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ANALYSIS OF SHIP OSCILLATIONS IN WAVES

BY YASUFUMI YAMANOUCHI

1. Ocean waves

The surface of the ocean which has been expressed by a function
of space z, ¥y and time ¢, {(z, v, t), can be considered as a time series,
namely as a sample from a stochastic process. Of course, the irregular
moving surface has properties that do not appear to be properly described
by linear theory. However, the linear equation of waves obtained through
approximation and simplification gives us good results that explain rather
nicely the property of wave. Here the record of ocean waves, taken
for, say, twenty minutes, is assumed as a sample from a quasi-stationary
random process that is approximately Gaussian. Then the spectrum ex-
pression is allowed and the wave is expressed as

L, t)=r e’ 4 (w)

~o0

where
Eldé(0)dé(o)]=dS(w)é(0—a') ,

d being Dirac’s delta function, or following the custom of expression of
oceanographers, as

(e, t)=S:cos {wt —kz+-e(0)} V[A(w)]'de

¢(w) being the random phase relation between the components. k de-
notes the wave number 2r/i(w)=0'/g, A(w) being the wave length.

Here attention should be paid to the definition of spectrum [A(w)]? used customarily by
oceanographers. According to it, the spectrum is defined only for the plus side of frequency
, as is in the expression €(w) used by Tukey and Rice, but is twice as large as that,
because their correlation function is, by definition, twice the correlation function usually
defined. Namely,

S(w) =%S°° R()esorde=—1

—o0

1 S‘”R(r) cos wr dr ,
0

2S8(w), ©>0,

€ (w) =—S—Sw R(7) cos wr dr= {0 o

0

[A(w) ]2=%S:R’ (z) cos wr d =_’2’—S:2R(T) cos wr dr = {f(w) ’ ’:i?) "
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Accordingly, the area surrounded by the spectrum on the plus side of w is 0%/2, ¢?, and 2¢?
respectively according to the definition. Oceanographers use this area 2¢?=FE; as an im-
portant parameter to show the dimension of the wave, calling it the Cumulative Energy
Spectrum. In theoretical treatment, however, the spectrum S(w) defined at —oco<lw<{co is
most advisable to use.

Further, thinking of the mechanism of propagation, the concept of
the directional spectrum is introduced :
w(r 2
lx, ¥, )= SO S _cos {wt —%(x cos 0+ sin ) +¢(o, 0)} V[A(w, 6)]'dwds -
Even in case the wave process is not stationary and contains nonlinear
components, the procedure to express it by the correlation function or
the spectrum is still useful for showing the character of waves.

When the wind blows continuously over the surface of water, the
wave is generated, and after a certain duration of time and at the area
with a sufficiently large fetch of waves arround it, that reaches to a satu-
rated condition, the so-called fully arisen sea. During these ten or fifteen
years, many oceanographers like Neumann, Pierson, Roll and Fisher,
Darbyshire, Bretschneider, Barling, Moskowitz and Pierson, Miles and
Phillips have proposed semiempirical or theoretical expressions for the
spectrum of wind generated seas. At present, none of them is especially
authorized. However, all of them have a similar pattern, that is, they
are all almost vertical at the lower frequency side and proportional to
c/o" at higher frequencies, n ranging from 4 to 8 according to the pro-
poser (see Fig. 1). For example, the spectrum proposed by Neumann is

3.3 _2dt
[A(w)]”zg’—’gf—e Ju' . U: wave velocity
(]

and Pierson’s modified directional spectrum is

_ad
[A(w, O]'=-"C"¢ 7 (cos 6)" .
@

While Longuet-Higgins insists that

[A(w, 6) o <cos%>“,

where s is 0.1~7 and decreases by the increase of », namely the spec-
trum becomes broad in the range of high frequencies.

The wave propagated to the distant place from the generating zone
is called the swell. Usually that is a rather long regular wave with a
long crest line, because the short waves decay down on the way. Ac-
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cordingly, on one point of the ocean, usually there exists more than two
wave systems, which causes a rather complicated form of spectrum with
more than two peaks.

2. Character of response of ship oscillations

Neglecting the effect of the wind and the oscillatory force due to
the propeller working in waves, the ship oscillation in waves around
her equilibrium position is expressed by the equation of motion of a
rigid body. The axes are taken along her principal axes of inertia (see
Fig. 2).

