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1. Introduction

The theory of general stochastic epidemics has not yet been fully
explored on the basic epidemic equation. However, some important pro-
perties, for example, a probability version of the threshold theorem valid
for sufficiently large populations, have been explored. That is, if p>n,
there is likely to be only a minor outbreak of infectives, but if p>n,
we have a U-shaped distribution of total epidemic sizes, where the param-
eter p expresses a relative removal rate and » the initial number of sus-
ceptibles. These numerical results were already given by Whittle and
Bailey. Some discussions on the stochastic epidemic theory were also
given by Bartlett, Kendall and Whittle. They pointed out that the pop-
ulation of infectives was approximately subject to a birth-and-death
process with birth-rate pn and death-rate y when the population size n
was large. Whittle gave an ingenious method of investigating limiting
behaviour in epidemic propagation. He gave the relation between the
probability P, of the total number of new infectives up to t=oco, not
counting the initial @ infectives, and the probabilities for every epidemic
size state of the restricted process or unrestricted process. The restricted
process expresses that no new birth occurs if the total number of in-
dividuals who have ever been infected, reaches n+a.

The solution of the basic model is not yet derived. We shall give
the solution of the basic model when the size of the initial population
is, generally, n. We shall illustrate the numerical results when n=1,
2, 3, 5 in section 4, and compare them with the solution by the Monte
Carlo method in section 5.

2. The basic model of epidemic

We suppose here that there are n susceptibles and a infectives at
time t=0. Now, we shall denote by P,(t) the probability that there
are r susceptibles still not infected and s infected in circulation at time
t. The chance of one new infection in time dt is taken to be grsdt, and
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the chance of one removal ysdt where the rate 8 shows the contact rate
and y the removal rate. It will be realized that the stochastic process
so defined implies an epidemic model in which (a) new infected individuals
are themselves infectious, i.e. the latent period is zero, and (b) the length
of time for which an infective remains infectious, i.e., infectious period,
has the negative exponential distribution dF=ye""dt. When we use the
time scale given by r=pgt instead of ¢ and denote by 7/B=p the ratio of
removal rate to infection rate which we shall call the relative removal
rate, we can derive the differential-difference equation as follows:

%=(’I'-l-1)(s—-1)P,+1,,_1—s('r+p)P"+p(s+1)P,,,+1 ’
(1) P
Ol — _ g(n+p)Pr
dr
where

0sr+ssn+ta, osrsn, 0<s<n+a

and the initial condition p,.(0)=1.
The probability generating function given by

(2) a(u, v;7)=3 UWV'P,(7)
satisfies the partial differential equation,

O _ () 0T 1—v) 9%
(3) 0% — =) (1)

where the initial condition is
(4) (u, v;0)=u™".

Also, putting the complex variable as 2 where the real part is positive,
we can derive the following equation by the Laplace transform:

(5) (0 —uv) :;”a’:] +p(1—v)%*—zn*+uw=o
where
(6) ok=n*(u, v;)= Sm n(u, v;7)e ¥dr .

0

The differential-difference equation (1), the partial differential equation
(8) or (5) is said to be the basic model of epidemic. So far these
partial differential equations have not been completely solved. But the
limiting solution of equation (3) was already given by Whittle as stated
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in section 1. If the initial number of susceptibles » is large, it is ob-
vious that the population of infectives is approximately subject to a birth-
and-death process with birth rate gn and death-rate y, respectively. In
such a case, the equation (1) was solved by Bartlett, Bailey and Kendall.
And, also, investigations of small epidemic with both the latent period
and infectious period having negative exponential distribution or general
y’-distribution were made by Bailey.

