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1. Introduction

The framework of the problem that we address ourselves to in
this paper is the following. Suppose a population has been divided into
H strata, and that the distribution of a certain characteristic of inter-
est of items belonging to the Ath stratum, h=1, ..., H, is N(u, o),
where both p, and ¢, are unknown. Let the proportion of the popu-

lation that lies in the Ath stratum be denoted by =z, 0<z,<1, f} ,=1.
h=1
Suppose interest is in estimating the overall within variance

. .
1.1) i= nz_]ln'ha,i ,

and that there is available a total budget of C (C is in monetary
units) to carry out the following two-phase sampling scheme. (We
denote the cost per observation of sampling in stratum & by ¢,.)

For the first phase, it is agreed to expend 100a% of the available
budget (0<a<1), and n, independent observations (xy, - - -, Tpn,) =X, aTE
taken from stratum &, k=1, - --, H, with x, independent of x,, all h#k,
and

H
(1.2) 2 Chnh=ac .
h=1
In the second phase, we “repeat” the above procedure, that is,
we select N, independent observations (y, - --, Ynv,)=yr from stratum

h, with y, independent of y, and all y, independent of all x,, and such
that

(1.3) hf} N, =(1—a)C .

The problem that we wish to solve may now be stated as follows.
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Suppose we are given the results of the first phase sampling. How
then ecan we “best” choose the N,, where the N, are subject to the
condition (1.83) 7 By “best”, we mean that an estimate of a parameter
of interest (e.g., (1.1)), should have as small a variance as possible.
The answer to this question depends on the method of attack and in
"this paper we use two methods or approaches, which are Bayesian in
character.

This problem of optimally (or best) allocating the N,, is an old,
honored and much discussed problem (see for example, Neyman [7],
[8], Cochran [1], Ericson [4], and Draper and Guttman [2], [3], amongst
others). Much of the discussion in the literature, however, is given
over to the optimal allocation when the overall population mean

p= 2 mntn 18 of primary interest.

However, it is frequently the case that information about &%, deﬁned
by (1.1), is desired—in fact, very often, separately budgeted pilot stud-
ies are carried out to gain information about ¢?, followed by a separate
investigation about g. With the assumption then, that ¢* is of primary
interest, we proceed to attack the problem of optimally allocating the
N,. Indeed, the methods of attacking this problem are Bayesian, and
follow the methods of Draper and Guttman [2]. The latter were inter-
ested in the allocation problem when g is of primary interest, so that
we will be in a position to contrast the “optimum allocation for
“with the” optimal allocation for ¢°.”

2. Optimum allocation for the overall within variance

H
We turn our attention, then, to the case where ¢'= 3 7,0} is of
h=1

primary interest. We proceed as in Draper and Guttman [2], and sup-
pose first that the N, are known, and the samples {x,} and {y,} have
been observed. When this is so, then we have that the two-phase
posterior of ¢ is such that

H
2.1) E[¢*] {x.}, {z:}]= hEﬂ B [ai| X Yl -
But from (A.13b) of the Appendix in Guttman [5], we have that
(2.2) Ele| (), ()]= 33 o0
r=1 n+’nn 3
where

(2.2a) SS,=(np—1)ss + (N — 1)wi + 1 Nu(¥p — %0)*/ (na+ Ny
with



BAYESIAN SOLUTIONS TO AN OPTIMUM ALLOCATION PROBLEM 69

7y Nh.
- (n,—1)s3= Z_.u: (ahur"in)’l , (Nw—Dwi= g:l (yn/—l_ln)z
(2.2b)

Y 'Nh,
- — a7t
wn—nnl?_._.n‘lxnj ’ =Ny jE_lynj .

