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Abstract We present Binomials, a package for the computer algebra system
Macaulay 2, which specializes well-known algorithms to binomial ideals. These come
up frequently in algebraic statistics and commutative algebra, and it is shown that
significant speedup of computations like primary decomposition is possible. While
central parts of the implemented algorithms go back to a paper of Eisenbud and Sturm-
fels, we also discuss a new algorithm for computing the minimal primes of a binomial
ideal. All decompositions make significant use of combinatorial structure found in
binomial ideals, and to demonstrate the power of this approach we show how Binomi-
als was used to compute primary decompositions of commuting birth and death ideals
of Evans et al., yielding a counterexample for their conjectures.

Keywords Algebraic statistics - Binomial ideals - Commuting birth and death
ideals - Computational commutative algebra - Primary decomposition

1 Introduction

A monomial ideal is an ideal generated by monomials, a binomial ideal is one whose
generators can be chosen as binomials. A pure difference ideal is an ideal whose genera-
tors are all differences of monic monomials. For monomial ideals, central concepts like
Grobner bases, irreducible and primary decompositions, etc. can be defined directly
on the exponent vectors of the monomials generating the ideal. In this sense the whole
theory is very combinatorial. For binomial ideals the situation is more complicated,
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728 T. Kahle

but essentially it can be made combinatorial too. Starting with Eisenbud and Sturmfels
(1996), the combinatorial theory of binomial ideals has developed into a branch of
combinatorial commutative algebra which has many connections to different areas of
mathematics (Miller and Sturmfels 2005).

The interest in binomial ideals is motivated by the frequency with which one encoun-
ters them. For instance, commutative semigroup rings are exactly the quotients of poly-
nomial rings by pure difference binomial ideals (Gilmer 1984). Toric ideals, which are
binomial prime ideals, are the defining ideals of toric varieties as defined by Fulton
(1993). This fact is central in the field of algebraic statistics, where closures of discrete
exponential families, such as graphical or hierarchical models, have been recognized
to be nonnegative real parts of toric varieties (Geiger et al. 2000). Also, binomial ideals
which are not prime occur there. Conditional independence models are defined through
a set of polynomial equations in the elementary probabilities, and studying primary
decompositions of the corresponding ideals is of natural interest (Drton et al. 2009;
Fink 2009; Herzog et al. 2009). For instance, as Eisenbud and Sturmfels (1996) have
shown, the minimal primes of binomial ideals are essentially toric ideals, and therefore
a conditional independence model is a union of exponential families. Knowing the pri-
mary decomposition, a piecewise parameterization of the model is instantly available.

This paper deals with the polynomial ring K[x, ..., x,], over a field K of char-
acteristic zero. Choices for K are the rationals Q, their cyclotomic extensions Q(&;),
or the complex numbers C. Primary decompositions of binomial ideals are not neces-
sarily binomial as is easily seen on the ideal (x> — 1), which over Q decomposes as
(x —1)N(x%4+x +1). If K is algebraically closed, however, binomial primary decom-
positions exist. When speaking of primary decompositions in this paper, we always
mean primary decomposition into binomial ideals, and we have to extend the coeffi-
cient field where needed. For the software package we have restricted even further; we
consider only pure difference binomial ideals. In that case, the primary decomposi-
tions into binomials will be shown to exist with coefficients in cyclotomic extensions
of Q. In many applications it suffices to study this case. Examples include the semi-
graphoid ideal (Hemmecke et al. 2008), conditional independence ideals, commuting
birth and death ideals of Sect.2, and almost any other binomial ideal considered in
algebraic statistics.

This paper is structured as follows: in Sect. 1.1, we study a systematic way of
approximating binomial ideals by cellular binomial ideals. Then, in Sect. 1.2 we give
an algorithm for finding the solutions of zero-dimensional pure difference binomial
ideals and apply it to saturation of partial characters. In Sect. 1.3, we give a new
algorithm for computing the minimal primes of a binomial ideal. Section2 contains
results on large primary decompositions that have been carried out with our software
Binomials. We show a counterexample to Conjectures 5.3 and 5.9 in Evans et al.
(2010). Finally, Sect.3 concludes the paper with future research directions.

Throughout the paper we use notation that tries to coincide with that of Eisenbud
and Sturmfels (1996). We assume familiarity with basic notions of commutative alge-
bra. A very pedagogical introduction is the book of Cox et al. (1996), while Eisenbud
(1995) covers everything from the very basics to current research topics. In keeping
with the introductory nature of this work, each of the following sections contains
examples of how to do the discussed computations with the help of Binomials. These
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examples are thought of as a motivation and do not cover all of the functionality that
is implemented. They are produced with version 0.5.4 of Binomials. The reader is
encouraged to download the package, use it, and report experiences to the author. An
online help is integrated.

