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Abstract We consider testing independence in group-wise selections with some
restrictions on combinations of choices. We present models for frequency data of
selections for which it is easy to perform conditional tests by Markov chain Monte
Carlo (MCMC) methods. When the restrictions on the combinations can be described
in terms of a Segre—Veronese configuration, an explicit form of a Grobner basis con-
sisting of binomials of degree two is readily available for performing a Markov chain.
We illustrate our setting with the National Center Test for university entrance examina-
tions in Japan. We also apply our method to testing independence hypotheses involving
genotypes at more than one locus or haplotypes of alleles on the same chromosome.
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1 Introduction

Suppose that people are asked to select items which are classified into categories or
groups and there are some restrictions on combinations of choices. For example, when
a consumer buys a car, he or she can choose various options, such as a color, a grade of
air conditioning, a brand of audio equipment, etc. Due to space restrictions for exam-
ple, some combinations of options may not be available. The problem we consider
in this paper is testing independence of people’s preferences in group-wise selections
in the presence of restrictions. We assume that observations are the counts of people
choosing various combinations in group-wise selections, i.e., the data are given in a
form of a multiway contingency table with some structural zeros corresponding to the
restrictions.

If there are m groups of items and a consumer freely chooses just one item from
each group, then the combination of choices is simply a cell of an m-way contingency
table. Then the hypothesis of independence reduces to the complete independence
model of an m-way contingency table. The problem becomes harder if there are some
additional conditions in a group-wise selection. A consumer may be asked to choose
up to two items from a group or there may be a restriction on the total number of
items. Groups may be nested, so that there are further restrictions on the number of
items from subgroups. Some restrictions may concern several groups or subgroups.
Therefore the restrictions on combinations may be complicated.

As a concrete example we consider restrictions on choosing subjects in the National
Center Test (NCT hereafter) for university entrance examinations in Japan. Due to time
constraints of the schedule of the test, the pattern of restrictions is rather complicated.
However, we will show that restrictions of NCT can be described in terms of a Segre—
Veronese configuration.

Another important application of this paper is a generalization of the Hardy—
Weinberg model in population genetics. We are interested in testing various hypoth-
eses of independence involving genotypes at more than one locus and haplotypes of
combination of alleles on the same chromosome. Although this problem seems to be
different from the above introductory motivation on consumer choices, we can imag-
ine that each offspring is required to choose two alleles for each gene (locus) from
a pool of alleles for the gene. He or she can choose the same allele twice (homozy-
gote) or different alleles (heterozygote). In the Hardy—Weinberg model two choices
are assumed to be independently and identically distributed. A natural generalization
of the Hardy—Weinberg model for a single locus is to consider independence of geno-
types of more than one locus. In many epidemiological studies, the primary interest
is the correlation between a certain disease and the genotype of a single gene (or the
genotypes at more than one locus, or the haplotypes involving alleles on the same
chromosome). Further complication might arise if certain homozygotes are fatal and
can not be observed, thus becoming a structural zero.

In this paper we consider conditional tests of independence hypotheses in the
above two important problems from the viewpoint of Markov bases and Grobner
bases. Evaluation of P-values by Markov chain Monte Carlo (MCMC) method using
Markov bases and Grobner bases was initiated in Diaconis and Sturmfels (1998).
See also Sturmfels (1995). Since then, this approach attracted much attention from
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Grobner basis for testing independence in group-wise selections 301

statisticians as well as algebraists. Contributions of the present authors are found, for
example, in Aoki and Takemura (2005, 2008); Ohsugi and Hibi (2005, 2007, 2008),
and Takemura and Aoki (2004). Methods of algebraic statistics are currently acti-
vely applied to problems in computational biology (Pachter and Sturmfels 2005). In
algebraic statistics, results in commutative algebra may find somewhat unexpected
applications in statistics. At the same time statistical problems may present new prob-
lems to commutative algebra. A recent example is a conjunctive Bayesian network
proposed in Beerenwinkel et al. (2007), where a result of Hibi (1987) is successfully
used. In this paper we present application of results on Segre—Veronese configuration
to testing independence in NCT and Hardy—Weinberg models. In fact, these statistical
considerations have prompted further theoretical developments of Grobner bases for
Segre—Veronese type configurations and we will present these theoretical results in
our subsequent paper (Aoki et al. 2007).

Even in two-way tables, if the positions of the structural zeros are arbitrary, then
Markov bases may contain moves of high degrees (Aoki and Takemura 2005). See
also Huber et al. (2006) and Rapallo (2006) for Markov bases of the problems with
the structural zeros. However, if the restrictions on the combinations can be described
in terms of a Segre—Veronese configuration, then an explicit form of a Grobner basis
consisting of binomials of degree two with a squarefree initial term is readily available
for running a Markov chain for performing conditional tests of various hypotheses of
independence. Therefore models which can be described by a Segre—Veronese con-
figuration are very useful for statistical analysis.

The organization of this paper is as follows. In Sect. 2, we introduce two examples
of group-wise selection. In Sect. 3, we give a formalization of conditional tests and
MCMC procedures and consider various hypotheses of independence for NCT data
and the allele frequency data. In Sect. 4, we define Segre—Veronese configuration.
We give an explicit expression of a reduced Grobner basis for the configuration and
describe a simple procedure for running MCMC using the basis for conditional tests.
In Sect. 5 we present numerical results on NCT data and diplotype frequencies data.
We end the paper by some discussions in Sect. 6.

2 Examples of group-wise selections

In this section, we introduce two examples of group-wise selection. In Sect. 2.1, we
take a close look at patterns of selections of subjects in NCT. In Sect. 2.2, we illus-
trate an important problem of population genetics from the viewpoint of group-wise
selection.

2.1 The case of National Center Test in Japan

One important example of group-wise selection is the entrance examination for uni-
versities in Japan. In Japan, as the common first-stage screening process, most stu-
dents applying for universities take the National Center Test for university entrance
examinations administered by National Center for University Entrance Examinations
(NCUEE). Basic information in English on NCT in 2006 is available from the booklet
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published by NCUEE (National Center for University Entrance Examinations 2006
in the reference). After obtaining the score of NCT, students apply to departments of
individual universities and take second-stage examinations administered by the uni-
versities. Due to time constraints of the schedule of NCT, there are rather complicated
restrictions on possible combination of subjects. Furthermore each department of each
university can impose different additional requirement on the combinations of subjects
of NCT to students applying to the department.

