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Abstract For likelihood-based regression contexts, including generalized linear
models, this paper presents a boosting algorithm for local constant quasi-likelihood
estimators. Its advantages are the following: (a) the one-boosted estimator reduces
bias in local constant quasi-likelihood estimators without increasing the order of the
variance, (b) the boosting algorithm requires only one-dimensional maximization at
each boosting step and (c) the resulting estimators can be written explicitly and simply
in some practical cases.

Keywords Bias reduction · L2Boosting · Generalized linear models · Kernel
regression · Local quasi-likelihood · Nadaraya–Watson estimator

1 Introduction

This paper deals with likelihood-based regression problems for which generalized
linear models are typically used. However, the effectiveness of generalized linear
models are limited because of their restricted flexibility. In the case, it is better to
use some nonparametric approach such as kernel regression (Wand and Jones 1995;
Fan and Gijbels 1996). Fan et al. (1995) extended the local constant and local poly-
nomial regression estimators to quasi-likelihood methods, which is an extension of
generalized linear models (see Sect. 2.1). Loader (1999) recommends the local qua-
dratic fit that has the bias of O(h4) and the variance of O{(nh)−1}, where h is the
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236 M. Ueki, K. Fueda

bandwidth, from a practical viewpoint. However, the local polynomial regression esti-
mators require extensive computations because they rely on numerical maximization
at each evaluated point. Fan (1999) overcomes that problem by introducing one-step
local quasi-likelihood estimators, although some efforts at implementation are needed.

If one uses the local constant fit, such difficulties in both computation and imple-
mentation do not occur because it can be written explicitly and simply. However,
the bias of the local constant fit is O(h2) which is often not negligible, while the
variance is O{(nh)−1}. We consequently take a course of not using local polynomials
but applying a boosting algorithm to the local constant fit to reduce the order of the
bias, where the boosting is a recently investigated statistical methodology (Schapire
1990; Freund 1995; Freund and Schapire 1996; Friedman 2001; Bühlmann and Yu
2003; Marzio and Taylor 2004a). Marzio and Taylor (2004b) proposed the boosting for
Nadaraya–Watson estimator, which is the local constant fit in Gaussian model, where
the algorithm they applied is the L2Boosting of Friedman (2001) and Bühlmann and
Yu (2003). The bias of the Nadaraya–Watson estimator is O(h2) and their one-boosted
estimator reduces the bias to O(h4). This type of bias reduction is examined by many
authors (Jones et al. 1995; Choi and Hall 1998; Marzio and Taylor 2004a).

The advantages of our algorithm are the following: (a) the one-boosted estimator
reduces the bias of O(h2) to O(h4) without increasing the order of the variance,
(b) our algorithm requires only one-dimensional maximization at each boosting step
while the local polynomials need multi-dimensional maximization and (c) the resulting
estimators can be written explicitly and simply in some practical cases. Our approach
is also the simplest among the bias reduction techniques.

2 Boosting local constant quasi-likelihood estimators

2.1 Local constant quasi-likelihood estimators

This section describes local constant quasi-likelihood estimators. Let (X1, Y1), . . . ,

(Xn, Yn) be a set of independent random pairs where, for each i , Yi is a scalar res-
ponse variable and Xi is an R

d -valued vector of covariates having density f with
support supp( f ) ⊆ R

d . Let (X, Y ) denote a generic member of the sample, and let
m(x) = E(Y |X = x). When the range of m(x) is restricted on an interval I of R in
likelihood based problems, with generalized linear models, such as Bernoulli, Poisson
and gamma, the estimation is suitable for η(x) = g{m(x)} instead of for m(x) where
g is a one-to-one function from I to R, called link function.

The quasi-likelihood method is an extension of the generalized linear models. The
former requires only the specification of a relationship between the mean and variance
of Y ; it is useful even if the likelihood function is not available. The former method
maximizes the quasi-likelihood function Q{m(x), y} instead of the log-likelihood
function. This paper explains only the case in which the conditional variance is mode-
led as var(Y |X = x) = V {m(x)} for some known positive function V , and the
corresponding quasi-likelihood function Q(m, y) satisfies

∂

∂m
Q(m, y) = y − m

V (m)
. (1)
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The quasi-score (1) possesses properties that resemble those of the usual likelihood
score function: one of the properties is that it satisfies the first two moment conditions
of Bartlett’s identities (Fan and Gijbels 1996). The likelihood score of one-parameter
exponential family is a special case of (1) (Fan et al. 1995).

For simplicity, we deal with scalar covariates X1, . . . , Xn . The local constant quasi-
likelihood estimator for m(x) can be written explicitly as

m̂0(x; h) = g−1{η̂0(x; h)} =
∑n

i=1 Kh(Xi − x)Yi
∑n

i=1 Kh(Xi − x)
, (2)

which is given by maximizing
∑n

i=1 Q{g−1(η), Yi }Kh(Xi − x) with respect to η,
where Kh(z) = K (z/h)/h, K (z) is a symmetric unimodal probability density called
kernel function, and h > 0 is a parameter called bandwidth, which controls the extent
of smoothing. The estimator (2) is simple, but it performs poorly. In the next section,
we strengthen (2) using boosting.

2.2 The boosting algorithm

In L2boosting, a simple base estimator, called ‘weak learner’, is used iteratively
in least-squares fitting with stage-wise updating of current residuals. In this sec-
tion, before proposing the boosting local quasi-likelihood estimators, we describe
the L2boosting algorithm proposed by Marzio and Taylor (2004b), where the weak
learner is the Nadaraya-Watson estimator, which corresponds to (2) when the link
function g is the identity. The algorithm is given as follows.

Algorithm 1 Step 1 (initialization) Let m̂0 be the Nadaraya-Watson estimator with a
previously chosen h > 0.