Hence, (2.1) may be written as

— 5SS,
(2.3) | E[d] {x:}, {yh}]'—hgl Notn,—3 :

But (2.3) is a function of the yet unobserved y’s, through the SS,’s,
and has preposterior variance given by

@) Viimg B ), W) = 3 i VSl

Now it is shown in (A.33) of the Appendix of Guttman [5] that

(2.5) V(SS, | x4) =2Ny(Ny+1,— 8)(uz)*{ (1, —5)
where
(2.5a) v ur=(n,—1)83/(nn—3) ,

so that (2.4) may be written as

H N,zi(up)? — eid nﬁ(uﬁ)z_ H (1, —8) i (ul)
@8) 2 N Tn—8)m—5) 2 b5 & BNyt ma—3)

Hence, maximizing (2.4) is equivalent to minimizing

o (m=3)mui)*
=1 (1, —5)(Ny+m,—3)

@.7)

- . 3 H
Using a Lagrange multiplier to incorporate the restriction ?_‘, ¢, N,=
=1
(1—a)C, we arrive at the optimum selection of the N,, given by

H
C_ 3 hg ch
(2.8) N, ,= T__Qn,o_(nn_&
h
where, interestingly
H
(2.9) Qn, o =TRULCH / 2 muiel”

with u}’=u}v(n,—3)/(n,—5). We are here tacitly assuming that the
total budget, C, allowed for the two-phase investigation is such that
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H
C>3h§_.‘ ¢,. For later purposes, however, we assume here that (1—a)C
=1

H
>3>¢,.

h=1

Notice the form of ¢, , of (2.9)—it says that the “best” allocation
of the N, for a variance involves ¢, ,, which in turn involves previous
information about a variance, specificially, u/*:=u2v(n,—3)/(n,—5) .

The reader may have noticed that the allocation formula (2.8)-(2.9)
may produce some negative results. We handle this by using a pro-
cedure due to Draper and Guttman [2], as follows.

Let the set of indices for which N, , are positive be denoted by
(+), and the set of indices for which N,, are negative or zero be
denoted by (+). Let N/, denote the second allocation. Then

(2.10) Ni,=0 if he(+)y,

and (2.10) implies that we will take no more observations from groups
for which N,,<0. This in term implies that we should allocate the
remaining observations to the remaining groups, that is, those belong-
ing to (+). If we now minimize (2.7), subject to 3 c,N,=(1—a)C,
where N,>0, we find @

[(l—a)C+ 2 Mlh—3 X3 6l
(€] +)

(2.11) N/ ,= . Go—(m—38) if he(+)
h

where

@11a)  qf,=—"%0" Wb =i (m—3) (=5 .

> mauey

re(+)
Again, if any of the N/, are negative or zero, for h € (+), we would
set N//,=0 and then reallocate for the groups that still remain, i.e.,
which have positive N,, and N/,. Eventually, this procedure termi-
nates with some zeroes and with some positive values for the N’s, and
this procedure minimizes (2.7), subject to the constraints

(2.12) Nz0, SaN=01-aC,

as may be proved via a theorem of Kuhn and Tucker [6].

3. Preposterior estimators

From the previous section, once the optimal N,, are known, we
would take the second phase samples y, of size N,,, h€(+), and com-
pute (2.3) which would take the form
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_ 7SSy, 2
3.1) E[¢] {x.}, {g}]1= nZh )m+h§)ﬂh’u’n .
This is the posterior expectation of the overall within variance ¢, given
all the observations, and is the Bayes estimator of ¢! which we would
quote. Note that this estimator is a function of the {x,}.

A different sort of estimator may also be considered. This type of
estimator is discussed by Raiffa and Schlaifer ([9], p. 104). We have,
using (A.7b) of the Appendix in Guttman [5], that posterior to the
first phase sampling.

(3.2) E[#] (o)1= 2 mtd

Suppose we have not as yet performed the second phase sampling.
Using the result (A.24a) of Guttman [5], it is easy to see that

(3.3) E [ i _— {x,,}}: é _—y

H H
That is both > =2, a posteriori after the first phase, and X zw},
h=1 h=1
. H
preposteriori before the second phase, have expectation 2 UL, SO

that Z‘, Wi is a natural preposterior estimator of ¢*=3)mwgi. This

est1mator of ¢ has the virtue that it only uses the second phase sam-
pling—however, as in the previous section, we may utilize the first
phase sampling to give us the optimal sample sizes necessary for the
second phase sampling, as follows.