Example 1 (Installation) Binomials and an auxiliary package for cyclotomic fields,
called Cyclotomic, are available under the URL:

http: //personal — homepages.mis.mpg.de/kahle/bpd/ (1)

It is recommended to install the latest version of Macaulay 2 (Eisenbud et al. 2001)
before using Binomials. To get started, run Macaulay 2, then load the package with

il : load "Binomials.m2"

The additional packages FourTiTwo and Cyclotomic are needed. The first is included
in Macaulay 2 as of version 1.2, while the latter can be obtained together with Bino-
mials. To make the documentation available the package should be installed:

i2:installPackage ("Binomials", RemakeAllDocumentation=>true)

After running this, help can be accessed with

i3 : help "Binomials"

1.1 Cell decompositions of binomial varieties

Our analysis of a binomial variety starts with the decomposition of K” into the 2" alge-
braic tori interior to the coordinate planes. Each of the coordinate planes is defined by
asubset £ C {1, ..., n} of the indeterminate’s indices. We denote the algebraic torus
corresponding to £ by

K = {(xr,..ox) €K' :x; #£0,i € Eandx; =0,V) ¢ E}. 2)

Geometrically, for a binomial ideal I € K[x, ..., x,], we study cellular decompo-
sitions. Their components are the intersections of primary components which have
generic points in a given cell (K*)€. The central definition is

Definition 1 A proper binomial ideal I C K[xy, ..., x,] is called cellular if each
variable x; is either a nonzerodivisor or nilpotent modulo /.

In this paper a variable is always a variable in a polynomial ring, random vari-
ables are not mentioned explicitly. Primary ideals I are cellular as every element of
K[x1, ..., x,]/1 is either nilpotent or a nonzerodivisor. The following explicit repre-
sentation of cellular ideals is only a reformulation of the definition but useful in many
ways.
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Lemma 1 A binomial ideal I C K[xy, ..., x,] is cellular if and only if there exists a
set £ C {1, ..., n} of variable indices of K[xy, ..., x,] such that

LI =(I:(Liegx)™),
2. Foreveryi ¢ &, there exists anonnegative integer d; such that the ideal <x;1i 1 ¢ 5>
is contained in I.

We call the set £ the cell indices and the variables {x; : i € £}, which are exactly the
nonzerodivisors modulo 7, the cell variables. We denote by M (€) the ideal generated
by the noncell variables, i.e. the variables {x; : i ¢ £}. For any vector d = (d;);¢¢ of
natural numbers we denote M ()¢ := (xl.d" 1 ¢ &£). With this notation, another useful
representation of cellular ideals is given by the following Lemma. In Eisenbud and

Sturmfels (1996) the ideal on the right hand side of (3) is denoted / éd).

Lemma 2 A binomial ideal I is cellular if and only if there exist a set € C {1, ..., n}
and an exponent vector d, such that

I= ((1 n M(S)d> : (gxi)w). 3)

Radicals of cellular binomial ideals have a nice combinatorial structure, defined
by the set £, and a partial character, which we introduce next. For this let @ # & C
{1, ..., n} be any nonempty subset of the indices of variables and define the shorthand
K[E] :=K[x; : i € £].

Definition 2 A partial character is a pair (L, o), consisting of an integer lattice
L C7Zf anda map o : L — K*, that is a homomorphism from the additive group
L to the multiplicative group K*. For each integer lattice £ C 7€, we define its
saturation

Sat(£) :={m € 7€ - dm € L for some d € 7}. 4)

A lattice £ C Z€ is called saturated if it satisfies £ = Sat(L). A partial character
(L, o) is called saturated if L = Sat(L), and it is called a saturation of a partial
character (£', '), provided that £ = Sat(£’) and o'(l) = o (I), VI € L'.

Often it is convenient to denote by L an integer matrix having the lattice £ as its right
image £ := {Lm : m € 7€ }. Thus, the columns of L span the lattice, and we abuse
notation speaking of the partial character (L, o) in this case. To each partial character
(L, o) we associate a lattice ideal:

1.(0) = (X" —om)x™ :m e L) C KIE]. 5)

Here, we have decomposed m € 7€ into its positive part mlJr := max {m;, 0}, and
negative part m~, so that m = m* — m~. We also have used monomial notation
x" = Tliee x;" ", In the notation of (5), the lattice is always implicitly understood

fromo.
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It follows from Theorem 2.1 of Eisenbud and Sturmfels (1996) that a lattice ideal
is prime if and only if its partial character is saturated. More generally, all associated
primes of a lattice ideal arise from saturations of its partial character. A nice character-
ization is that a proper binomial ideal I € K[xy, ..., x,] is a lattice ideal if and only if
I = (I (M1, x,-)oo). This fact can be used to compute a minimal generating set of a
lattice ideal when only the partial character is given, a problem considered for instance
in Hosten and Sturmfels (1995), Bigatti et al. (1999), Hemmecke and Malkin (2009).

A cellular binomial ideal is a lattice ideal on a subset of the variables. For instance,
it follows from Lemma 2 that radical cellular binomial ideals I € K[x1, ..., x,] are of
the form I = M (E) + 1 (o) for some partial character (L, o) on 7€ . Now, assuming
that K is algebraically closed, the associated primes of M (£) + 14 (o) are given by

Pr=M(E) + I.(2), (6)

where 7 runs through all saturations of o. In particular, a radical cellular binomial
ideal is equidimensional. If K is not algebraically closed, it may contain only some,
or even no saturations of (L, o). In Sect. 1.3 we give an algorithm that computes the
minimal primes of a binomial ideal by directly finding a cellular decomposition of the
radical of [ into radical cellular ideals.

If the monomials in a cellular binomial ideal / are of higher order, then we only
have that I NK[£] is a lattice ideal. However, the associated primes might have partial
characters supported on different lattices. The key theorem for computing associated
primes of cellular binomial ideals is

Theorem 1 (Eisenbud and Sturmfels 1996, Theorem 8.1) Let I C K[xy, ..., x,] be
a cellular binomial ideal in the cell variables E. Let P = M (E) + 11 (0) be an asso-
ciated prime of I, then there exists a monomial x™ in the variables not in € and a
partial character T on 7€ whose saturation is o, such that

(I :x™NK[E] = (7). @)

Note that the associated primes of a cellular binomial ideal are cellular binomial ideals
for the same cell variables. To compute them, one considers all quotients of / modulo
the standard monomials in the variables outside £. There are only finitely many, as /
is cellular and contains M (£)? for some nonnegative integer vector d. This theorem
reduces the computation of associated primes to cellular decomposition and saturation
of partial characters.