In NCT examinees can choose subjects in Mathematics, Social Studies and Science.
These three major subjects are divided into subcategories. For example Mathematics
is divided into Mathematics 1 and Mathematics 2 and these are then composed of indi-
vidual subjects. In the test carried out in 2006, examinees could select two mathematics
subjects, two social studies subjects and three science subjects at most as shown below.
The details of the subjects can be found in web pages and publications of NCUEE. In
this paper, we omit Mathematics for simplicity, and only consider selections in Social
Studies and Science. In parentheses we show our abbreviations for the subjects in this

paper.

— Social studies:

e Geography and History: One subject from {World History A (WHA), World
History B (WHB), Japanese History A (JHA), Japanese History B (JHB), Geog-
raphy A (GeoA), Geography B (GeoB)}

e Civics: One subject from {Contemporary Society (ContSoc), Ethics, Politics
and Economics (P&E)}.

— Science:

e Science 1: One subject from {Comprehensive Science B (CSciB), Biology I
(Biol), Integrated Science (IntegS), Biology IA (BiolA)}

e Science 2: One subject from {Comprehensive Science A (CSciA), Chemistry
I (ChemlI), Chemistry IA (ChemlIA)}

e Science 3: One subject from {Physics I (PhysI), Earth Science I (EarthI), Phys-
ics IA (PhysIA), Earth Science IA (EarthIA)}.

Frequencies of the examinees selecting each combination of subjects in 2006 are
given in the website of NCUEE. We reproduce part of them in Tables 8, 9, 10, 11,
and 12 at the end of the paper. As seen in these tables, examinees may select or not
select these subjects. For example, one examinee may select two subjects from Social
Studies and three subjects from Science, while another examinee may select only one
subject from Science and none from Social Studies. Hence each examinee is catego-
rized into one of the (6 + 1) x --- x (4 4+ 1) = 2, 800 combinations of individual
subjects. Here 1 is added for not choosing from the subcategory. As mentioned above,
individual departments of universities impose different additional requirements on the
choices of subjects of NCT. For example, many science or engineering departments
of national universities ask the students to take two subjects from Science and one
subject from Social Studies.

Let us observe some tendencies of the selections by the examinees to illustrate what
kind of statistical questions one might ask concerning the data in Tables 8§, 9, 10, 11,
and 12.
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Grobner basis for testing independence in group-wise selections 303

(i) The most frequent triple of Science subjects is {Biol, Cheml, Physl} in Table
12, which seems to be consistent with Table 10 since these three subjects are
the most frequently selected subjects in Science 1, Science 2 and Science 3,
respectively. However, in Table 11, while the pairs { Biol, Cheml} and { Cheml,
PhysI} are the most frequently selected pairs in {Science 1, Science2} and {Sci-
ence 2, Science 3}, respectively, the pair {Biol, Physl} is not the first choice in
{Science 1, Science 3}. This fact indicates differences in the selection of Sci-
ence subjects between the examinees selecting two subjects and those selecting
three subjects.

(i) In Table 9 the most frequent pair is { GeoB, ContSoc}. However the most fre-
quent single subject from Geography and History is JHB both in Table 8 and 9.
This fact indicates the interaction effect in selecting pairs of Social Studies.

These observations lead to many interesting statistical questions. However, Tables 8,
9, 10, 11, and 12 only give frequencies of choices separately for Social Studies and
Science, i.e., they are the marginal tables for these two major subjects. In this paper we
are interested in independence across these two subjects, such as “are the selections
on Social Studies and Science related or not?”” We give various models for NCT data
in Sect. 3.2 and numerical analysis in Sect. 5.1.

2.2 The case of Hardy—Weinberg models for allele frequency data

We also consider problems of population genetics in this paper. This is another impor-
tant application of the methodology of this paper. The allele frequency data are usually
given as the genotype frequency. For multi-allele locus with alleles A1, Aa, ..., Ay,
the probability of the genotype A; A ; in an individual from a random breeding popula-
tionis in (i = j)or2qiq; (i # j),whereg; is the proportion of the allele A;. These are
known as the Hardy—Weinberg equilibrium probabilities. Since the Hardy—Weinberg
law plays an important role in the field of population genetics and often serves as a
basis for genetic inference, much attention has been paid to tests of the hypothesis that
a population being sampled is in the Hardy—Weinberg equilibrium against the hypoth-
esis that disturbing forces cause some deviation from the Hardy—Weinberg ratio. See
Crow (1988) and Guo and Thompson (1992) for example. Though Guo and Thompson
(1992) consider the exact test of the Hardy—Weinberg equilibrium for multiple loci,
exact procedure becomes infeasible if the data size or the number of alleles is mod-
erately large. Therefore MCMC is also useful for this problem. Takemura and Aoki
(2004) considers conditional tests of Hardy—Weinberg model by using MCMC and
the technique of Markov bases.

Due to the rapid progress of sequencing technology, more and more information
is available on the combination of alleles on the same chromosome. A combination
of alleles at more than one locus on the same chromosome is called a haplotype and
data on haplotype counts are called haplotype frequency data. The haplotype analysis
has gained an increasing attention in the mapping of complex-disease genes, because
of the limited power of conventional single-locus analyses. Haplotype data may come
with or without pairing information on homologous chromosomes. It is technically
more difficult to determine pairs of haplotypes of the corresponding loci on a pair
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of homologous chromosomes. A pair of haplotypes on homologous chromosomes is
called a diplotype. In this paper we are interested in diplotype frequency data, because
haplotype frequency data on individual chromosomes without pairing information are
standard contingency table data and can be analyzed by statistical methods for usual
contingency tables. For the diplotype frequency data, the null model we want to con-
sider is the independence model that the probability for each diplotype is expressed
by the product of probabilities for each genotype.

We consider the models for genotype frequency data in Sect. 3.3.1 and then consider
the models for diplotype frequency data in Sect. 3.3.2. Note that the availability of
haplotype data or diplotype data requires a separate treatment in our arguments. Finally
we give numerical examples of the analysis of diplotype frequencies data in Sect. 5.2.

