n) | TG0 = t)≤α

}

=
∑

x : ∑t≥t (x) gt≤α

π(x)

=
∞∑

s=0

I{s: ∑∞
t=s gt≤α}gs

123



698 I. H. Dinwoodie, K. Pandya

=
∑

s∈[sα,∞)

gs, [sα, ∞) :=
{
s :

∞∑

t=s

gt ≤ α

}

≤ α.

�

We now compute V with a Monte Carlo method that uses the SIS method of Sect. 4

for sampling BA combined with a sampling method on {TG0 = t}. For simplicity, the
initial distribution μ will be uniform on basin BA with unnormalized μ� = 1. Recall
that T := TG0 − TG1 is defined before (14) and x00:n is the actual data.

(MC) Monte Carlo Exact Test in {TG0 = t} ∩ {x0 ∈ BA}:
1. Do (SIS) in BA with dynamics F = G0 to get an iid sampleXk ∈ BA with weights

wk, k = 1, . . . , N .
2. For each k = 1, . . . , N :

(a) Sample uniformly a subset S of size t from index set {(i, j), i = 1, . . . , n, j =
1, . . . , d}, set Si = { j : (i, j) ∈ S}.

(b) For i = 1, . . . , n, set xi = G0(xi−1)⊕1Si , with x0 = Xk and addition modulo
2 to switch the value 0 ↔ 1.

(c) Set xk0:n = (Xk, x1, x2, . . . , xn) to be the concatenation with x0 = Xk .
3. Compute the estimator for p value V defined at (14) by

V̂ = 1

N

N∑

k=1

I{T≥T (x00:n)}(x
k
0:n)

wk

w̄
. (15)

Note that for each xk0:n constructed in (MC) above,

TG0(x
k
0:n) =

n∑

i=1

‖G0(xki−1) − xki ‖2 =
n∑

i=1

|Si | = t.

Theorem 3 The estimator V̂ from Monte Carlo sampling (MC) converges to V as
N → ∞ when μ is uniform on BA.

Proof As the Monte Carlo sample size N → ∞,

V̂ = 1

N

N∑

k=1

I{T≥T (x00:n)}(x
k
0:n)

wk

w̄

→ 1

μ�(BA)
E[I{T≥T (x00:n)}(x0:n)w(x0)]

= 1

μ�(BA)
E

[
w(x0)E[I{T≥T (x00:n)}(x0:n) | x0]

]

= 1

μ�(BA)
E

[
w(x0)

|{x1:n : T (x0:n) ≥ T (x00:n), TG0(x0:n) = t}|
|{x1:n : TG0(x0:n) = t}|

]

123



Exact tests for singular network data 699

= 1

μ�(BA)

∑

x0∈BA

μ�(x0)
q(x0)

q(x0)
|{x1:n : T (x0:n) ≥ T (x00:n), TG0(x0:n) = t}|

|{x1:n : TG0(x0:n) = t}|

= 1

|BA|
∑

x0∈BA

1

q(x0)
q(x0)

|{x1:n : T (x0:n) ≥ T (x00:n), TG0(x0:n) = t}|
|{x1:n : TG0(x0:n) = t}|

= Pμ,G0,φ(T ≥ T (x00:n) | TG0 = TG0(x
0
0:n))

= V .

�


6 Examples

The network examples are ABA signalling and a cancer cell network.

Example 3 Consider the network for stomatal closure from Example 1, and consider
the first run from the Abscisic Acid Signaling Network Data Set at the UCI Machine

Table 1 ABA signalling data

Step + 1 NOS NO GC ADPRc cADPR cGMP PLC IP3 CIS CaATPase Ca KAP KEV
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

1 0 1 1 0 0 1 0 0 0 1 1 0 1

2 1 1 1 1 1 1 0 0 0 0 0 0 1

3 0 0 0 0 1 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0
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Learning Repository (Frank et al. 2010) in Table 1. This data was simulated with the
dynamics of Example 1 in an asynchronous fashion, meaning that a coordinate j was
chosen randomly, then that coordinate map Fj is applied to update that one coordinate
while the others remain unchanged. The initial state (marked as time 1) was simulated
uniformly over all states. This transition scheme has the same steady states as the pure
dynamics, but introduces randomness differently than the perturbations of model (4)
and slows the process by a factor of 1/d approximately. Therefore the data is quite
different than what would be typical for model (4).

While the initial state above is in the basin of attraction of the smaller cycle limit
described in Example 1, we will take μ to be uniform as was done in the origi-
nal simulation. Then importance sampling is not needed as exact simulation of μ is
straightforward . Let G1 be a competing theory with map 9 given by s5 · s6 with no
appearance of s8, while the null model G0 is exactly map F from Example 1. Five
Monte Carlo p value computations with N = 10, 000 gave an average of 0.021, with
standard error 0.001. Therefore this data would probably lead to rejection of the null
model.