We now review an algorithm for computing cellular decompositions due to Ojeda
and Piedra (2000). It is based on the following approximation scheme for arbitrary
ideals in any Noetherian ring:

Lemma 3 (Eisenbud and Sturmfels 1996, Proposition 7.2) Let I be an ideal in a
Noetherian ring S and g € S such that (I : g) = (I : g*°). Then

L I=(:9NnU+(g).
2. Ass(S/(I:g))NAss(S/(I+(g))=0.
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3. A minimal primary decomposition of I consists of the primary components of
(I : g) and those primary components of I + (g) that correspond to associated
primes of 1.

Given any noncellular binomial ideal 7, we can find a variable x; that is a zerodivisor
but not nilpotent modulo /. A power s > 0 of that variable satisfies the conditions on
g in Lemma 3 and we can write

I=:x)NU+(x})), (8)

where the ideals on the right-hand side are both binomial and properly containing /.
This can be turned into a simple algorithm for cellular decomposition, formulated by
Ojeda and Piedra (2000). The authors also provided an implementation in Macaulay 2,
parts of which are used in the Binomials package.

Algorithm 1 (Cellular decomposition) Input: I, a binomial ideal.
Output: A cellular decomposition of /.

1. If I is cellular, return /.

2. Choose a variable that is a zerodivisor but not nilpotent modulo /.
3. Determine the power s such that (1 : x7) = (I : x°).

4. Tterate with (1 : x7') and I + (x7).

Step 1 is carried out as follows. First determine the nilpotent variables by checking for
which x; one has (I : x7°) = K[x1, ..., x,]. Denoting the remaining variables’ indi-
cesas &, I is cellular iff (1 : ([];c¢ x)°°) = I. Termination of Algorithm 1 is ensured
since K[x1, ..., x,] is Noetherian and the two ideals (/ : x7) and I + (x]) properly
contain /. Correctness follows from Lemma 3. Also note that cellular components of
pure difference binomial ideals are pure difference binomial ideals.

Example 2 (Cellular decomposition) We study an ideal from Eisenbud and Sturmfels

(1996). Let S = Q[x1,...,xs]and I = (xle — xzx52, x?x% — x‘%xﬁ, xzxjf — x33x56).

il : S = QQ[x1,x2,x3,x4,x5];

i2 : I = ideal (x1*x4"2-x2*x5"2, x1"3*x3"3-x4"2*x2"4,
x2*x4°8-x3"3*x5"6) ;

i3 : toString BCD I

03 = {ideal (x1*x4"2-x2*x5"2, x1"3*x3"3-x2"4*x4"2,

X27"3*x47M4 -x172*x3"73*x5"2,
X2"2*x476-x1*x3"3*x5"4,
x2*x4"8-x3"3*x5"6) ,
ideal (x172,x1*x472-x2*x5"2,
x2"5,x5%6,x2"4*x4"2 ,x4"8)}
i4 : ap = binomialAssociatedPrimes I; toString ap
04 = {ideal (x1*x4"2-x2*x5"2, x17"3*x3"3-x2"4*x4"2,
X2"3* x4 N4 -x172*x37°"3*x5%2,
X2"2*x476-x1*x3"3*x5"4,
x2*x4"8-x3"3*x5"6) ,
ideal (x2,x5,x4,x1)}

i5 : intersect (ap#0,ap#l) == I
o5 = false
i6 : binomialRadical I == intersect (ap#0,ap#l)
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o6 = true

i7 : isCellular (ap#0, returnCellVars=>true)
o7 = {x1, x2, x3, x4, x5}

i8 : isCellular (ap#l, returnCellVars=>true)
08 = {x3}

In this listing we have suppressed some output. First we compute a cellular decomposi-
tion with Bep. It has two components. The first ideal is the toric ideal (1 : ([T/_; x1)®°),
whichis prime. Itis a general feature of the implementation of Binomials that, when the
input has no monomial generators, the first ideal of the output of cellular and primary
decompositions, as well as minimal and associated primes, is always the toric ideal. We
also compute the associated primes. The second one is embedded, and we confirm that
I is notradical. Also note that the binomial generator x| x‘% —xzxg in the second cellular
component reduces to zero as soon as one takes the radicals of the monomials. Finally,
we confirm that the associated primes are cellular, and show the set of variables with
respect to which they are cellular, using iscellular with the option returncellvars.
The cell variables could have been computed directly together with the cellular decom-
position by running the long version binomialCellularDecomposition, again with
the option returncellvars set to true.

Theorem | shows that saturation of partial characters is a crucial ingredient for
computing associated primes of a binomial ideal. We therefore study the properties
of saturations of partial characters. In the current implementation of Binomials any
operation that needs extension of the coefficient field of the polynomial ring is only
implemented for pure difference binomial ideals. It will be shown that in this case
cyclotomic field extensions suffice.

1.2 Solving pure difference binomial ideals

In this section we give a fast algorithm for solving pure difference binomial ideals of
dimension zero. It is not surprising that such a procedure utilizes only the exponents
of the generators. We denote by & the primitive /-th root of unity exp {%} e C.
The field extension of QQ that is obtained by adjoining such a root of unity is called
a cyclotomic field and denoted by Q(&;). It can be constructed by taking the quotient
of a univariate polynomial ring modulo the principal ideal generated by the minimal
polynomial of &, the cyclotomic polynomial (Hungerford 1974, Chapter V).