3 Conditional tests and models

3.1 General formulation of conditional tests and Markov chain Monte Carlo
procedures

First we give a brief review on performing MCMC for conducting conditional tests
based on the theory of Markov basis. Markov basis was introduced by Diaconis and
Sturmfels (1998) and there are now many references on the definition and the use of
Markov basis (e.g., Aoki and Takemura 2006).

We denote the space of possible selections as Z. Each element i in Z represents a
combination of choices. Following the terminology of contingency tables, eachi € Z
is called a cell. It should be noted that unlike the case of standard multiway contin-
gency tables, our index set Z can not be written as a direct product in general. We
show the structures of Z for NCT data and allele frequency data in Sects. 3.2 and 3.3,
respectively.

Let p(i) denote the probability of selecting the combination i (or the probability of
cell i) and write p = {p(i)}jcz. In this paper, we do not necessarily assume that p is
normalized. In fact, in the models we consider in this paper, we only give an unnormal-
ized functional specification of p(-). Note that we need not calculate the normalizing
constant » ;7 p(i) for performing a MCMC procedure. Denote the result of the selec-
tions by n individuals as x = {x(i)}jc7, where x (i) is the frequency of the cell i. We
call x a frequency vector.

In the models considered in this paper, the cell probability p(i) is written as some
product of functions, which correspond to various marginal probabilities. Let J denote
the index set of the marginals. Then our models can be written as

p@) =h@ [ ] qG, (1)
jieJ

where /(i) is a known function and ¢ (j)’s are the parameters. An important point here
is that the sufficient statistic t = {7(j), j € J} is written in a matrix form as

t=Ax, A= (gjeJ icT> @
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where A is d x v matrix of non-negative integers and d = | 7|, v = |Z|. We call A a
configuration in connection with the theory of toric ideals in Sect. 4.

By the standard theory of conditional tests (Lehmann and Romano 2005, for exam-
ple), we can perform conditional test of the model (1) based on the conditional distri-
bution given the sufficient statistic t. The conditional sample space given t, called the
t-fiber, is

Ft={xeN|t= Ax},

where N = {0, 1, ...}. If we can sample from the conditional distribution over F¢, we
can evaluate P-values of any test statistic. One of the advantages of MCMC method
of sampling is that it can be run without evaluating the normalizing constant. Also
once a connected Markov chain over the conditional sample space is constructed, then
the chain can be modified to give a connected and aperiodic Markov chain with the
stationary distribution as the null distribution by the Metropolis-Hastings procedure
(e.g., Hastings 1970). Therefore it is essential to construct a connected chain and the
solution to this problem is given by the notion of Markov basis (Diaconis and Sturmfels
1998).

The fundamental contribution of Diaconis and Sturmfels (1998) is to show that a
Markov basis is given as a binomial generator of the well-specified polynomial ideal
(toric ideal) and it can be given as a Grobner basis. In Sect. 4, we show that our problem
considered in Sects. 3.2 and 3.3 corresponds to a well-known toric ideal and give an
explicit form of the reduced Grobner basis.

3.2 Models for NCT data

Following the general formalization in Sect. 3.1, we formulate data types and their
statistical models in view of NCT. Suppose that there are J different groups (or cat-
egories) and m different subgroups in group j for j = 1,..., J. There are m j
different items in subgroup k of group j (k = 1,...,m;, j = 1,...,J). In NCT,
J = 2,m; = |{Geography and History, Civics}| = 2 and similarly m, = 3. The sizes
of subgroups are m; = [{WHA, WHB, JHA, JHB, GeoA, GeoB}| = 6 and similarly
mip =3, my; =4, my =3, my3 = 4.

Each individual selects c jx items from the subgroup k of group j. We assume that
the total number t of items chosen is fixed and common for all individuals. In NCT
cjk is either O or 1. For example if an examinee is required to take two Science sub-
jects in NCT, then (c31, ¢22, ¢23) is (1, 1, 0), (1,0, 1) or (0, 1, 1). For the analysis of
genotypes in Sect. 3.3, cjx = 2 although there is no nesting of subgroups, and the
same item (allele) can be selected more than once (selection “with replacement”).

We now set up our notation for indexing a combination of choices somewhat care-
fully. In NCT, if an examinee chooses WHA from “Geography and History” of Social
Studies and PhyslI from Science 3 of Science, we denote the combination of these two
choices as (111)(231). In this notation, the selection of ¢ j; items from the subgroup &
of group j are indexed as

ijr = (jkl)(kl) -+ (kley), 1<l < <ley =mji.
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Here i is regarded as a string. If nothing is selected from the subgroup, we define
i1 to be an empty string. Now by concatenation of strings, the set Z of combinations
is written as

T={i=in....is}y  dj=ijioeeeiijm. j=1.... 0

For example the choice of (P&E, Biol, Cheml) in NCT is denoted by i = (123)(212)
(222). In the following we denote i’ C i if i’ appears as a substring of i.

Now we consider some statistical models for p. For NCT data, we consider three
simple statistical models, namely, complete independence model, subgroup-wise inde-
pendence model and group-wise independence model. The complete independence
model is defined as

p =[] [] [Tai@ 3)

=1 t=1

ci

J  mj Cjk
ijk

j=1k
J

for some parameters gx(I), j =1,...,J; k=1,...,mj; l =1,...,mj. Note
that if ¢ jx > 1 we need a multinomial coefficient in (3). The complete independence
model means that each p(i), the inclination of the combination i, is explained by the set
of inclinations ¢ j (1) of each item. Here ¢ j; (/) corresponds to the marginal probability
of the item (jk/). However we do not necessarily normalize them as 1 = Z;n:’ f qjx (D),
because the normalization for p is not trivial anyway. The same comment applies to
other models below.
Similarly, the subgroup-wise independence model is defined as

J mj
p =[] [] aitin) @

=1 k=1
ijpCi

for some parameters g (-), and the group-wise independence model is defined as
J
p) =[] q;G) )
j=1
for some parameters g (-).

In this paper, we treat these models as the null models and give testing procedures
to assess their fitting to observed data following the general theory in Sect. 3.1.