We have that the preposterior variance of our natural preposterior
estimator is

H H
(3.4) V[ 2 mwtl @) |= 3w Ve o],
which, from (A.24b) of Guttman [5], may be written as
. 2 m (uz) [1 n,—3 ]
(8:5) ;:2'1 n,—5 + N,—1

If we now minimize (3.5), subject to the constraint hﬁ‘,chN,,=(1—a)C,
we find the allocation given by
H
[(l—a)C— 5 ch]
(3.6) Nh>‘,<v= b=t qn,v+1

Cn

where q,,, has been defined in (2.9). It is interesting to note that the
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allocation (3.6) always gives positive numbers (recall, that we have
H

made the assumption that C is such that (1——a)C>3h2 ¢,), whereas the
=1

allocation (2.8) could lead to negative numbers and subsequent re-
allocations as outlined in Section 2.

4. Some numerical results

We now illustrate the results obtained in this paper for the opti-
mum allocation when ¢* is of primary interest. While we are at it,
we will contrast these results for the optimum allocation when g is of
primary interest. We will let H=6, ¢,=1, and 3 ¢y(n,+N,)=240. Now
once the values a, m,, m,, U, are available, the results follow immedi-
ately. We shall denote groups of n, by letters A, B, C as shown in
Table 1, groups of =, by o', B, 7, &, ¢, 7 as shown in Table 2, and
groups of u, used by a, b, ¢, d, ¢, f, g as shown in Table 3.

Table 1. Groups of np used.

« "y Nz Nns N4 ns N Notation
0.50 20 20 20 20 20 20 A
0.50 10 10 10 30 30 30 B
0.25 6 6 6 6 18 18 C

Table 2. Groups of m used.

Ty T2 s Ty s e Notation
1/6 1/6 1/6 1/6 1/6 1/6 o
1/21 2/21 3/21 4/21 5/21 6/21 B
6/21 5/21 4/21 3/21 2/21 1/21 T
1/18 1/18 1/18 5/18 5/18 5/18 3
5/18 5/18 5/18 1/18 1/18 1/18 [
3/12 2/12 1/12 1/12 2/12 3/12 ]

Table 3. Groups of ua used.

22} Uz us Uy us Uug Notation
6 5 4 3 2 1 a
1 2 3 4 5 6 b
4 4 4 3 3 3 c
3 3 3 4 4 d
1 1 4 4 16 16 e
16 16 4 4 1 1 f
16 4 1 1 16 g




BAYESIAN SOLUTIONS TO AN OPTIMUM ALLOCATION PROBLEM 73

In what follows, N, , denotes the values arising from (2.8); if some of

these are zero or negative, N/,, N/, etc. denote values arising from

the procedure implicit in (2.11). Similarly, N, , denotes the optimal
H

values of N, when the overall mean p= > x,x, is of interest, and, as
h=1
found by Draper and Guttman [2], is given by

4.1) Nh,m=£qh,m_nh
Cr,
with
H
(4.1a) Qo =TaUnCH | 2] maURCH? .
h=1

The results (4.1)-(4.1a) were found by minimizing

H n2u2 . H
4.2) > —222_ subject to 3 e N.=(1—a)C .
h=1

If some of the N, , given by (4.1) are zero or negative, N/,., N/ etc.,
denote the values arising from the appropriate re-allocation procedure,
and are given by, for example

Nin=0 if he(4)
(4.3)

, [(A—a)C+ (Eﬂnhch]

N/ n= qrm— M if he(+)
Cn

where g, , is defined in (4.1a). The details of the derivation of these
results are given in Draper and Guttman [2]. Also N;*, denotes the
values arising from (3.6), and, finally, N;*, denotes the values arising
from optimally allocating for the mean using a preposterior analysis,
and, as found in Draper and Guttman [2], is given by

(4.4) N¥, = -(l_c—“)cqh,m
h

where ¢, ,, is defined in (4.1a). Of course, the values N, and N, are
always positive. The result (4.4) is obtained by minimizing

H n.zuz n . H
(4.5) S UL (1+__h>, subject to 3} Ny =(1—a)C .
=1 M, N, A=1
To keep Table 4 of manageable size, we tabulate the results for
only 12 of the 126 possible conditions obtainable from Tables 1-3; the
complete set is available from the author.
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Table 4. Calculated sample sizes for optimum allocation when (i) the variance
g2 is of primary interest and (ii) when the mean g is of primary inter-
est, using a Bayesian approach (N, N’ etc.) and a preposterior analysis
(N¥*), for some conditions of Tables 1-3.