Proposition 1 Given a zero-dimensional pure difference binomial ideal I, there exists
a primitive root of unity & such that all complex solutions of I are contained in the

cyclotomic field Q(&)).

The proof is given after the following Lemma, also of interest for the implementa-
tion.

Lemma 4 The complex solutions of the univariate equation
k
X"t =§,, )
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are given by the following roots of unity

xo =& | oxp=gmth o x, = g DmEk (10)
Proof The xg, ..., x,—1 are n distinct roots of (9), which is of degree n. O

Proof (Proposition 1) The standard method of reducing a multivariate problem to
a univariate problem applies. The general framework is described, for instance, in
Chapter 3 of Cox etal. (1996). Choose an elimination term order, such as lexicographic
order, and compute a Grobner basis of /. This Grobner basis consists of pure differ-
ence binomials since all S-polynomials are pure difference binomials. Furthermore, at
least one of the binomials of this Grobner basis is univariate as / is zero-dimensional
and we have chosen an elimination order. The solutions of this univariate equation
exist in a cyclotomic field by Lemma 4. We continue to extend the partial solution that
we have found, substituting the variable for its value in the remaining elements of the
Grobner basis. We obtain a univariate equation in another variable. The final solution
exists in the cyclotomic field containing all the roots of unity that are encountered in
the course of the algorithm. O

Of course, the procedure that was just described is also valid for other fields K. In
the general case, field extensions have to be carried out by computing the minimal
polynomial of the element to be adjoined and one has to do computations over the
algebraic numbers. While possible in principle, this quickly becomes infeasible in
practice, since both the computations become lengthy and it becomes more and more
tedious to produce output in a human-readable form.

We are now ready to formulate the algorithm for computing the variety of a zero-
dimensional pure difference binomial ideal. The first thing that needs to be accounted
for is the possibility of O as a solution, potentially with multiplicities. We take care of
this by means of cellular decomposition. Each cellular binomial ideal I can be written
as = ((I + M(©E)) : ([T;ee xi)”), and I NK[E] is a lattice ideal. The solutions of
I take the value zero at the variables outside £ and each solution has a multiplicity of
11 i¢€ d;, where the d; need to be chosen minimal.

Algorithm 2 (Solving pure difference binomial ideals)

Input: A zero-dimensional pure difference binomial ideal /.

Outputs: The root of unity that needs to be adjoined to QQ and the list of the solutions
of I.

1. Compute a cellular decomposition of /.
2. For each cellular component:
(a) Set the noncell variables to zero, and determine the product D = Hi¢ gd;of
the minimal powers of the noncell variables.
(b) Compute a lexicographic Grobner basis and solve the lattice ideal of the cel-
lular component, adjoining roots of unity where necessary.
(c) Save each solution D times.
3. Compute the least common multiple m of the powers of the adjoined roots of unity
and construct the cyclotomic field Q(&,,).
4. Output the list of collected solutions as elements of Q(&,,).
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This algorithm is the main ingredient for saturating partial characters, which we treat
after an example.

Example 3 (Solving pure difference binomial ideals) We solve a simple pure differ-
ence binomial ideal to introduce the syntax.

il :+ S = QQlx,y,z];
i2 : I = ideal (x"2-y,y"3-z,x*y-z);
i3 : binomialSolve I

BinomialSolve created a cyclotomic field of order 3.

o3 = {{1, 1, 1}, {- ww_3 - 1, ww_3, 1},
{ww_3, - ww_3 - 1, 1},
{6, o, oy, {0, O, O}, {0, O, 0}}

i4 : degree I
o4 = 6

In the implementation, generic names consisting of ww and the order are assigned to
roots of unity. Note that the square of the third root of unity ww_3 is represented as
-ww_3-1 by means of its minimal polynomial over Q. A cellular decomposition reveals
that this ideal has two components, one of which is of degree 3 with associated prime
(x, ¥, z). The function binomialSolve outputs the solutions with the correct multi-
plicities. If this is not desired, one can pass to the radical before solving, or directly
compute the binomial minimal primes.

Saturations of partial characters exist only over algebraically closed fields. This
is evident, for instance, from the partial character ((2),2 +— —1), consisting of the
rank 1 lattice spanned by the integer 2, and the character that maps 2 to —1 € C. The
saturations are pairs (Z, t) that satisfy t(2) = 7(1)2 = —1. This example is merely
a combinatorial version of factorizing the polynomial x> + 1, which is the same as
performing the primary decomposition of its principal ideal. The following algorithm
to saturate a partial character is the general version of the example’s principle.

Algorithm 3 (Saturation of a partial character)

Input: A partial character (L, o), where L is a matrix whose columns are minimal
generators of a lattice in Z¢.

Output: All distinct saturations (Sat(L), t;), i = 1,...,n.

1. Compute the saturation L’ := Sat(L).
2. Express the generators of L in terms of the generators of L', by solving the matrix
system

L=LK, (11
for the square matrix K = (k;;); j=1,...r» Where r :=1k(L) = rk(L") denotes the
rank of the lattices.