3.3 Models for allele frequency data
3.3.1 Models for the genotype frequency data

We assume that there are J distinct loci. In the locus j, there are m; distinct alleles,
Ajt,o. o, Ajm ;e In this case, we can imagine that each individual selects two alleles
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for each locus with replacement. Therefore the set of the combinations is written as
IT={i=(ni)luin)---nip) |1 <iji <ip<m;, j=1,...,J}.

For the genotype frequency data, we consider two models of hierarchical structure,
namely, genotype-wise independence model

J
p) =[] aiGnij) (6)

J=1

and the Hardy—Weinberg model

J
p® =[]diGnip), )
=1
where s
o qi(ii) ifi;g =i,
qj(ij1ijn) = ! ]. . . .] .j ®)
2q;(Gij1)qj(ijp) ifij #ijp.

Note that for both cases the sufficient statistic t can be written as t = Ax for an
appropriate matrix A as shown in Sect. 5.2.

3.3.2 Models for the diplotype frequency data

In order to illustrate the difference between genotype data and diplotype data, con-
sider a simple case of J = 2, m; = my = 2 and suppose that genotypes of n = 4
individuals are given as

{A11A11, A21An ), {A11Ar, A1 A, {A11Arp, Ao1An), {A11A, Ay Al

In this genotype data, for an individual who has homozygote genotype on at least
one loci, the diplotypes are uniquely determined. However, for the fourth individ-
ual who has the genotype {A11A12, A21 A2}, there are two possible diplotypes as

{(A11, A21), (A2, A22)} and {(A11, A22), (A12, A2}
Now suppose that information on diplotypes are available. The set of combinations
for the diplotype data is given as

IT={i=ijp=(>n iyl |1 <ij,ip<mj, j=1,...,J}

In order to determine the order of iy = (i11 - - - i,1) andip = (i12 - - - i) uniquely, we
assume that these two are lexicographically ordered, i.e., there exists some j such that

i1 =112, ..., j—1,1 =ij-12, ij1 <Iij2

unless i} = is.
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For the parameter p = { p (i)} where p(i) is the probability for the diplotype i, we can
consider the same models as for the genotype case. Corresponding to the null hypothe-
sis that diplotype data do not contain more information than the genotype data, we can
consider the genotype-wise independence model (6) and the Hardy—Weinberg model
(7). The sufficient statistics for these models are the same as in the previous subsection.

If these models are rejected, we can further test independence in diplotype data.
For example we can consider a haplotype-wise Hardy—Weinberg model.

q(i)? if it = o,
p() = p(iiiy) = C e

2q(i1)gq(2) ifiy #ip.
The sufficient statistic for this model is given by the set of frequencies of each hap-
lotype and the conditional test can be performed as in the case of Hardy—Weinberg
model for a single gene by formally identifying each haplotype as an allele.

4 Grobner basis for Segre—Veronese configuration

In this section, we introduce toric ideals of algebras of Segre—Veronese type (Ohsugi
and Hibi 2000) with a generalization to fit statistical applications in the present paper.

First we define toric ideals. A configuration in R is a finite set A = {aj,...,a,} C
N9, A can be regarded as a d x v matrix and corresponds to the matrix connect-
ing the frequency vector to the sufficient statistic as in (2). Let K be a field and
Klq] = Klq1, ..., qq4] the polynomial ring in d variables over K. We associate a
configuration A C N? with the semigroup ring K[A] = K[q®, ..., q*] where
Q@ =q - ~q5d ifa = (ai,...,aq). Note that d = |J| and g% corresponds to the
term Hjej q(§)“" on the right-hand side of (1). Let K[W] = K[wy, ..., w,] be the
polynomial ring in v variables over K. Here v = |Z| and the variables wy, ..., w,
correspond to the cells of 7. The toric ideal 14 of A is the kernel of the surjective homo-
morphism 7 : K[W] — K[A] defined by setting 7 (w;) = q% forall 1 <i <v. It
is known that the toric ideal I, is generated by the binomials # — v, where u and v
are monomials of K[W], with 7 (u) = 7 (v). More precisely, /4 is written as

I =<WZ*—WZ’ ze7’, Az=0>,

T — 2z~ withz",z= € NY. We call an integer vector z € Z" a move if

where z = z
Az = 0.

The initial ideal of I 4 with respect to a monomial order is the ideal of K[W] gener-
ated by all initial monomials of nonzero elements of /4. A finite set G of 14 is called a
Grobner basis of 14 with respect to a monomial order < if the initial ideal of 74 with
respect to < is generated by the initial monomials of the polynomials in G. A Grobner
basis G is called reduced if, for each g € G, none of the monomials in g is divisible
by the initial monomials of g’ for some g # g’ € G. It is known that if G is a Grobner
basis of 14, then 14 is generated by G. In general, the reduced Grobner basis of a toric
ideal consists of binomials. See Chapter 4 of Sturmfels (1995) for the details of toric
ideals and Grobner bases.
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Grobner basis for testing independence in group-wise selections 309

The following proposition associates Markov bases with toric ideals.

Proposition 1 (Diaconis and Sturmfels 1998) A set of moves B = {z1,...,zL}isa
Markov basis if and only if 1 4 is generated by binomials W4 — W e, W2 — W

We now introduce the notion of algebras of Segre—Veronese type. Fix integers t >
2, M > 1 and sets of integersb = {by, ..., by}, c={c1,....cmu},r ={r1, ..., ryu}
and s = {s1, ..., sy} such that

(i) 0<c¢ <biforalll <i< M;
(i) 1<s;<r<dforalll <i <M.

Let A;pers C N? denote the configuration consisting of all nonnegative integer
vectors (f1, f2,..., fa) € N4 such that

0 Xi =t

(i) ¢ < Z;i:s,- fi<bforalll <i <M.
Let K[A¢p.crsl denote the affine semigroup ring generated by all monomials
H?‘:] qj i over K and call it an algebra of Segre—Veronese type. Note that the present
definition generalizes the definition in Ohsugi and Hibi (2000).