Agde N,,» —15.20 —15.20 11.74 —11.25 74.96 74.96
Ni 0.00 0.00 6.11 0.00 56.95 56.95
Nym — 1.82 — 1.82 52.73 — 5.45 38.18 38.18
Nin 0.00 0.00 49.23 0.00 35.38 35.38
Nk, 1.92 1.92 15.76 3.95 48.22 48.22
N¥ o 9.09 9.09 36.36 7.27 29.09 29.09

Agyg Ni» 156.48 — 6.16 —16.32 —16.86 —14.83 17.70
N, 111.33 0.00 0.00 0.00 0.00 8.67
Nim 132.38 18.10 —10.47 —18.10 —12.38 10.48
N n 104.14 11.03 0.00 0.00 0.00 4.83
N¥, 90.08 6.57 1.35 1.07 2.11 18.82
N¥n 76.19 19.05 4.76 .95 3.81 15.24

Anpe Nyi» —16.49 —16.66 —14.30 —14.30 69.31 112.46
N}, 0.00 0.00 0.00 0.00 44.60 75.40
Nym —12.26 —14.84 — 9.68 — 9.68 62.58 103.87
N} » 0.00 0.00 0.00 0.00 44.00 76.00
N¥, 1.26 1.17 2.38 2.38 45.32 67.48
Nk . 3.87 2.58 5.16 5.16 41.29 61.94

Ang Np,» 89.43 —12.57 —16.86 —16.86 —12.57 89.43
Ni, 60.00 0.00 0.00 0.00 0.00 60.00
Nim 81.05 — 3.16 —17.89 —17.89 — 3.16 81.05

iom 60.00 0.00 0.00 0.00 0.00 60.00
Nk, 55.65 3.28 1.07 1.07 3.28 55.65
N¥n 50.53 8.42 1.05 1.05 8.42 50.53

Bge Ny.» — 5.00 — 5.00 25.07 —21.37 63.14 63.14
N 0.00 0.00 20.34 0.00 49.83 49.83
Num 8.18 8.18 62.73 —15.45 28.18 28.18
Niom 6.94 6.94 57.74 0.00 24.19 24.19
Ny}, 2.03 2.03 17.47 3.89 47.29 47.29
N¥ o, 9.09 9.09 36.36 7.27 29.09 29.09

Bgyg Ny, 170.07 4.07 — 6.31 —26.88 —25.06 4.10
N, 123.03 1.13 0.00 0.00 0.00 — 4.16

[ 119.12 .88 0.00 0.00 0.00 0.00
Nim 142.38 28.10 — .48 —28.10 —22.38 .48
Nim 107.24 19.31 0.00 0.00 0.00 6.55

2 m 102.00 18.00 0.00 0.00 0.00 0.00
N¥, 91.93 6.68 1.36 1.06 2.00 16.97
Ni¥ ., 76.19 19.05 4.76 .95 3.81 15.24
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Bpe N,, —6.43 — 662 —3.94 —24.31 59.11  102.17
(- 0.00 0.00 0.00 0.00 42.60 77.40

Num — 2.26 — 4.84 .32 —19.68 52.58 93.87

Nim 0.00 0.00 — .95 0.00 42.38 78.57

(- 0.00 0.00 0.00 0.00 42.00 78.00

NE, 1.29 1.20 2.57 2.38 45.22 67.33

N¥n 3.87 2.58 5.16 5.16 41.29 61.94

Bpg N,, 10632 —2.28 — 6.8 —26.87 —22.85 72.53
Ni, 74.99 0.00 0.00 0.00 0.00 45.01