MmE=&, &, ©; Y, U, ¥; 2, 2,2; 6, 6, 6; 0,0,0; &, &, &3 0)
@Y S L (I, —L)o=G, 3, x; 9, 9, U; 3,4 2; 6 ¢ 63 0,6, 0;
¢y 4y &5 0)

........

The fluid force ¥; and moment M, can be assumed to be linear com-
binations of forces due to the ship motions in still water and the force
due to the coming waves. The ship is regarded as a thin body symmet-
ric to xz-plane, and the cross coupling hydrodynamic forces between the
symmetric motions as surging, pitching and heaving, and the anti-sym-
metric motions as rolling, swaying and yawing, have been found to be very
small. As the results, the equation of the symmetric motions in simple
harmonic waves, for example, becomes

ML+ a2+ a,e+ a0+ a146+ alsé +a,0+auz+ a2 +a,z=Ee’*,
2.2) Ivé"*‘ Ao, %+ Qg+ Qg+ aué + ané + 030 + 02 + A2+ a5z = Eye’*
MZ + Oy @+ Ayl + Ay —l—aué + as5é F 030+ AgZ + Ay + agyz = FEye?t .

Here the right-hand side is the forces or moments due to the external
~waves, and can be put in the form

(2.3) Ei(w)e’”* = L(w);(w)e’" ,

multiplying the complex coefficients L,(w) by the simple harmonic waves
expressed by {(t)=C{(w)e’. Then, after a long period of time, the motions
will also be simple harmonic,

(2.4) 2(t)=X(w)e’™, 0(t)=06(w)e’™, 2(t)=Z(w)e™ ,

X(w), 6(w), Z(w) being the complex amplitudes of respective oscillations,
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Putting the frequency response as
(2.5) X(0)/l(w)= H.(0), 6(0)/{w)= Hy(w), Z(0)/S(0)=Hx(o),

the equation of motion can be modified into the equation of frequency
response function H(w) as

" Pi(0) Qw) Byw) | [ Hxl(w)' | Ly() |
(2.6) Pyo) Qo) Ryw) Hy(o) | = | Lyo) |,
_P W(@) Q) Ryw) | | H.(0) _ _L,(a))_

where, according to the eq. (2.2),

Pl(w) = [ - (m 'I'a'll)“’z +jwa'la + au]
2.7) Q@) =[—auo’ +joa;+a]

--------

From eq. (2.6), H,(w), Hy(w) and H,(w) can be solved formally. As is
well known,

(2.8) H(w)= | H(w) | ¢"®=| H(w) | cos 8(w)+j | H(w) | sin 8(w)

= () +jq(w)= S:h(r)e"f‘" dr

where h(zr) is the impulse response function.

The above mentioned equations of motion are for the ship in sinus-
oidal long crested waves. As all of the coefficients ay, @y, -+, @5 ; Ei,
E,, E, in eq. (2.2) are not constant, but are dependent on the frequency
of encounter with the wave, this equation can not be used when the
external wave is composed of more than two element waves of different
frequencies. If the wave ¢(t) is irregular, and is assumed to be the
sum of infinite component waves as

2.9) C(t)=—2-1;S:C(w)ef"‘dw ,

the existence of the Fourier transform being assumed, then the linear
response to this wave is

2=\ Xwedo, 00 =" 6@ledo,
2.10)
z(t)=—21—g°° Z(w)e™do .
T J—
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Namely, the response is also the sum of responses to each component
waves.

Then the equation of motion for this case is

@.11) —21;5” Pt(w)X(w)ef"°dw+%Sw Q¢(w)e(w)eﬁ»zda)+2—1”8°° Ri(0)Z(0)e/dw

=—;;S°° Li(@)C(w)ede  for i=1, 2, 3.