Several popular classes of semigroup rings are algebras of Segre—Veronese type. If
M=2,1=2bj=by=ci=co=1,s1 = 1,50 =r;+1andr, = d, then the affine
semigroup ring K[Az p,c,r,s] is the Segre product of polynomial rings K[qi, ..., g |
and K[gy+1, - .., qq].- Onthe otherhand,if M =d,s; =r; =i,b; = Tand¢; = Ofor
all 1 <i < M, then the affine semigroup ring K[A: p,c,r,s] is the classical Tth Vero-

nese subring of the polynomial ring K [¢q1, ..., g4]. Moreover, if M =d,s; =r; =1,
bi =1landc; =0forall 1 <i < M, then the affine semigroup ring K[A¢ p.c.r.s] IS
the tth squarefree Veronese subring of the polynomial ring K[q1, . . . , g4]. In addition,

algebras of Veronese type (i.e., M =d,s; =ri =iandc¢; =0foralll <i < M)
are studied in De Negri and Hibi (1997) and Sturmfels (1995).
Let K[Y] denote the polynomial ring with the set of variables

[yjljZ“'jr

where K[A¢pers]l = K[q", ..., q*]. The toric ideal /4, ., is the kernel of the
surjective homomorphism 7 : K[Y] —> K[A¢ p,cr,s] defined by 7w (yj, j,...;;) =
[Ti=i 9 ji-

A monomial Yo ay-..ar Y81 Bo--Be " Yyiya--ye 18 Called sorted if

T
l<ji<p<-=j=d, quke{qal,...,qa“}],
k=1

o <<= <ph=--=<p=<--Zar =P =<y
Let sort(-) denote the operator which takes any string over the alphabet {1, 2, ..., d}
and sorts it into weakly increasing order. Then the quadratic Grébner basis of toric
ideal 14 is given as follows.

7,b,c,r,s

Theorem 1 Work with the same notation as above. Then there exists a monomial
order on K[Y] such that the set of all binomials
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{yalazmot, YBi1BoBr = Yvivzvre—1 Yvavavar | sort(a1Brozfa -+ -arBr) = viyve - Vor)

)

is the reduced Grobner basis of the toric ideal 14 The initial ideal is generated
by squarefree quadratic (nonsorted) monomials.

In particular, the set of all integer vectors corresponding to the above binomials is

a Markov basis. Furthermore the set is minimal as a Markov basis.

.be,rs”

Proof The basic idea of the proof appears in Theorem 14.2 in Sturmfels (1995).
Let G be the above set of binomials. First we show that G C I4 Suppose that
M = Yajar--ar Y1 fo--B. 15 DOt sorted and let

T,bers”

Y1y2 -+ - v2r = sort(a BrazfBa - - - o Br).

Then, m is squarefree since the monomial ygl p— is sorted. Since the binomial
Yarar—az Ypifr-Br — Yoo, Vg pyp. € K[Y] belongs to 4, if and only if
sort(ajag - - f1f2 - - - Br) = sort(ajars - -l Bi By - - - By), it is sufficient to show
that both yy,y;...»,_; and yy,y,...;,, are variables of K[Y]. For 1 <i < n, let p; =
Hilsi <yaj—1 <ri}lando; = [{j | 5i < y2j <ri}l.Since y; < y2 < -+ < ¥2r, P
and o; are either equal or they differ by one foreachi. If p; < o;,then0 < 0; —p; < 1.
Since 2¢; < p; + 0; < 2b;, we have 0; < b; + 1/2 and ¢; — 1/2 < p;. Thus
¢i < pi <o; <b;. If pj > o, then p; — o; = 1. Since 2¢; < p; + 0; < 2b;, we have
pi <bi+1/2and¢; —1/2 < 0;. Thus ¢; < 0; < p; < b;. Hence yy,y;...4,_, and
Yyays--y, are variables of K[Y].

By virtue of relation between the reduction of a monomial by G and sorting of the
indices of a monomial, it follows that there exists a monomial order such that, for any
binomial in G, the first monomial is the initial monomial. See also Theorem 3.12 in
Sturmfels (1995).

Suppose that G is not a Grobner basis. Thanks to Macaulay’s Theorem, there exists
a binomial f* € I4,, .., such that both monomials in f are sorted. This means that
f =0and f is not a binomial. Hence G is a Grobner basis of 14, - It is easy to
see that the Grobner basis G is reduced and a minimal set of generators of 14

v.b,c,r,;s”

m}

Finally we describe how to run a Markov chain using the Grobner basis given in
Theorem 1. First, given a configuration A in (2), we check that (with appropriate reor-
dering of rows) that A is indeed a configuration of Segre—Veronese type. It is easy to
check that our models in Sects. 3.2 and 3.3 are of Segre—Veronese type, because the
restrictions on choices are imposed separately for each group or each subgroup. Recall
that each column of A consists of non-negative integers whose sum t is common.

We now associate to each column a; of A a set of indices indicating the rows with
positive elements aji > 0 and a particular index j is repeated g;; times. For example
ifd =4,7 =3anda; = (1,0, 2,0), then row 1 appears once and row three appears
twice in a;. Therefore we associate the index (1, 3, 3) to a;. We can consider the set
of indices as T x v matrix A. Note that A and A carry the same information.

Given A, we can choose a random element of the reduced Grobner basis of Theorem
1 as follows. Choose two columns (i.e., choose two cells from Z) of A and sort 2 x ©
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elements of these two columns. From the sorted elements, pick alternate elements and
form two new sets of indices. For example if 7 = 3 and the two chosen columns of A
are (1, 3, 3) and (1, 2, 4), then by sorting these 6 elements we obtain (1, 1, 2, 3, 3, 4).
Picking alternate elements produces (1, 2, 3) and (1, 3, 4). These new sets of indices
correspond to (a possibly overlapping) two columns of A, hence to two cells of Z.
Now the difference of the two original columns and the two sorted columns of A cor-
respond to a random binomial in (9). It should be noted that when the sorted columns
coincide with the original columns, then we discard these columns and choose other
two columns. The rest of the procedure for running a Markov chain is described in
Diaconis and Sturmfels (1998). See also Aoki and Takemura (2006).

5 Numerical examples

In this section we present numerical experiments on NCT data and a diplotype fre-
quency data.