As stated in the above, we cannot solve the partial differential equa-
tion (3) or (5) directly, but from the epidemic equation (1), we can easily
derive the solution of the equation (3) or (5). Now, using the Laplace
transform, we can replace the differential-difference equation (1) by the
recurrence relation

q"=_(,r-*-___]‘_)_(_s.__l)_qr_H -1 Mqr s+1 9
Itsrtp) T ksrte)
(7)
2+a(n+p)
where
(8) =P ={" Pued

and the real part R(1) of the complex variable A is positive. Any ¢,
where suffices fall outside the permitted ranges is taken to be identically
zero. An exact calculation of the probability for the number of sus-
ceptibles r and infectives s is extremely laborious, but very simple.
Now, from the recurrence relation (7), we shall give the general
solution of the differential-difference equation (1). For this purpose, a
convenient simplication of the recurrence relation (7) is given by putting

,n!pn+a-r—:

9 g re—
(9) q ris

T8 *
Then, the transformation (9) gives the new recurrence formulae

_ s 3
f"——l-i-s(’r-{—p) (fr+l,s—l+fr,t+1) ’

. a
fﬁ_2+ﬂn+ﬁ'

(10)

From the new recurrence formulae (10), we can express f,, as a linear
function of f,,,; i=s—1,s, -, n+a—r—1:
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S| G+ for 522
fr: ¢§_1 j=]:[1 {2+(j+1)('r+p)} fr+1,i or 8s=4,

(1)

— f'r2
Fn Atr+p

Thus, starting with f,., we can calculate all the f,, successively.
Now, we shall assume the number of the initial infectives to be
a=1, without losing generality. Then, if §,(4;) expresses the function

(1, if 4=l
12) du(1)= .
0, if 'il#-']. y

frs is expressed as follows:

n—r i n—r—s+3 lg—g n—r—s+2 gy
(13) frs= > TT e > T[ > T[
il=s—1 jl=s—1 i8_2=£s_3—1 ]3_2=i8_3—l i8—1=i8—2—l js—1=i.s—"'1
ig_>1

2 ip—r—1 n—=r
> 1T 11

tper—1=ln—r—2~1 Jp—7—1=ip—p—1-1 k=

-

ip—r-1>1 Un—r=D
« (et 1) 1
{2+ G+ (r+k—14p)} (A+n+p)
n—r—1 n—-7r 2 n—r—1+2 f—1
+ >
l=s—1 i;=5-1 fy=s-1 ty1=tp—g—1 Jj—1=t;—9—1
4 _>1
. n—r—1 i1+ 2 — n—r
Xa () X m .- 2] 10
f41=0-1 Jp4=7-1 tp—r—1=tn—r—2~1 Jn—r—1=tg—p—g~1 k=1
i >1 j,=1
i 41>1 n—r—1> (-’;—Fl)
{24+(Ge+ 1) (r+k—1+p)} (A+1+p)(A+n+p)
n—r—1 n—r 21 n—r—1+2 i1
+ > = I - X 11
I,m=s—1 i;=5-1 fi=s—1 1g_y=tj—g—1 Jp—1=fj—9—1
i<m
i_>1
. n—r—1 t141 n—r—m+2 Tm—1
X8(1)
fp=t—1 fgg=i-1 in—1=tm—2"1 Im—1=tp—g—1
f41>1 tm—1>1
N n—r—m im+1 2 ty—r—1
XO0u(ln) X3 T[ -~ 2 .
Ipt1=tm =1 Im1=im—1 Iy —1=in—r—2~1 Jp—r—1=tp—r—g~1

i +1>1 ig—r—1>1
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T (Je+1)

X ';E {4+ 1) (r+k—1+p)}
(1,{’1‘;11
% 1
A+1+p)A+m+p)(A+n+p)
e e R R T T R
n—r iy n—r—3s+3 is— n—r—1

-IT oo E 'l_l'2 ‘l—l’ al(il)
fy=s-1 Jy=s-1 fg_g=ig_g—1 Jg_g=tg g—1 l=3-1
w7 (Gt 1) A1
k=1 {2+(jk+1)(r+k—1+p)} m=r+s-1 (1+m+p)

Js—1=1
(E)
Thus, we can obtain ¢,,(1) by using the transformation (9). Tnen, from

this complex function g¢,,(1), we find that the generating function
o*(u, v; )=> wv'q,() is evidently the solution of the partial differential

equation (5).’ Also, as its inverse Laplace transform with respect to
time 7 is

1 y+ico
(14) a(u, v;7)=—— S w¥(u, v;2)erda,

27t Jy-ie

where the real part R(i)=y is positive, we can derive the solution of
the partial differential equation (3) by using the above inverse Laplace
transform. If we show the probability of an epidemic of total size w
by P,, we have the relation

(15) P,=lim P,_,, ((z)=lim pg,_u,1 , 0=w=zn.
7— 00 -0

The probability P, was given by Whittle. But it can also easily be
calculated from (9) and (13).