Further, assuming the existence of the Fourier transform

—oo —oo

S°° Pi(w)eltdo=p:(1), Sw Qi(w)e*tdw=q;(t) ,
(2.12)

S ” Ri(w)el*tdo=r;(t), Sm Li(w)eitdo=1;(t) ,

—o0 —00

the eq. (2.11) is expressed in the form

(2.13) S“’ pi() 2 (t—7)det r 4i(c)0(t—7)de+ S‘” ri()2(t—7) de= SW 1i(0) L (t—7)dx,

- —oo —o0

or, using the expression of convolution,
(2.19) i)k () +qi () %0 (1) +ri()*x2(t) =L () *{(t) for i=1, 2,3,

These simultaneous eq. (2.14) have apparently the same form with eq. (2.6). However, as
each term is a convolution, they can not be solved formally. If P;(0), Qi(w), Ri(0), Li(w)
are expressed by polynomials of w, as is usually the case, for example,

n
P1(0) =coo®+c1om 1+ - - dcn=Y cio"
i=0

then
o n : n oo . n i
— 7n— wr, — —ipjor, = (yn—i
PI(T)—-S_@‘E:OCMJ el dw—igocig‘ma)" e/ dw—EoCn(J)" ldf'l—ié(f) ,
and the first term of eq. (2.13) or (2.14) is
& e ( dnt 2 o o arix(t)
b, 0x2)= Bt Gra@wt—de= Bautiyms (e D

This shows that, in this case the equation of motion is expressed by the ordinary differential
equation of x(t), #(t), 2(t), of an order higher than 2 and with constant coefficients ¢;. Ac-
cordingly, this equation will be solved formally as eq. (2.6) if we want. It is interesting
to note that, for example, the first term of eq. (2.13) can also be converted into the form

—o0 —oo —co

S“’ bu(r)a(t-r)dr+r bn(r):'c(t—z-)dr+gm bus(c) (t—7)dr

and shows that not only the present value, but also the history of the acceleration, velocity
and displacement are necessary for treating this kind of motion.

Anyway, one of the characteristics of ship oscillation is that all the
coefficients of eq. (2.2) are functions of frequency, and as a result, the
expression of response by the concept of frequency response is much
more understandable and convenient than solving the higher order differ-
ential equations of motion computing all the coefficients at various fre-
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quencies theoretically or empirically. Here we can say that this case
of ship oscillation is a good example where the frequency response plays
an important role in analysis of the response.

3. Analysis of ship response in waves
When the ship encounters the wave, the encounter frequency o, is

given by (see Fig. 3)

2
w.=w—kvecosXx=0—L vcosX.
g

If the spectrum of long crested waves at a fixed point in space is given
by an oceanographer, that should at first be converted into the spectrum
in terms of encounter frequency (see Fig. 4).

ow
ow,

[A@)P=[A@)])|J]|, |J|= ]

When the encountering waves are measured directly on board the ship,
the record can, of course, be used as the input. From the spectra of
ship oscillations and waves, the frequency response of that oscillation is
calculated. For example, corresponding to

A(t)= Slh(r)&(t —2)dr
we have

RBul®) =|" hd@-Rele—ada, | Sule)=H(@)Sl0) ,

R®)=|" hulahdDRle —a—p)dadf, S..(0)=| H@) FSelo).

Conversely, if we know the frequency response character and the spec-
trum of waves, the spectrum of response oscillation can be estimated.
The spectrum of response oscillation is used to estimate various expected
values of oscillation and to predict the character of behavior of the
ship. Namely, for example, getting the parameter ¢ that shows the
effective band-width of the spectrum as

mem, —m,’ ®
e=" (7 W S(e)da,
mym, -

the expected highest values of 1/¢ or the expected maximum, the so-
called extreme value of the independent samples (number N) of oscilla-
tion, are estimated as multiples of 4/E, , where E, is related to the area
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Table 1.
€=0 €=+v23
E(ave.)/«/E—o 0.886 0.511
Eary] VE; 1.416 1.200
Eanoy/ VE, 1.800 1.643
Emax (N=50) [ VE, 2.124 1.991
Emax(N=100)/ VE, 2.280 2.157
Emax (N=1000)/ VE, 2.738 2.636

of the spectrum by E,=2m, In Table 1, multiples of 4/E| are shown
for two cases €=0and 4/2/3, corresponding to the ideally narrow band
spectrum and to Neumann’s spectrum of wind generated waves. The
former corresponds to the rolling of ship in arbitrary waves which has
a very sharp and narrow band response, and the latter corresponds to
the heaving of ship in the fully arisen sea which has a very broad and
flat response character.

4. Examples of analysis

A lot of continuous measurements of oscillations as well as the other
kind of response of ship in waves, like the stress induced on her hull,
were performed on board the ship running straight on the line. To our
regret, however, the simultaneous wave measurement was impossible
because a satisfactory wave measuring instrument was not yet available.
Here in this section, as an example, the result of a model experiment
in an experimental water tank where the simultaneous wave measurement
is possible will be analyzed.