5.1 The analysis of NCT data

First we consider the analysis of NCT data concerning selections in Social Studies and
Science. Because NCUEE currently do not provide cross tabulations of frequencies of
choices across the major subjects, we can not evaluate the P-value of the actual data.
However for the models in Sect. 3.2, the sufficient statistics (the marginal frequencies)
can be obtained from Tables 8, 9, 10, 11, and 12. Therefore in this section we evaluate
the conditional null distribution of the Pearson’s x? statistic by MCMC and compare
it to the asymptotic x? distribution.

In Sect. 3.2, we consider three models, complete independence model, subgroup-
wise independence model and group-wise independence model, for the setting of
group-wise selection problems. Note that, however, the subgroup-wise independence
model coincides with the group-wise independence model for NCT data, since cj; < 1
for all j and k. Therefore we consider fitting of the complete independence model and
the group-wise independence model for NCT data.

As we have seen in Sect. 2.1, there are many kinds of choices for each examinee.
However, it may be natural to treat some similar subjects as one subject. For example,
WHA and WHB may well be treated as WH, ChemlI and Chem IA may well be treated
as Chem, and so on. As a result, we consider the following aggregation of subjects.

— In Social Studies: WH = {WHA,WHB}, JH = {JHA,JHB}, Geo = { GeoA,GeoB}
— InScience: CSiB = {CSiB, ISci}, Bio = {Biol, BiolA }, Chem = { ChemI, ChemIA },
Phys = {Physl, PhysIA}, Earth = {Earthl, EarthIA}

In our analysis, we take a look at examinees selecting two subjects for Social Studies
and two subjects for Science. Therefore

J=2,m =2, my=3,my =mip =3,mp =myp =my3 =2,
ci1 =ci2 =1, (ca1, 22, ¢23) = (1, 1,0) or (1,0, 1) or (0, 1, 1).
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Table 1 The data set of number of the examinees in NCT in 2006 (n = 195094)

ContS Ethics P&E CSiA Chem Phys Earth

WH 32,352 8,839 8,338 CSiB 1,648 1,572 169 4,012
JH 51,573 8,684 14,499 Bio 21,392 55,583 1,416 1,845
Geo 59,588 4,046 7,175 Phys 3,286 102,856 — —
Earth 522 793 —— ——

The number of possible combination is then v = |Z| = 3 -3 x 3 - 22 = 108. Accord-
ingly our sample size is n = 195094, which is the number of examinees selecting two
subjects on Science from Table 10. Our data set is shown in Table 1.

From Table 1, we can calculate the maximum likelihood estimates of the numbers
of the examinees selecting each combination of subjects. The sufficient statistics under
the complete independence model are the numbers of the examinees selecting each
subject, whereas the sufficient statistics under the group-wise independence model
are the numbers of the examinees selecting each combination of subjects in the same
group. The maximum likelihood estimates calculated from the sufficient statistics are
shown in Table 2. For the complete independence model the maximum likelihood
estimates can be calculated as in Sect. 5.2 of Bishop et al. (1975).

The configuration A for the complete independence model is written as

E; @13 © 1),
A=|1,0E®1),
1, ® B

and the configuration A for the group-wise independence model is written as

1, ® Ef,
where E,, is the n x n identity matrix, 1, = (1, ..., 1)" is the n x 1 column vector of
1’s, ® denotes the Kronecker product and

111100000000
000011110000
100010001100
010001000011
001000101010
000100010101

Note that the configuration B is the vertex-edge incidence matrix of the (2, 2, 2) com-
plete multipartite graph. Quadratic Grobner bases of toric ideals arising from complete
multipartite graphs are studied in Ohsugi and Hibi (2000).
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Table 2 MLE of the number of the examinees selecting each combination of subjects under the complete
independence model (upper) and the group-wise independence model (lower)

WH JH Geo

ContS Ethics P&E ContS Ethics P&E ContS Ethics P&E

CSiB,CSiA 180.96 2720 37.84 273.12 41.05 57.12 258.70  38.88  54.10
273.28  74.66 7043 43565 7336 12248 50335 34.18 60.61

CSiB,Chem 1,083.82 162.89 226.65 1,635.85 245.86 342.10 1,549.48 232.88 324.03
260.68  71.22  67.18 41556  69.97 116.83  480.14 32.60 57.81

CSiB,Phys 110.04 16.54  23.01 166.09 2496  34.73 157.32  23.64  32.90
28.02 7.66 7.22 44.68 752  12.56 51.62 3.50 6.22

CSiB,Earth 7.33 1.10 1.53 11.06 1.66 2.31 10.47 1.57 2.19
665.30 181.77 171.47 1,060.57 178.58 298.16 1,225.39  83.20 147.55

Bio,CSiA 1,961.78 294.84 410.26 2,960.99 445.02 619.21 2,804.66 421.52 586.52
3,547.39  969.19 914.26 5,654.96 952.20 1,589.81 6,533.81 443.64 786.74

Bio,Chem 11,749.94 1,765.93 2,457.19 17,734.63 2,665.39 3,708.74 16,798.27 2,524.66 3,512.92
9,217.20 2,518.26 2,375.53 14,693.34 2,474.10 4,130.82 16,976.84 1,152.72 2,044.18

Bio,Phys 1,193.01 179.30 249.49 1,800.65 270.63 376.56 1,705.58 256.34 356.68
23481 64.15 60.52 37432  63.03 10523 43249 2937  52.08

Bio,Earth 79.43 11.94  16.61 119.88 18.02  25.07 113.55 17.07  23.75
30595 8359  78.85  487.72 8212 137.12  563.52  38.26  67.85

CSiA,Phys  2,601.94 404.58 562.95 4,063.04 610.65 849.68 3,848.52 578.41 804.82
54491 148.88 140.44  868.65 146.27 244.21 1,003.65 68.15 120.85

CSiA,Earth 179.22 2694  37.48 27050  40.65 56.57  256.22  38.51  53.58
86.56  23.65 2231 137.99 2324  38.79 159.44  10.83 19.20

Bio,Phys  16,123.14 2,423.20 3,371.73 24,335.27 3,657.42 5,089.09 23,050.40 3,464.31 4,820.39
17,056.38 4,660.03 4,395.90 27,189.93 4,578.31 7,644.05 31,415.54 2,133.10 3,782.75