3. Write [}, [ }, and k; for the columns of L, L', and K, respectively. Introduce new
variables t; = r(llf), i =1,...,r, for the values that T takes on the columns
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of L'. Using again monomial notation t™ := [];_, timi, compute the following

zero-dimensional lattice ideal in Q[1y, ..., 7]

J = (<rkf+ —a(lj)tk; j= 1,...,r>: (ﬁri)oo), (12)

i=1

for the given values o (;).
4. Solve J (over a suitable extension of Q) and output L’ together with the list of
solutions of J.

Proof (Correctness) Computing the saturation of a lattice should be viewed as an
integer valued analogue of taking the orthogonal complement twice. It can be carried
out in Macaulay 2, for instance, by computing the minimal syzygies of the syzygies
among the generators of L. The coefficient matrix K that solves the system (11) exists
and is unique over Z, as L is a sublattice of L" and we assumed that the columns of
L’ are a minimal set of generators of the corresponding lattice. The ranks of L and L’
coincide by definition. The ideal J is constructed as follows: for each generator / of
L we get arelation/ = L’ - k, to which we apply the homomorphism 7, remembering
that 7 and o are required to coincide on the generators of L. The entries of K are
integers, thus we get the Laurent binomial ideal

<U(lj)—HTikij;j:l,...,r>, (13)

i=1

whose intersection with Q[zy, . . ., 7] is exactly J. That J is zero-dimensional follows
since the quotient L’/ L is a finite group. For details see Corollary 2.2 in Eisenbud and
Sturmfels (1996). O

The number of distinct saturations equals the order of the finite group Sat(L)/L, which
can be computed by diagonalizing the matrix L, representing the inclusion Z' — Z¢.
The Macaulay 2 command for this diagonalization is smithNormalForm. Finally, for
computing primary decompositions of pure difference binomial ideals, we only need
to solve such ideals during the saturation.

Proposition 2 The saturation of a partial character that occurs during primary
decomposition of a pure difference binomial ideal involves only solving pure difference
binomial ideals.

Proof Any cellular component of a pure difference binomial ideal is pure difference
again. So we can assume that 7 is cellular. Now, each partial character consists of a
lattice and the constant map / — 1. Therefore, the ideal J in Algorithm 3 is a pure
difference binomial ideal. O

1.3 Minimal primes of binomial ideals

In this section, we describe a new algorithm for computing the minimal primes of a
binomial ideal. It is based on a variant of cellular decomposition, given in Algorithm 1.
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As we have seen previously, the associated primes and thereby the minimal primes
of a binomial ideal come in groups, associated to the cellular components of 7. Our
approach is to directly compute a cellular decomposition of the radical of 1.

Algorithm 4 (Minimal primes of a binomial ideal)
Input: A binomial ideal 7 C K[x1, ..., x,].
Output: The binomial minimal primes of /.

1. Determine whether [ is cellular.
(a) Ifyes, compute the radical (I NK[E])+ M (E) = M(E) + I (o) and its partial
character (L, o). Compute the saturations (r,-)gz1 of o and save the ideals

P(t)) = M(E) + 1(7). (14)

(b) If not, determine a variable x; that is a zerodivisor, but not nilpotent modulo
I, and iterate with the ideals I + (x;) and (7 : xio").
2. From all primes collected, remove redundant ones to find a minimal prime decom-
position of Rad (7).

Proof (Termination and correctness) Termination of this algorithm follows as the
ambient ring is Noetherian and I 4 (x;) and (I : x°) strictly contain /. The radical
of I is the intersection of the ideals /¢ in (4.2) of Eisenbud and Sturmfels (1996). We
encounter a decomposition of Rad(7) into such ideals in the course of the algorithm,
as the iteration is ultimately producing cellular components of the radical of /. Thus,
like in their Algorithm 9.2, correctness has been proved in Section 4 of Eisenbud and
Sturmfels (1996). For cellular ideals the minimal primes have the form (14), and the
collection of all minimal primes of all cellular ideals contains the minimal primes of
the original ideal by Lemma 3 O

This algorithm differs from the cellular decomposition algorithm only in the recur-
sion step, where we continue with / + (x;) instead of I + (x]). In this way we do
not achieve a decomposition of 7, but only of the radical of /. Fortunately, this algo-
rithm can be significantly faster than cellular decomposition since adding variables,
instead of higher powers of variables, allows the Grobner basis engine to do more
simplifications during the computation.

Example 4 (Binomial minimal primes) We continue where we left off in Example 2.

il6 : toString binomialMinimalPrimes I

0l6 = {ideal (x1*x4"2-x2*x5"2, x1"3*x3"3-x2"4*x4"2,
X2MN3* x4 N4 -x1"2*x3 M3 * 572, 27°2*%x4N6-x1* x3 N3 *
x57M ,x2*x4"8-x3"3*x5"6) }

The result consists only of the toric ideal, confirming that the monomial prime is
embedded. Although not visible from the output, the second associated prime was not
computed on the way to this result. In particular, the minimal primes are not extracted
from a list of associated primes.
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1.4 Primary decomposition

The original primary decomposition algorithm of Eisenbud and Sturmfels (1996) was
refined by Ojeda and Piedra (2000). The computation starts with a cellular decom-
position, a first approximation of primary decomposition. It is interesting to identify
cases in which the cellular decomposition is already a primary decomposition. Results
in this direction are contained in Eisenbud and Sturmfels’ paper, and also in Altmann
(2000). Note that in these cases a pure difference binomial ideal has a primary decom-
position into pure difference binomial ideals, which is, in particular, independent of
the coefficient field.