The model ship has the scale of about 1.5m and the so-called Todd
series 60, block coefficient 0.60, and is equipped with all appendages like
bilge keels, a rudder and a propeller secrew. This example is the case
when the ship has no advance speed and is rolling in the beam sea. The
irregular wave system was produced by a plunger type wave machine
installed on one side of the tank. The rolling, pitching, yawing, surging,
swaying and heaving were recorded together with the wave height at
distance d from the c.g. of the moving model. The records of rolling,
heaving and wave height were analyzed and the response of roll and
heave to the wave were calculated (see Fig. 5). The particulars used in
the analysis are as follows:

Sampling interval 4t=0.3 sec,
Number of data M=698,
Windows used W, W, and W,,

Max. number of lag used h=90.
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The auto-correlation coefficients of wave, roll and heave, and also the
cross-correlation coefficient of wave-roll and wave-heave are shown in
Figs. 6 and 7. The correlation were computed at first up to lag H=199, and
were decided to adopt up to A=90, in the analysis. The wave-roll cross-
correlation was first computed at small values of k, and finding the
peak of it at around h=9, the origin of cross-correlation was shifted
to h=9, namely the time axis was shifted T,=S4t=94t. This means
that the response of roll 94t lagging to the wave was taken as the cor-
responding response, and in the new computation 94t lag was expressed
as 0 lag. The power spectra of wave, roll and heave computed using
the filter W, are shown in Figs. 8, 9 and 10. We can see high coheren-
cies in the frequency range where amplitude gains are high. The same
computation were tried with windows W, and W,, and naturally gave a
little steeper peak and deeper valley as the suffix of window increases.
However, the difference is rather small.

The frequency responses of roll to wave and heave to wave are
shown in Figs. 11 and 12. The effect of difference of windows is less
in this result and checks the fact that the max. lag h=90 was sufficiently
long for this case. As was already reported, the shift of response, in
other words, the shift of origin for cross-correlation by T, as is shown
in Fig. 138 is very effective to make smaller the bias in computing the
cross-spectrum and as a result improves the coherency. That is especially
clear in case when the maximum lag T,,=h4t is small compared with
T,, when T, is a large fraction of T,, but when T, is a small fraction
of T, as is the case in this example, this improvement does not appear
so clearly. This is quite natural if we think of the fact that to take
the lagged response as was mentioned means to take the most closely
related response in correlating the output to the input. The 94t shift
comes from the lag of roll to wave height itself and also by the lead of
wave height measurement to the measurement of roll. Of course the
phase should be corrected of this shift by T, at frequency .

The gain of roll was shown in Fig. 11 by the ratio of roll angle ¢
to the wave slope y. For that purpose, the computed frequency re-
sponse of the roll angle to the wave height { was modified as follows.

H,(0)=Hp(@) 2@ = 7, 9_or5 .
7(@) 2

This includes the phase correction by z/2 by the lead of the wave slope

to the height. Together with the phase correction by the lead of wave

measurement by distance d, and by the shift of response in computation,
all the correction is

d T
—oT,+2r— -,
wp+n'2 2



ANALYSIS OF SHIP OSCILLATIONS IN WAVES 27

The phase shift is shown in Figs. 9 and 10 for roll and heave respectively.

From the frequency response H(w) for roll to wave height, the im-
pulse response was computed as in Fig. 14. The response of roll was
shifted by 94¢, accordingly the real 0 for time scale for the impulse re-
sponse is on —94t. This impulse response is not so beautiful, and shows
that the frequency response H(w) used, is still distorted by wvarious
noises.

5. Conclusion

The ship oscillations in waves have at least 6 degrees of freedom.
There are a lot of other ship responses in waves as the propeller torque
and thrust fluctuations, stress variations, or the change of these per-
formances by the maneuvering of the rudder through the auto-pilot system.
In order to make clear these actual characters in waves, finding the
mechanism of mutual interference of these elements of responses, more
advanced analyzing techniques are needed. The author sincerely wishes
to achieve this developments through the active co-operation of statis-
ticians, oceanographers and naval architects.

SHIP RESEARCH INSTITUTE
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Fig. 1 Spectrum of wind generated sea Fig. 2 Co-ordinate for ship motion
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CORRELOGRAM
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