Bio,Earth 1,073.41 161.33 224.48 1,620.14 243.50 338.81 1,534.60 230.64 320.92
131.50 3593  33.890 209.63 3530 5893 24221 1645  29.16

Given these configurations we can easily run a Markov chain as discussed at the
end of Sect. 4. After 5, 000, 000 burn-in steps, we construct 10, 000 Monte Carlo sam-
ples. Figure 1 show histograms of the Monte Carlo sampling generated from the exact
conditional distribution of the Pearson goodness-of-fit x 2 statistics for the NCT data
under the complete independence model and the group-wise independence model,
respectively, along with the corresponding asymptotic distributions ngg and ng-

5.2 The analysis of PTGDR (prostanoid DP receptor) diplotype frequencies data
Next we give a numerical example of genome data. Table 3 shows diplotype frequen-
cies on the three loci, T-549C (locus 1), C-441T (locus 2) and T-197C (locus 3) in the

human genome 14q22.1, which is given in Oguma et al. (2004). Though the data is
used for the genetic association studies in Oguma et al. (2004), we simply consider
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Fig. 1 Asymptotic and Monte Carlo sampling distributions of NCT data

Table 3 PTGDR diplotype

frequencies among patients and Diplotype Whites Blacks
controls in each population. Controls Patients Controls Patients
(The order of the SNPs in the
haplotype is T-549C, C-441T CCT/CCT 16 78 7 10
and T-197C.) CCTTTT 27 106 12 27
CCT/TCT 48 93 4 12
CCT/CCC 17 45 3 9
TTT/TTT 9 43 2 7
TTT/TCT 34 60 8 6
TTT/CCC 4 28 1 6
TCT/TCT 11 20 7 0
TCT/CCC 6 35 1 2
ccc/ccce 1 8 0 0
Table 4 The genotype frequencies for patients among blacks of PTGDR data
Locus 3 CC CT TT
Locus 2 CC CT TT CC CT TT CcC CT TT
Locus 1
CcC 0 0 0 9 0 0 10 0
CT 0 0 0 2 6 0 12 27
TT 0 0 0 0 0 0 0 6

fitting our models. As an example, we only consider the diplotype data of patients in
the population of blacks (n = 79).

First we consider the analysis of genotype frequency data. Though Table 3 is diplo-
type frequency data, here we ignore the information on the haplotypes and simply treat
it as a genotype frequency data. Since J = 3 and m| = m» = m3 = 2, there are 3> =
27 distinct set of genotypes, i.e., |Z| = 27, while only 8 distinct haplotypes appear in
Table 3. Table 4 is the set of genotype frequencies of patients in the population of blacks.

Under the genotype-wise independence model (6), the sufficient statistic is the geno-
type frequency data for each locus. On the other hand, under the Hardy—Weinberg
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Table 5 MLE for PTGDR genotype frequencies of patients among blacks under the Hardy—Weinberg
model (upper) and genotype-wise independence model (lower)

Locus 3 CC CT TT
Locus 2 CC CT TT CC CT TT CC CT TT
Locus 1
CC 0.1169 0.1180 0.0298 1.939 1.958 0.4941 8.042 8.118 2.049
0 0 0 1.708 2.018 0.3623 6.229 7.361 1.321
CT 0.2008 0.2027 0.0512 3.331 3.362  0.8486 13.81 13.94 3.519
0 0 0 4.225 4.993 0.8962 15.41 18.21 3.268
TT 0.0862 0.0870  0.0220 1.430 1444  0.3644 5.931 5.988 1.511
0 0 0 1.169 1.381 0.2479 4.262 5.037 0.9040

model (7), the sufficient statistic is the allele frequency data for each locus, and
the genotype frequencies for each locus are estimated by the Hardy—Weinberg law.
Accordingly, the maximum likelihood estimates for the combination of the genotype
frequencies are calculated as Table 5.

The configuration A for the Hardy—Weinberg model is written as

222222222 111111111 000000000
000000000 111111111 222222222
222111000 222111000 222111000
000111222 000111222 000111222
210210210 210210210 210210210
012012012 012012012 012012012

and the configuration A for the genotype-wise independence model is written as

E31,®1,
A= 1/3®E3®1/3
15®1;Q E;

Since these two configurations are of the Segre—Veronese type, again we can easily
perform MCMC sampling as discussed in Sect. 4. After 100, 000 burn-in steps, we
construct 10, 000 Monte Carlo samples. Figure 2 shows histograms of the Monte Carlo
sampling generated from the exact conditional distribution of the Pearson goodness-
of-fit x? statistics for the PTGDR genotype frequency data under the Hardy—Weinberg
model and the genotype-wise independence model, respectively, along with the cor-
responding asymptotic distributions X224 and X221-

From the Monte Carlo samples, we can also estimate the P-values for each null
model. The values of the Pearson goodness-of-fit x> for the PTGDR genotype fre-
quency data of Table 4 are x> = 88.26 under the Hardy—Weinberg models, whereas
x% = 103.37 under the genotype-wise independence model. These values are highly
significant (p < 0.01 for both models), which implies the susceptibility of the partic-
ular haplotypes.

Next we consider the analysis of the diplotype frequency data. In this case of J = 3
and m| = my = m3 = 2, there are 2> = 8 distinct haplotypes, and there are
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Fig. 2 Asymptotic and Monte Carlo sampling distributions of PTGDR genotype frequency data

Table 6 Observed frequency

and MLE under the Haplotype Observed MLE under HW
R ;
of patients among blacks CCT 68 50.410