In the general case, for each cellular component the associated primes need to be
determined. Then finding the primary component can be achieved as follows. From
an associated prime P of a cellular binomial ideal 7, extract the “binomial part”
P® = PNKI[E]. Then I 4+ P® has P as its unique minimal prime. Computing the
primary component over P is carried out by means of a localization operation called
Hull, removing the embedded primary components of I + P®). The refinement of
Ojeda and Piedra (2000) is to show that 7 + P® guffices in this procedure, while Eisen-
bud and Sturmfels originally suggested to add a sufficiently high monomial power. A
combinatorial description of the resulting primary components is given in Dickenstein
et al. (2008); however, it seems difficult to use these results for computation.

A few remarks on primary decompositions in Eisenbud and Sturmfels (1996) and
Ojeda and Piedra (2000) are necessary. Corollary 6.5 of Eisenbud and Sturmfels (1996)
shows that Hull(7) is a binomial ideal if 7 is a cellular binomial ideal. This corollary is
used in the proof of Theorem 7.1’ to deduce that Hull(R;) is binomial, where R; is the
sum of a monomial ideal and I + P® from above. However, it is not checked whether
R; is in fact cellular, as required by the corollary. Example 5 shows a noncellular R;
that arises in the decomposition of the ideal of adjacent (2 x 2)-minors of a generic
(5 x 5)-matrix. The computations necessary to check the example can be carried out
easily with Binomials.

Example 5 In the ring Q[a, b, . . ., o] consider the ideal

I =(In—ko,lm— jo,km— jn,I> kI, jl,k*, jk, ik — hl,
fk—cl, j* ij — gl hj — gk, fj —al,cj —ak, fh — ci,
fg —ai,cg —ah,fz,cf, af,ce — bf,ae — df, cz,ac, ab—cd,az).

This ideal is cellular with respect to &€ = {b, d, e, g, h, i, m, n, 0}, and has four asso-
ciated primes, which are pure difference. The binomial part of the unique minimal
associated prime is

P® = (in — ho,im — go, hm — gn).

Then I + P® has two cellular components whose sets of cell variables are £ and
{b,d, e, m, n, o}, respectively.

Using Theorem 7.1/, in Algorithm 9.7 of Eisenbud and Sturmfels (1996) it is asked
to compute Hull(R;), using Algorithm 9.6. This, however, requires a cellular ideal
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as its input. The algorithm can be corrected easily since the operation Hull is called
only for ideals whose radical is prime. The associated primes of such an ideal have the
radical as their unique minimal element, and as Hull removes embedded primary com-
ponents, instead of Hull(R;) we can compute Hull(Q;) of any otherideal Q; D R; that
has the same minimal prime. In particular we can choose Q; = (R; : ([];c¢ X)),
the “cellularization” of R;. Summarizing, in Algorithm 9.7 of Eisenbud and Sturmfels
(1996) Step 3.3 should be replaced by 3.3" Compute Hull (R; : ([];cg xi)°) using
Algorithm 9.6.

Unfortunately, also in Theorem 3.2 of Ojeda and Piedra (2000), Corollary 6.5 of
Eisenbud and Sturmfels (1996) is used to deduce that Hull( + (P NK[£])) is binomial
and primary. Again, this is wrong as I + (P N K[£]) is not necessarily cellular. The
result can be saved by first cellularizing as explained above. The implementation in
Binomials incorporates these modifications and is demonstrated next.

Example 6 (Binomial primary decomposition) We compute the primary decomposi-
tion of I = (x2 -, y2 —z,72 —x) € Qlx, y,zl.

il : S = QQ0[x,y,zl

i2 : I = dideal (x"2-y,y"2-2"2,2z2"2-X)

i3 : dim I

o3 = 0

i4 : degree I

o4 = 8

i5 : bpd = BPD I

[ . . .1

06 = {ideal (z+ww_6-1,y-ww_6+1,xX+ww_56),
ideal (z+ww_6 ,y+ww_6 ,Xx-ww_6+1), ideal (z+1,y-1,x-1),
ideal (z-1,y-1,x-1), ideal(z-ww_6,y+ww_6,X-ww_6+1),
ideal (z-ww_6+1,y-ww_6+1,x+ww_6), ideal(y,x,z"2)}

i7 : intersect bpd == sub (I, ring bpd#0)

o7 = true

The function BpD is a shorthand for binomialPrimaryDecomposition, which can also
be used in the long form and offers some options. The primary decomposition of / into
binomial ideals exists in Q(&g)[x, y, z], so BPD created this cyclotomic field, calling
the primitive sixth root of unity ww_6. Observe that the ideal has a double zero at the
origin. In 17 we intersect the result to confirm that the decomposition is correct. The
result of the intersection is defined over the extended polynomial ring Q(&¢)[x, v, z],
and can be compared to / only after mapping it to that ring.

This concludes our overview of the functionality of Binomials and we move on to
the discussion of some large primary decompositions.

2 A nonradical commuting birth and death ideal

In this section we study the commutative algebra of discrete time commuting birth
and death ideals. One-dimensional birth and death processes are among the simplest
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Markov chains that are considered in modeling random processes (Latouche and
Ramaswami, 1999). In the discrete time case, many of their properties can be derived
from the explicit spectral theory of transition matrices. Evans et al. (2010) give moti-
vation to consider generalized processes that correspond to Markov chains on multi-
dimensional lattices, and as most of the one-dimensional theory does not apply there,
the authors strive to identify subclasses with nice properties. The work suggests com-
muting birth and death processes which are defined by transition matrices having the
property that transitions in the different dimensions commute. After reformulation,
these conditions can be seen to result in binomial conditions on the entries of the
transition matrices, i.e., a binomial ideal. The toric component of this binomial ideal
nicely relates to an underlying matroid as discussed in the paper. Determining primary
decompositions of commuting birth and death ideals poses interesting challenges in
combinatorial commutative algebra.