Example 4 Starting from the same initial state asExample 3but runningpure dynamics
with no noise (φ = 0), the data becomes

0110010001101

1011011001001

0100110100010

0011000010010

0000110000110

1000001011001

0100000100010

0011000010010

0000110000110

1000001011001

0100000100010

0011000010010

0000110000110

1000001011001

0100000100010

0011000010010

0000110000110

1000001011001

0100000100010

0011000010010

0000110000110
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With the same maps G0 and G1 as Example 1, five runs of N = 10, 000 gave a
mean for the p value estimate of 0.104, with standard error 0.001, values normally
consistent with keeping the null dynamics.

Our third example demonstrates the feasibility of the algebraic computations
required to condition on a particular basin of attraction.

Example 5 Consider again the network for stomatal closure from Example 1, and
hypothetically suppose t = 0, meaning the model G0 = F fits the data perfectly, and
suppose n = 1 for one transition. Let G1 again be the competing theory with map 9
given by s5 · s6 with no appearance of s8. Suppose the initial distribution μ is uniform
on the basin of attraction BA of size 6,380 corresponding to the second limit cycle.

Then the p value V is simply the fraction of initial states x0 ∈ BA where G1(x0) �=
G0(x0), a case treated algebraically in Dinwoodie (2012), and the answer is exactly
1− 3,740/6,380 = 0.41. Employing the SIS method of Sect. 4, there is a lex Gröbner
basis for sampling the set BA of 19 polynomials which is found easily in Singular.
Sampling with N =10,000 showed an estimated size B̂A = 6, 413.3 on one run for
example, from the average of the importance sampling weights w̄ [and a cv2 value of
approximately 0.12 indicates reasonable efficiency of importance sampling relative
to perfect sampling, see Liu (2001)]. A Monte Carlo estimate of V on five runs with
N =10,000 is 0.414, which compares with the exact value of 0.41. The standard error
on the five runs was 0.003, giving confidence interval 0.414±2 ·0.003 containing the
true value.

Example 6 Consider again the network for stomatal closure from Example 1 with G1
as above in Example 5. We generated data starting from an initial point in the larger
basin of attraction of the second cycle, using the dynamics G1 with zero random
perturbations (zero perturbations are likely with φ < 0.1 when n = 20 and d = 13).

1100001111001

0111000100010

0011110000010

0000110010010

0000000010110

1000001001101

1100001101001

0111000100010

0011110000010

0000110010010

0000000010110

1000001001101

1100001101001

0111000100010

0011110000010
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0000110010010

0000000010110

1000001001101

1100001101001

0111000100010

0011110000010

One can see that the map G1 takes the starting state out of the limit cycle for G0.
Five runs of algorithm (MC) gave an estimated p value of 0.020, with standard error
0.0005. Such values would normally lead to rejection of the incorrect dynamics G0.

Example 7 Here we consider two 16-node signalling models for the cancer cell net-
work of Bender et al. (2011). We show that the exact test does not reject one in favor
of the other using the hcc1954 signalling data in the R package ddepn (Bender et al.
2011).

The hcc1954 data is described in Bender et al. (2010). We use the EGF experiment,
which has three real time measurements at 0, 4, 8, 12, 16, 20, 30, 40 50, 60 min.
We first averaged the three replication values, then discretized to two states with the
information-based method of Scutari (2010), giving time series

0110100001100000

1110100101101100

1101011010011111

1101011011011110

1101011011011110

0101001010010110

0011100001100000

1011100111101100

1011001001100110

1011101111111110

where the 16 column names are in the order of the proteins listed below, and each row
corresponds to one time step.

The dynamics G0 for the protein-signalling model are defined in Table 2, and are
derived by logical disjunction of incoming nodes in the network, and an alternative
model G1 in Table 3 was learned with a Laplace prior (see Figure 6 of Bender et al.
2011).

There are four steady states and sixteen limit cycles of size eight in the null model
G0. The steady states are
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Table 2 Cancer cell network
model

Node G0 logical update G0 polynomial

1 EGF EGF x1
2 ERBB2 EGF x1
3 ERK1/2 EGF x1
4 AKT EGF x1
5 PDK1 ERBB3 x15
6 MEK1/2 EGF x1
7 PLCg EGF x1
8 PKC PKC x8
9 P38 EGF or (not

ERK1/2)
x1 + (1 − x3) − x1 · (1 − x3)