We shall show the alternative method using the set of generating
functions in the next section.

3. An alternative expression of f,

From the recurrence relation (7), we can give the alternative ex-
pression that shows the solution f (s=1) using the set of generating
functions
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(16) G@)="3 @S, 0<rsn.

Multiplying the first equation in (10) by #**' and summing over s, we
get

x—(r+p)x+2 () — x? ’
an 2 —(r+ o)) OO GO =135z &)
where
(18) G.2)=2

and G/(x) expresses the derivative dGr(x)/dz. Therefore, from the rela-
tion (17), we can derive the equation

_ % i 1V
19 G ()= {(r+p)x—1}/rrett S {r+pu—1} an,

r=0,1,2,---, 1.

Furthermore, from the relation (19), we can give every G.(x) (r=0,1,
2,---,m) as follows:

__
Gﬂ(m)—m’
Goorl@)= 20/
(A+n+p)A+n—1+p){2+2(n—1+p)}
+ 2*
(A+n+p){2+2(n—1+p)} '’

R 1
Gn-z(x)—i];[l;l;l; {A+k(n—i+1+p)}

X [{4(2+8(n—14p))+12(2+n—1+p)}2*
+(@A+n—2+0){4(3+3(n—2+p))+12(2+n—1+p)}2*
+6(2+n—14+p)(A+n—2+p)(2+2(n—2+p))x'] ,

---------------------

Generally, G.(x) is expressed as

@) GAa= {(1‘+p)aci21}l/cr+p)+1 [S S+ o S {(r+p), s — 1}/

T {(k+p— )T —2} {(k+ 0)Tesn — 1}/
k=r+1 {(1-+p)xk_1}1/(r+p)+2

XAdZps1d%, + + ATyps
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oS !"’S”r# e S -1 S’j+l e S {(’I‘ } P)xr L 1}1/(r+,,)
J=r+1 "
mk{(k f 4 1)%-—2} {(k+p)xk 1— | }1/(k+p)

x I .
ek {(k+p)x,— 1}/ +or+2
% de e deade, - d
(j+,0)xj—1 L1 L4205 Lr i1

> B e B R e

i<j

x ﬁ- 2 {(k+p— D2, —2} {(k+ 0)2;r, — 1 }/<+P
k=1;+1 {(k+p)xk_1}1/(f+p)+2

x xioh
{G+p)e—1H(7+p)2;—1}
><dxn+1"' dxj+2dxj"'(ixﬂqui“‘ dx,+1

.................

.................

+Sx{(r+p)xr+1_1}1/(r+p) - (wr+1)2(n_') dxrﬂ] )
1T {(k+p)zr—1}

k=r+1

From the above set of generating functions G.(x) (»r=0,1,---,n), we
can calculate all f,,:

1) fo=—L _0"G=)

= =1,2, -, mt1—r.
Gt ot e ° nier

From the transformation (9) and the inverse Laplace transform, we can
give every P,,. Then, the probability P,(t) is evidently the solution of
the epidemic basic equation (1) or (3).