Computational results given in this section tend to be very large. We have therefore
stored them on a web page, which also contains additional scripts to reproduce the
results:

http : //personal — homepages.mis.mpg.de/kahle/cbd/ (15)

We now define the binomial ideals under consideration. The ambient polynomial
ring has variables corresponding to the edges of a regular grid. For fixed integers
ni, ..., "Ny, let

E::H{O,...,n,-—l}, (16)
i=l1

be the usual m-dimensional bounded regular grid with edges between vertices that
differ by %1 in exactly one coordinate. Here, it is sufficient to consider only the cases
m = 2, 3. For each edge in the grid we define two variables, one for each direction.
In the two-dimensional case the authors used the notation K[R, L, D, U] to denote a
polynomial ring in the variables

{Rij:OSi<n1,0§j§n2}U{Lij:0<i§n1,O§j§n2}U (17
{Dij:Ofi§n1,0<j§n2}U{Uij:O§i§n1,0§j<n2},

where R;; is supposed to represent a right move starting at position ij and so on. In
the case m = 3 one can, in a natural way, extend the set of variables by introducing
letters F and B and three indices for each indeterminate. The set of commuting birth
and death processes is defined by the binomial equations (3.1) of Evans et al. (2010).
These equations arise in quadruples, coming from squares in the graph E, by which
we mean induced subgraphs G of E that are isomorphic to the usual square. Denoting
its vertices by {(u, V), (u+ei,v), u,v+e;), (u+e,v+ ej)}, the corresponding
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ideal encodes that the two paths joining opposite vertices are equivalent:

19 = (U Ruvte)) = Ruw Uttern):
Dvtep Rauw) = Ruvtey) Dutervte))-
L(M+e,-,v+e_,')D(MaU+ej) — D(u+e,-,v+ej)L(u+ei,v),
Luter, ) Uty = Utite o) Lutervte)))- (1%

The commuting birth and death ideal is the sum of all ¢, where G runs through the
induced squares of E.

1F = Z 1°. (19)

G square in E

In the case m = 2, 3 these ideals have been denoted 11-72) and  (?1.12:13) by Evans
et al. (2010).

Example 7 The graph E for m = 2 and n; = ny = 1 is just a square and /-1 is
generated by four binomials

19D = (UgoRo1 — RooUo,  Ro1 D11 — Doi Roo,

(20)
Di1Lyo— LitDor, LioUoo — UioL1t) .
If m =3 and n; = ny, = n3 = 1, E is the 3-cube and the squares arise from facets.
Thus, 71D is generated by 24 pure difference binomials, 4 for each facet.

On the web page (15) one can download Python scripts that generate Macaulay 2 code
for the rings and ideals in the cases m = 2, 3. The following shows an example how
to use the script Imn.py on the command line to generate / 2.2,

> ./Imn.py 2 2

-- Macaulay 2 Code for the Commuting Birth and Death Ideal:
--m = 2, n = 2

S = QQ[ROO,U0O0,R0O1,D0O1,U0U01,R02,D02,R10,L10,U10,R11,L11,D11,

ull,Rr12,L112,D12,L20,U020,L21,D21,U021,L22,D2217;

I = ideal
(U00*R01-RO0*U10,R01*D11-D01*R0O0,D11*L10-L11*D01,L10*U0O
-U10*L11,U01*R02-R01*U11,R02*D12-D02*R01,D12*L11-L12*D02,
L11*U01-U11*L12,U10*R11-R10*U20,R11*D21-D11*R10,D21*
L20-L21*D11,L20*U10-U20*L21,U11*R12-R11*U21,R12*D22-D12*
R11,D22*L21-L22*D12,L21*U11-U21*L22);

In Evans et al. (2010), the authors discuss the primary decompositions of 7>, /(11D
and smaller examples. They state that these computations could not be carried out with
the standard implementations, but were derived in an interactive session. The current
implementation of Binomials computed the 199 prime components of /> in 100
seconds and took 123 seconds to decompose I!-I:1) on the author’s 1.6 GHz laptop.
As mentioned before, computing the minimal primes directly is even faster and can
be completed in half of the time.
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Based on their results, Evans, Sturmfels, and Uhler conjectured

Conjecture 1 For any grid E, the ideal I* is radical, its prime decomposition consists
of pure toric ideals and is independent of the coefficient field.

Here a pure toric ideal is an ideal generated by variables and pure difference bino-
mials. Evans et al. (2010) prove that every associated prime of 71" is a pure toric
ideal. However, using Binomials we have derived the following counterexample to
radicality.

Theorem 2 The ideal I %3 is the intersection of 2,638 primary binomial ideals whose
properties are given in Table 1. Among these are ten components that are not prime,
and thus 1% is not radical. The ten associated primes of these components are all
embedded and of codimension 20. The radical Rad(I>®)) is the intersection of 2,628
minimal primes and given by the following ideal:

I%¥ 4+ (Doy Ro3R10L12U21 L2 D23 — Ui RosL1oR13 D21 Loz Dos,
UooRo2R12L13L20D22Uzz — Roo Do2 R13L13U20U22 L3,
RooUo1 Ro3 L10R13U20L23 D23 — Uoi Riz R13L13U20L23 Do,
RooDo2L1oR13L13D21 U Lo3 — D02R03R13L%3D21U22L23,
UooRo2Ro3 R12L13L20 D22 D23 — Roo Do2 Roz R13L13U20L23 D13,
UooRo3R10L12L20U21L22 D23 — Ugo Ro3 L12 R13U21 La2 L3 D23,
Roo Doz L11R13U20L21 D22 Loz — Ugo Ro3 L2 R13 Lo Loz D2an D23,
Ro1Uo2L1oR11 R13D21Uz1 Loz — Doi Roa RioR12L13U21 Uz L3,
Do1 Rop RioR12L13L20D22Uzy — Doi RoaR12R13L13D22Uss L3,
Do1RozR10L12L13U21 LoaUss — Upi RozLioR13L13 D21 Uz Lo3).