CTC 0 3.068

CTT 0 25.445

TCC 0 5.220

TCT 20 43.293

TTC 0 2.635

TTT 53 21.853

8
I|=8 =36
|Z] +(2)

distinct diplotypes, while there are only 4 haplotypes and 10 diplotypes appear in
Table 3. The numbers of each haplotype are calculated as the second column of
Table 6. Under the Hardy—Weinberg model, the haplotype frequencies are estimated
proportionally to the allele frequencies, which is shown as the third column of Table 6.
The maximum likelihood estimates of the diplotype frequencies under the Hardy—
Weinberg model are calculated from the maximum likelihood estimates for each
haplotype. These values coincide with appropriate fractions of the values for the cor-
responding combination of the genotypes in Table 5. For example, the MLE for the
diplotype CCT/CCT coincides with the MLE for the combination of the genotypes
(CC,CC,TT) in Table 5, whereas the MLE’s for the diplotype CCC/TTT, CCT/TTC,
CTC/TCT, CTT/TCC coincide with the 1/4 fraction of the MLE for the combination of
the genotypes (CT,CT,CT), and so on. Since we know that the Hardy—Weinberg model
is highly statistically rejected, it is natural to consider the haplotype-wise Hardy—
Weinberg model given in Sect. 3.3.2. Table 7 shows the maximum likelihood esti-
mates under the haplotype-wise Hardy—Weinberg model. It should be noted that the
MLE for the other diplotypes are all zeros. We perform the Markov chain Monte Carlo
sampling for the haplotype-wise Hardy—Weinberg model. The configuration A for this
model is written as
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Table 7 MLE for PTGDR

diplotype frequencies of patients Diplotype Observed MLE
ﬁ;‘;‘;gfygﬁivl‘iz;‘“der the CCT/CCT 10 14.6329
Hardy—Weinberg model CCT/TTT 27 22.8101
CCT/TCT 12 8.6076
CCT/CCC 9 7.3165
TTT/TTT 7 8.8892
TTT/TCT 6 6.7089
TTT/CCC 6 5.7025
TCT/TCT 0 1.2658
TCT/CCC 2 2.1519
ccc/ccce 0 0.9146
0.12
01
0.08

0 10 20 30 40 50 60

Fig.3 Asymptotic and Monte Carlo sampling distributions of PTGDR diplotype frequency data under the
haplotype-wise Hardy—Weinberg model (df = 9)

200000001 111111000000000000000000000 ]
020000001000000111111000000000000000
002000000100000100000111110000000000
000200000010000010000100001111000000
000020000001000001000010001000111000
000002000000100000100001000100100110
000000200000010000010000100010010101
000000020000001000001000010001001011 |

which is obviously of the Segre—Veronese type. We give a histogram of the Monte Carlo
sampling generated from the exact conditional distribution of the Pearson goodness-
of-fit x? statistics for the PTGDR diplotype frequency data under the haplotype-wise
Hardy—Weinberg model, along with the corresponding asymptotic distributions X92 in
Fig. 3.

The P-value for this model is estimated as 0.8927 with the estimated standard devi-
ation 0.0029 (We also discard the first 100, 000 samples, and use a batching method

@ Springer



318 S. Aoki et al.

to obtain an estimate of variance, see Hastings 1970 and Ripley 1987). Note that the
asymptotic P-value based on x§ is 0.6741.

6 Some discussions

In this paper we considered independence models in group-wise selections, which
can be described in terms of a Segre—Veronese configuration. We have shown that
our framework can be applied to two important examples in educational statistics and
biostatistics. We expect that the methodology of the present paper finds applications
in many other fields.

In the NCT example, we assumed that the examinees choose the same number ©
of subjects. We also assumed for simplicity that the examinees choose either noth-
ing or one subject from a subgroup. This restricts our analysis to some subset of the
examinees of NCT. Actually the examinees make decisions on how many subjects to
take and modeling this decision making is clearly of statistical interest. Further com-
plication arises from the fact that the examinees can choose which scores to submit to
universities after taking NCT. For example after obtaining scores of three subjects on
Science, an examinee can choose the best two scores for submitting to a university. In
our subsequent paper (Aoki et al. 2007) we present a generalization of Segre—Veronese
configurations to cope with these complications.

It seems that the simplicity of the reduced Grobner basis for the Segre—Veronese
configuration comes from the fact that the index set 7 of the rows of A can be ordered
and the restriction on the counts can be expressed in terms of one-dimensional inter-
vals. From statistical viewpoint, ordering of the elements of the sufficient statistic in
group-wise selection seems to be somewhat artificial. It is of interest to look for other
statistical models, where ordering of the elements of the sufficient statistic is more
natural and the Segre—Veronese configuration can be applied.

Appendix Tables of numbers of examinees in NCT in 2006

Table 8 Number of examinees who takes subjects on Social Studies

Geography and History Civics # total # actual

WHA WHB JHA JHB GeoA GeoB ContS Ethics P&E examinees examinees

1 subject 496 29,108 1,456 54,577 1,347 27,152 40,677 16,607 25,321 196,741 196,741
2 subjects 1,028 61,132 3,386 90,427 5,039 83,828 180,108 27,064 37,668 489,680 244,840
Total 1,524 90,240 4,842145,004 6,386 110,980 220,785 43,671 62,989 686,421 441,581

Table 9 Number of examinees who selects two subjects on Social Studies

Geography and History

Civics WHA WHB JHA JHB GeoA GeoB Total

ContSoc 687 39,913 2,277 62,448 3,817 70,966 180,108
Ethics 130 10,966 409 10.482 405 4,672 27,064
P&E 211 10253 700 17,497 817 8,190 37,668
Total 1,028 61,132 3,386 90,427 5,039 83,838 244,840
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Table 11 Number of examinees who selects two subjects on Science

Science 2 Science 3

CSciA ChemlI ChemIA Physl Earthl PhysIA EarthIA

Science 1
CSciB 1,501 1,334 23 120 3,855 1 44
Biol 21,264 54,412 244 1,366 1,698 5 52
ISci 147 165 50 43 92 5 21
BiolA 128 212 715 16 33 29 62
Science 3
Physics 3,243 101,100 934 - —— —— -
Earthl 485 730 20 - —— —— -
PhysIA 43 54 768 - —— —— -
EarthIA 37 20 23 . —— —— -
Table 12 Number of examinees who selects three subjects on Science
Science 3 Physl Earthl PhysIA EarthIA

Science 2 CSciA Cheml ChemIA CSciA Cheml ChemIA CSciA Cheml ChemlIA CSciA Cheml ChemIA

Science 1

CSciB 1,155 5,152 17 1200 317 7 16 5 16 48 5 3
Biol 553 10,901 31 3,386 3342 16 30 35 19 130 56 20
ISci 80 380 23 62 34 4 32 13 27 48 14 11
BiolA 6 114 39 2 2 10 12 6 150 57 8 44
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