Nim 91.05 6.84 — 7.89 —27.89 —13.16 71.05

Nim 68.46 3.08 0.00 0.00 0.00 48.46

N, 59.19 3.42 1.08 1.07 3.13 52.11

N¥ .. 50.53 8.42 1.05 1.05 8.42 50.53

Cé¢e N,, — .38 — .38 38.93 5.39 68.22 68.22
Ni, 0.00 0.00 38.79 5.36 67.93 67.93

Nuim 12.18 12.18 66.73 8.55 40.18 40.18

N, 3.05 3.05 33.87 7.57 66.23 66.23

N 13.64 13.64 54.55 10.91 43.64 43.64

Cé¢g N,, 182.16 8.57 — 2.28 — 2.86 —13.56 7.97
N{,  166.40 7.59 0.00 0.00 0.00 6.01

Ny  146.38 32.10 3.52 — 4.10 —10.38 12.48

Nl . 136.81 29.70 2.93 0.00 0.00 10.56

NF,  146.12 10.07 1.57 1.1 2.13 19.00

Nf,.  114.29 28.57 7.14 1.43 5.71 22.86

Cype Npy — 220 — 247 1.28 1.28 69.85  112.27
NI, 0.00 0.00 1.18 1.18 68.05  109.58

Num 1.74 - .84 4.32 4.32 64.58  105.87

Nin 1.71 0.00 4.29 4.29 64.20  105.43

NE, 1.63 1.42 4.35 4.35 67.50  100.75

N n 5.81 3.87 7.74 7.74 61.94 92.90

Cpg N,, " 128.34 2.47 — 2.8 — 2.8 —11.61 66.45
Ni, 117.95 2.04 0.00 0.00 0.00 60.01

Nouim 95.05 10.84 — 3.8 — 3.8 — 1.16 83.05

Nim 90.92 10.15 0.00 0.00 0.00 78.92

Nf,  103.94 5.29 1.13 1.13 3.66 64.84

Nin 75.79 12.63 1.58 1.58 12.63 75.79

75

A comparison of the final allocations for N, , and N, , may be made
Very often, one finds in the literature the statement that
the optimal allocation for the mean is very flat. To test this, we have

as follows.
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computed some relative efficiencies, specifically (see (4.2))

(4.6) R.E.[{N,.} : {Nya}]

H

- i iU U

1=t Nym+m,/ =t N, ,+n,

where the {N,.} and {N,,} are the “final” allocations determined by
(4.1)-(4.1a) or (4.3), and (2.8)-(2.9) or (2.11), respectively. Of course,

the numerator of (4.6) is the minimum of §‘_, O
1=t Ny+m,

of N,, subject to ’;V‘i, ¢wN,=(1—a)C. Also, we have computed (see (4.5))
=1

, over all choices

4.7 R.E.[{N&} : (N5}

_ H o gyl (1 Ny, ) L HTES (1 Ny, )
. h‘?l nh, + N}:!:m ’E nh + le(u )

We have computed these relative efficiencies for all possible 126 con-
ditions, but in Table 5 below, only list the values corresponding to the
conditions used in Table 4.

Table 5. Efficiencies in percent.

(4.6) 4.7 (4.6) 4.7
Age 72.49 74.11 Bye 99.99 95.88
Agyg 96.36 92.36 By 99.10 96.40
Age 99.99 96.54 Coe 73.69 90.41
Ayg  100.00 95.72 Céoy 83.50 97.40
Bge 74.96 79.07 Cpe 98.56 97.69
Béyg 84.79 95.41 Cnyg 92.37 97.26

It turns out that for the efficiencies (4.6) and (4.7), and that of
the 126 conditions that may obtain using Tables 1-3, that the range
of values is 70-100%, but that most lie in the 90-100%; range. An
inspection of Table 5, with a glance at Tables 1-3, seems to indicate
that the ‘worst’ conditions are those for which discrepant =,’s and
discrepant u,’s (the latter, discrepant in the opposite direction) are
encountered—e.g., ¢ is the condition 5/18, 5/18, 5/18,"1/18, 1/18, 1/18,
while e is the condition 1, 1, 4, 4, 16, 16. Notice the efficiencies when
¢ and e are together—they are the ‘lowest’ obtained. Note too that
the lowest are “all that not bad”, and in general, for a wide variety
of conditions, an optimal allocation dictated by interest in the overall
within variance seems not too inappropriate for use when g is also of
interest, so that a recommendation to use {N,.} seems well advised as
a multi-purpose design.
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