GENERATING DOUBLY EXPONENTIAL RANDOM NUMBERS
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Summary

A useful technique for computer transformation of random numbers
from the uniform distribution into those from a given probability distri-
bution was devised Marsaglia [5]. In this note we apply his technique
to the transformation into doubly exponential random numbers. Remarks
on the other two extreme value distributions are included.

1. The technique and the extreme value distributions

Let N be a positive integer random variable (r.v.) with probability
generating function g(s), and let Z be a r.v. with distribution function
F(z). Then the extreme values of a sample of random size N,

Y,=min(Z,,---,Zy) and Y,=max(Z,---, Zy),
have the following distribution functions respectively :
P(Yi=y)=1-9(1-F(y)),
P(Y:=y)=9(F(®¥)) .

As a special case, if N is the zero-truncated Poisson r.v. with para-
meter v; that is,

1.2) P(N=n)=(¢—1)"v*/n!, n=1,2,-.-.,
then

1.1)

P(Yi=sy)=(1—e"®)/1—-e™),
P (Y, =y)=(¢""-1)/(e—-1).

(1.3)

Further, if Z’s are uniform r.v.’s, we have

* Completed while the author was staying at the University of Western Ontario, Canada;
supported in part by the National Research Council.
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LEmMMA 1. (U,---, Uy) is a random sample from the (0, 1) uniform
distribution of size N, which is the r.v. with probabilities (1.2). Then

Y=vmin(U,,---, Uy)
has the exponential distribution truncated on (0,v):
(1.9 P(Y=y)=(1—e?)/1—e>), 0<y<v.

Marsaglia [5] considered the generation of exponential random num-
bers. Sibuya [6] examined how to choose the value of the parameter
and extended the technique for generating gamma random numbers.

We apply, here, the technique to the doubly exponetial distribution

(1.5) O(x)=exp(—e™), —ocoLgr<o,

A table of random numbers from the doubly exponential distribution
as well as those from the other extreme value distributions, i.e., Frechet’s

(1.6) Dy (x)=exp(—x~%), 0<zx<oo, k>0,
and Weibull’s
a.mn Dy(x)=1—exp (—2Y), 0<x<oo, k>0,

was computed by Goldstein [3]. Concerning the details of these distri-
butions, refer to Gumbel [4].

2. The transformation method
As a direct result of (1.8) we have a genesis of @,(x):

THEOREM 1. (Y,,---,Y.) is a random sample from the truncated
or untruncated erponential distribution

@1 P(Y=zy)=(“—e)e*—e"), —o<A<Y<B=co.

Its size L s the zero-truncated Poisson r.v. with parameter 2 and in-
dependent of the Y’s. Then

X=max (Y, -+, Y;)—log 4
where
A=2/(e*—e5)

s the truncated doubly exponential r.v.:

__exp(—e~)—exp (—de™4)
@2 P& =a)= ) —exp (o )

—oco<A—logAd<x<B—log A< oo
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It should be noted that the denominator is the probability of @,(x)
on the carrier of X. ,

We combine theorem 1 and lemma 1 to get theorem 2 which gives
an algorithm for transforming uniform random numbers into doubly ex-
ponential ones.

THEOREM 2. Let {U,,} be the sequence of (0, 1) uniform r.v.’s, {N;}
be the sequence of zero-truncated Poisson r.v.’s with parameter v, and L
be the zero-truncated Poisson r.v. with parameter 2. We assume all r.v.’s
are mutually independent. Then

X=v max;-,,...,r (min.,:l,...,Ni Uij)—logA ,
where
A=2/1—e™),
s the truncated doubly expomential r.v.:
P (X <z)=_¢XP (—e*)—exp(—4) ’
X =2) exp (—Ade*)—exp (—4)
—log A<z < —log A+v.

3. Choice of the parameters’ values

A criterion to determine the values of v and 2 is the expected num-
ber of uniform random numbers which are consumed to generate one X:

(3.1) m=E (S N)=2[/(1—e7)(1—e7).

Figure 1 shows the value of m as a function of the truncation points
expressed by the probability integrals,

p=exp(—4) and p=exp(—4e™), 0<p<p<1.

Note that for a fixed value of p,—p,, the value of m is close to its
minimum value for a wide range of (py, py).

If we make p,—p, approach to 1 to improve the accuracy of the
random number, then m increases fast. One way to keep the expected
number of uniform random numbers moderate is to use several generat-
ing systems for the random numbers on consecutive intervals. We parti-
tion the interval 0 <p,<p.<1 into subintervals (p, Do), **, (Di-1, D>
choosing them with frequencies p,—py, - * +, Pe— Px—1 Trespectively, and apply
the above generation system to each subinterval, then the expected num-
ber of uniform random numbers m decreases at the cost of complexity
of the computer program.