4. Examples

We obtained the solution ¢,,(1) of the epidemic equation (5) from
the equation (13) when the initial number of susceptibles is n and that
of infectives a=1. Now, as examples, we shall show the solution when
the initial number of susceptibles » is 1, 2, 3, or 5. Here, for the sake
of simplicity, we used the relative removal rate p=0.501 because the
equation (13) has only the first order poles when p=0.501.
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5. Monte Carlo method

In the preceding sections, we did not consider the infected time of
the infective. But it is important in the analysis of epidemic that we
consider the time when the infective is infected. From such a point of
view, 200 epidemics were observed in order to obtain the present results.
Thus the standard error in a probability whose value is p is [p(1—p)/
20012, or about 0.0212 for values near 0.1 in the following Monte Carlo
experiments. We calculated the mean number of infectives S;, the vari-
ance V!, the correlation coefficient C/, between the numbers of susceptibles
and infectives, and the distribution A(z,t) of the progress time r of the
infective at time ¢ by the Monte Carlo method when the initial size of

t

10

Fig. 1. S; expresses the mean number of infectives
at time ¢ and # the initial number of suscepti-
bles when p=y/8=0.501.

10 t
Fig. 2. Vs expresses the variance of the number of
infectives at time #, when p=0.501.

o

Fig. 3. C,s expresses the correlation coefficient be-
tween the numbers of infectives and susceptibles
at time ¢, when p=0.501.



17

ON THE SOLUTION OF THE EPIDEMIC EQUATION

*poYIaW O[IB)) SJUOI 9Y} AqQ 7 SUII} JB § PUR £ UM}
-9q JUIOYR0D UONR[dII0D Y} sassardxa 4 2 ‘81

ﬁ'

mh\o

G =u

*poyjouwl O[1e) IUOIN 9y} Aq 7 dwi} e
$91qr3daosNs JO JAqWNU UBdW 9y} sIssoxdxs 2y 9 'Sig

1 g 0

"poylawW O[Ie)) IJUOIN 3Y} AQ 7 SWI} Je SIANOUL
JO Iaqunu 3y} JO IdUBLIBA JY} SI8SAIAXD 4 G "B

1 S
' 0

i
N

‘poylowl O[1e)) IJUOIN dY} £q 7 dwip}
JB S9AII09JUI JO IAqUINU UBdW 9y} s9ssaxdxa I8y ‘Big

S
3 ; 0

N
N

1
(3]

1S



18 SIGEKI SAKINO

A Al7,0.2) A Al7,0.4)
0.3} 0.3F
» 17}
¢ ¢
— Y
£ 0.of £ 0.2F
° 5
3 )
2 2
: :
g 0.1 s 0.1F
Q [
= p=
= &=
0 1 1.z 0 I r
0.05 0.1 0.15 0.05 0.1 0.15
A A
AT, 100 Alr,2.0)
0.3 0.3F

0.2 0.2

0.1f

The number of infectives
The number of infectives

0 0 l T
0.05 0.1 0.15 0.05 0.1 0.15
A A
0.4} 0.7}
Al7,4.0) Al7,6.0)

0.65}
17 [}

o [ p 5

2 2 -

3 0.3:r 1 5 o)
£ £

% 0.2} s 0.2
Y s
L [
f=] =
E E
g 2

2 0.1} 2 0.1}
=~ [ 3]

0 1 : L7 0 1 1 " . -
0.05 0.1 0.15 : 0.05 0.1 0.15

Fig. 8. Each A(z, t) expresses the distribution of the duration time
z of the epidemic at time £.

susceptibles is n=>5. As stated in section 2, we assumed, of course, that
(a) new infected individuals were themselves infectious i.e. the latent
period was zero, and (b) the length of time to the recovering time from
the infected time had the negative exponential distribution dF=ye™"
where 7 expressed the recovering-rate. These results are shown in figs.
4-8. The point which is different from the method of sections 2 and 3 is
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that we considered each epidemic path. As shown in these graphs, these
results do not differ so largely from those of section 4. But, really, we
must consider the duration time of the epidemic so as to analyze the
epidemic data and predict the number of infectives at time ¢ from such
a point of view.

6. Conclusion

We obtained the general solution of epidemic equation (1) using the
recurrence relation and gave the numerical examples of the means and
variances of the number of infectives at time £ for the initial number of
susceptibles n=1,2,3,5 (in sections 2, 3 and 4). Then (in section 5),
considering the infected time, we constructed the epidemic model by the
Monte Carlo method and calculated the distribution of the duration time
z from the infected time at time ¢.
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