10 SRC ERBB3 x15
11 mTOR mTOR x11
12 P70 EGF or (not P38) x1 + (1 − x9) − x1 · (1 − x9)

13 GSK not AKT 1 − x4
14 PRAS not ERBB4 1 − x16
15 ERBB3 (not EGF) or

PRAS
(1 − x1) + x14 − (1 − x1) · x14

16 ERBB4 PDK1 x5

Table 3 Cancer cell network
alternative model

Node G1 logical update G1 logical formula

1 EGF EGF x1
2 ERBB2 ERBB2 x2
3 ERK1/2 MEK1/2 x6
4 AKT ERBB3 or (not PKC) or

PDK1 or mTOR
x15 ∨ (!x8) ∨ x5 ∨ x11

5 PDK1 ERBB2 or ERBB3 or ERBB4 x2 ∨ x15 ∨ x16
6 MEK1/2 ERBB2 or ERBB3 or ERBB4 x2 ∨ x15 ∨ x16
7 PLCg ERBB2 or ERBB3 or ERBB4 x2 ∨ x15 ∨ x16
8 PKC PLCg x7
9 P38 ERK1/2 x3
10 SRC ERBB2 or ERBB3 or ERBB4 x2 ∨ x15 ∨ x16
11 mTOR AKT or (not PRAS) x4 ∨ (!x14)
12 P70 ERK1/2 or AKT or mTOR x3 ∨ x4 ∨ x11
13 GSK not AKT !x4
14 PRAS not AKT !x4
15 ERBB3 ERBB3 x15
16 ERBB4 ERBB4 x16
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Table 4 Analysis of hcc1954
data on five attractor basins

Initial attractor basin Estimate of p value Standard error

Steady state 1 0.137 0.002

Steady state 1 0.141 0.001

Steady state 3 0.145 0.001

Steady state 4 0.142 0.002

Cycle limit 1 0.184 0.001

0000100011001011

0000100111001011

0000100011101011

0000100111101011

with basins of attraction in the form of cylinders determined by coordinates 1, 8, and 11
and hence have size 8,192. The data starts in one of the steady state basins because the
first coordinate is 0, a condition which is immediate from the polynomials. Importance
sampling is not necessary for such sets, but the limit cycles are more interesting. The
first as listed by Müssel et al. (2010) includes the point 1111011010010000 and seven
others that follow. The basin of attraction has 19 polynomials (reduced lexicographic
basis), and counts 4096 points, a number which can be found by computing the vector
space dimension with vdim in Decker et al. (2011), or with BoolNet (Müssel et al.
2010), or by approximation with the average weights w̄ from importance sampling
of Sect. 4. For completeness and verification, these are the polynomials that define
this basin of attraction: a quadratic polynomial x2 − x in x j for each coordinate
j = 16, 15, 14, 13, 12, 10, 9, 7, 6, 5, 4, 3, 2, three linear polynomials x11, x8, x1 − 1
and three other quadratics:

x14 · x15 − x14 · x16 + x15 · x16 − x15,

x5 · x15 + x5 · x16 − x5 − x15 · x16,
x5 · x14 + x5 · x16 − x5 − x14 · x16.

For comparing G0 and G1 on the four steady-state basins and the one cycle attracting
basin we used five runs of size N =10,000. The results in Table 4 show not enough
evidence to reject G0 with this data.

7 Conclusions and further problems

The method of conditional inference in Sects. 4 and 5 makes rigorous inference pos-
sible for comparing non-ergodic dynamics F on discrete states. No asymptotics are
used for calibrating the hypothesis test, rather a conditional p value computation is
done with a Monte Carlo sampling method on sets constrained by sufficient statistics.
While p values are only one tool for inference, and are often criticized for many valid
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reasons, we believe it is worthwhile to have a method of inference that adheres to
traditional notions of controlling Type I error probabilities, in addition to the wealth
of learning algorithms available for discovery.

The probabilistic model (4) may not be rich enough to include realistic features of
spatial and temporal inhomogeneity that arise when fusing data sets from experiments
that perturb different parts of a network. A further model for investigation is an n + d
parameter model:

Pμ,F,ρ,θ (x0:n) = μ(x0)
e
−∑n

i=1 ‖F(xi−1)−xi‖2φi
∏n

i=1
∏d

j=1(1 + e−1/φi j )

with

1/ φ
i j

= ρi + θ j ,φ
i

= (φ
i1
, . . . , φ

id
)

and norm

‖v‖2φi
:=

d∑

j=1

v2i j/ φ
i j
,

which gives richer spatial and temporal variability. The sufficient statistics now are
the “row and column” sums of the error matrix |Fj (xi−1) − xi, j |2. Uniform sampling
can be done with sequential importance sampling (Chen et al. 2005).

Finally, rather than work on discretized data, which is necessary for simple Boolean
models but raises further uncertainties in the discretization process, one may try a
continuous Gaussian version of model (4), say

K (x, y) = e− 1
2φ ‖F(x)−y‖2

(2π φ)d/2 , x, y ∈ R
d

or multiparameter variations. Further examples and applications to network models
for Alzheimer’s disease (Ramanan et al. 2012) would also be of interest.
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