1)

One should note the two squares of variables in the third and fourth generator of
Rad(1%). To produce these results one can use the functions Bpp and binomialMini
malPrimes. The author’s computer determined the minimal primes in approximately
4h. Taking the intersection of these primes took another hour on a 2.8 GHz AMD
Opteron. Care has to be taken when computing intersections of many primes. In
Macaulay 2 versions 1.2 and below, using the command intersect directly on a large
list of primes will not terminate. If one does the intersection manually with a loop,
intersecting only two ideals at a time, everything is fine. Computing the cellular and
primary decomposition was more delicate. It took several days and used about 5 GB of
RAM. In fact, the original computation of the cellular decomposition was done with
a slightly different algorithm which only works if the toric component is isolated.
We first computed the toric component 7' independently with the tool 4ti2 (4ti2 team
2007) and then removed it by computing the saturation (I >3 : T°°). The cellular
decomposition of this ideal was easier to compute. Surprisingly this is not always the
case. For some ideals I, with toric component T, the saturation (I : 7°°) is just too
complicated to be computed with Macaulay 2. In some cases, simply doing the cellular
decomposition with Algorithm 1 is faster.
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Table 1 Statistics on the primary components of / 2.3) sorted by codimension

Codimension 16 17 17 18 18 19 19 20 20 21 21 22 22
No. of components 1 14 2 107 91 356 612 527 550 212 120 38 8
Gen. max degree 1 1 4 1 6 1 5 1 4 1 2 1 3
Degree 1 1 64 1 4012 1 144 1 36 1 12 1 3
Monomial y y n y n y n y n y n y n

Monomial components have been separated from binomial ones as indicated in the row “monomial”. The
row “gen. max degree” gives the maximal degree of a generator in this codimension while “degree” refers
to the maximal degree among components. The toric component is generated in degree 6, of codimension
18 and degree 4,012

Table 2 Prime decompositions

of 1(1.m) 2 3 4 5 6

No. of components 3 11 40 139 466 1528

To complete this computational study, we have also investigated the ideals 7(1")
for n < 6. It was not possible to find a counterexample there.

Theorem 3 The ideals I, n = 1, ..., 6 are radical. The respective numbers of
prime components are given in Table 2.

Concluding this section we find that the conjecture turned out to be false in full gener-
ality. It might however hold for the ideals (1), and the associated primes could still
be pure toric ideals for all 7.

3 Conclusion and further directions

We have presented algorithms for binomial ideals together with an implementation
in Macaulay 2. It covers the case of pure difference binomial ideals, and it remains a
future task to extend it to other cases, in particular to finite fields.

A natural area for application of this software is the field of algebraic statistics,
where analyzing the solutions of polynomial equations is of central importance. As
mentioned in the introduction, describing conditional independence models is natu-
rally connected to primary decomposition and also a very actively pursued research
direction in algebraic statistics. The author hopes to facilitate experimentation with
the availability of Binomials.

Many operations that can be carried out with binomial ideals have been translated
to operations on exponent vectors, or on the associated partial characters. By “making
them combinatorial”, significant speedups can be achieved. The computation of the
associated primes is an example. Computing binomial primary components is more
delicate; the Hull operation is a bottleneck. Dickenstein et al. (2008) give an explicit
lattice point characterization of binomial primary components, but it seems not easy
to use these results for computation. In the examples we have considered here, the
Hull operation only marginally contributes to the total computation time. This is due
to the fact that most of the components in our decompositions are prime ideals. In this
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case most of the computation time is spent on cellular decomposition, which, in turn,
consists of many ideal saturations. Thus, from the author’s point of view, software for
binomial ideals would greatly benefit from a solution to the following problem:

Problem 1 Develop a specialized algorithm to compute, for any (cellular) binomial
ideal I, the “partially saturated” ideal

o]

I: Hx,' . (22)

ief

The software 4ti2 implements the project-and-lift algorithm, a fast algorithm for com-
puting the saturation

n 0]

(=) - (23)

i=1

It seems natural to extend the program to solve the above problem, and Binomials is
prepared to incorporate it upon availability.

Finally, a natural approach to continue this work is to investigate decompositions
that are finer than cellular decompositions, but not as fine as primary decompositions.
In this direction one could aim at a separation of the combinatorial operations like
cellular decomposition, and the field dependent operations like saturation of partial
characters. The combinatorial operations should be connected to the combinatorics
of the underlying semigroup ring. One can ask for the finest decomposition of a pure
difference binomial ideal into pure difference binomial ideals, even if it is not primary.
This might be interesting for applications where factorization of univariate polynomi-
als is not of great importance. For example, if a component is generated by x!° — 1,
we would like the algorithm to stop, since we know the result of this decomposition,
and don’t want the 19 cases to clutter up the output. It will be the subject of future
work to investigate these possibilities.
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