For simplicity we use subintervals of the same length on the X do-
main :

—oco< —log A< —log A4+v< -+ < —log A+kv<oco .
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Fig. 1. Contour of m

In other words we use N’s from the same distribution for each sub-
interval. The value of 2 is not constant now and for the ith subinterval

(8.2) 4=4(1—e),
where
—log 4;=—log A+ (i—1)v.
The expected number of consumed uniform random numbers is
(3.3) m=y(1—e>)" T, (Di—pi_)A(l—e7) 2 .

For a given value of p=p,—p, P, should be chosen to minimize m.
Numerical results show that, in this case also, the value of m is close
to its minimum value, unless p, is too small or too large (close to 1—p).
Figure 2 shows how m*=(the minimum value of m with respect to p,),
a function of p, decreases when k increases. Table 1 shows the values
of parameters for p=.9999.

To cover the whole range of distribution we choose a large enough
value of p. Or we cover the lower part by the other generation method:

3.4) X=—log(—log U+e¢™), —o<X<e,
or

(3.5) X=-log(Y+e™), —o<X<e,
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where U is the uniform r.v. and Y is the exponential r.v.

m*
20r

P

0.9 0.99 0999 0.9999

Fig. 2. m* for k subintervals

Table 1.

The parameters for the generating system covering p=pr—po=0.9999
by % subintervals optimized with respect to po, a;=—log 4;

k=3
i bi bi—pi a 2i vaif(l—e—+)(1—e—1)
0 .000042 — —2.311 — —
1 .834256  .834214 1.708 9.90754 40.55
2 .996750  .162494 5.728  0.177960 4.47
3 .999942  .003192 9.747  0.003197 4.10
v=4.01949 m*=34.57
k=5
i bi bi—pi ai A vai[(l—e—)(1—e—%;)
0 .000015 — —2.407 — —
1 .348992  .348977 —0.051 10.053100 26.17
2 .905032  .556040 2.305 .952921 4.04
3 .990586  .085554 4.661 .090327 2.72
4 .999104 .008518 7.017 .008562 2.61
5 .999915  .000811 9.373 .000812 2.60
v=2.35610 m*=11.63

We can cover the upper part by the generation method:
(3.6) X=—log(—log(1+DU)+e%, d<X<oo,

where
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D=exp(e9-1,

or by applying theorem 1 with A=0 and B=co (the shift of A has no
effect when B=c0); that is,

3.7) X=max (Y-, Y;)—loga, —logi<X<oo.

Combining (3.5) or (38.7) with Marsaglia’s method for generating exponen-
tial random numbers is equivalent to increasing the number of subinter-
vals in the above discussion.

4. The other extreme value distributions
The distribution functions (1.6) and (1.7) satisfy the relation
1-0y(z7)=Dy(x) .

Then, if we get random numbers from one of these distributions, we
get those from the other by inversion. It will be easier to generate the
Weibull random numbers. There are geneses of @,(x) and @y(x) similar
to theorem 1. In the following theorems L is the Poisson r.v. with 2,
and all r.v.’s are mutually independent.

THEOREM 3. If Y’s are truncated or untruncated Pareto r.v.’s:
@41 P(Y=y)=AF-yM/(A*-B™), 0<A<yY<B=x,
then
X=max (Y, -, Y )47V,
where
A=3/(A*~B),
has the truncated Frechet distribution :

_ exp(—=X*)—exp(—447")
4.2) P X =)= D (CAB ) —exp (=447

0<AA—1/k<x<BA—I/k .

THEOREM 4*. If Y’s are trumcated or untruncated power distribu-
tion r.v.’s:

4.3) P(Y=y)=W—4AY/(B*—4"), 0=<A<y<B,
then |

* This theorem was also obtained independently by K. Wakimoto and communicated to
the author.
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X=min (Y,,--., Y )4,

where
A=2/(B*—A¥),
has the truncated Weibull distribution :
4.4 P(X<z)=_oXp(=44%)—exp(—2")
@4 (X=2) exp (—AA*¥)—exp (—ABY)
0 ANV < x < BAY*

If A=0 and % is a positive integer, the r.v. Y in (4.3) can be gen-
erated from uniform random numbers U’s by

Y=max(U,---, Uy, 0<Y<1.

(The change of B has no meaning when A=0, so we put B=1.) If
A=0 and k=1/2,1/3,--:, Y can be generated by

Y=U".

For general k the techniques devised by Bankovi [1] and Békéssy [2]
for generating the power series r.v. and the beta r.v. are recommended.
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