Step 2 (iteration) Repeat for b = 0, . . . , B,

(i) Compute n estimates m̂b(Xi ), i = 1, . . . , n.
(ii) Update m̂b+1(x) = m̂b(x)+δ̂(x), where δ̂(x) is the Nadaraya-Watson estimator

in which the response variables Yi are replaced by the current residuals Ui =
Yi − m̂b(Xi ), i.e.,

δ̂(x) =
∑n

i=1 Kh(Xi − x)Ui
∑n

i=1 Kh(Xi − x)
. (3)

Least-squares fitting can be viewed as an optimization in the Gaussian regression
model. This consideration enables us to generalize the L2boosting to that in a quasi-
likelihood framework. Here, we must take into account that additivity in step 2 (ii)
does not necessarily hold in this framework. To achieve the generalization, we rewrite
(3) as

δ̂(x) = argmax
δ

n∑

i=1

[Yi − {m̂b(Xi ) + δ}]2 Kh(Xi − x). (4)
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Based on the form of (4), we generalize Algorithm 1 for local constant quasi-likelihood
estimators (2) as follows.

Algorithm 2 Step 1 (initialization) Let η̂0 be (2) with a previously chosen h > 0.
Step 2 (iteration) Repeat for b = 0, . . . , B,

(i) Compute n estimates η̂b(Xi ), i = 1, . . . , n.
(ii) Update η̂b+1(x) = η̂b(x) + δ̂(x), where

δ̂(x) = argmax
δ∈R

n∑

i=1

Q[g−1{η̂b(Xi ) + δ}, Yi ]Kh(Xi − x). (5)

We can obtain the estimator for m(x) by m̂b+1(x) = g−1{η̂b+1(x)}. Note that δ̂(x) is
added in η’s space for range preservation, and (5) requires scalar maximization only,
even for multiple covariates. Furthermore, some cases exist for which the resulting
estimator can be written explicitly and simply as follows.

Example 1 (Gaussian model with identity link) This example corresponds to Algo-
rithm 1. The quasi-likelihood function then coincides with the usual log-likelihood
function of the Gaussian distribution with mean m and variance unity: Q(m, y) =
−{(y −m)2 + log(2π)}/2; V (m) = 1. The link function g is the identity, η = g(m) =
m. At the bth stage, m̂b+1(x) = m̂b(x) + δ̂(x), where δ̂(x) is given in (3).

Example 2 (Poisson model with log link) The link function g is log link, η = g(m) =
log m. The quasi-likelihood function then coincides with the usual log-likelihood func-
tion of the Poisson distribution with mean m: Q(m, y) = −m + y log m + log y!;
V (m) = m. At the bth stage, η̂b+1(x) = η̂b(x) + δ̂(x), where

exp{δ̂(x)} =
∑n

i=1 Kh(Xi − x)Yi
∑n

i=1 Kh(Xi − x) exp{η̂b(Xi )} .

Example 3 (gamma model with log link) The link function g is log link, η = g(m) =
log m. The quasi-likelihood function then coincides with the usual log-likelihood
function of the gamma density with mean m and shape parameter α: Q(m, y) =
−αy/m − α log m + (α − 1) log y + α log α − log �(α), where �(·) is the gamma
function; V (m) = m2/α. At the bth stage, η̂b+1(x) = η̂b(x) + δ̂(x), where

exp{δ̂(x)} =
∑n

i=1 Kh(Xi − x) exp{−η̂b(Xi )}Yi
∑n

i=1 Kh(Xi − x)
.

2.3 Emphasizing the updating term

Primarily, boosting can be regarded as a sequential greedy optimization of additive
models, which is typical in L2boosting. The updating term in each step of boosting can
be regarded as an estimation using iteratively reweighted data. From this viewpoint,
we specifically examine the updating term defined in (5).
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Boosting local quasi-likelihood estimators 239

Second-order Taylor approximation in (5) yields that

�n(δ) =
n∑

i=1

K

(
Xi − x

h

)

Q[g−1{η̂b(Xi ) + δ, Yi }]

≈
n∑

i=1

K

(
Xi −x

h

)(

Q[g−1{η̂b(Xi )}, Yi ]+δq1{η̂b(Xi ), Yi }+ 1

2
δ2q2{η̂b(Xi ), Yi }

)

,

where qi are defined in the Appendix. Therefore, the updating term is approximated
as the following.

δ̂(x) ≈
∑n

i=1 K
(

Xi −x
h

)
q1{η̂b(Xi ), Yi }

−∑n
i=1 K

(
Xi −x

h

)
q2{η̂b(Xi ), Yi }

=
∑n

i=1 Kh(Xi − x)[g′{m̂b(Xi )}V {m̂b(Xi )}]−1{Yi − m̂b(Xi )}
−∑n

i=1 Kh(Xi − x)q2{η̂b(Xi ), Yi } . (6)

Using (6), the updating term δ̂(x) can be interpreted approximately as the reweighted
version of the kernel regressor (5), where the response variables Yi are replaced by the
current residuals as in (3) in Algorithm 1. This consideration describes a transparent
relationship between the proposed algorithm and L2boosting.

3 Bias reduction property

In the following theorem, we state the bias reduction property, i.e., one-boosted esti-
mators η̂1(x; h) reduce the bias of O(h2) in local constant quasi-likelihood estimators,
which is often not negligible, to O(h4).

Theorem 1 Suppose that the conditions presented in the Appendix hold. If h → 0
and nh → ∞ as n → ∞, the estimator after one-boosting iteration, η̂1(x; h), has
bias of O(h4) and variance of

var{η̂1(x; h)} = var(Y |X = x)
g′{m(x)}2

nh f (x)

∫

T 2
K (z)dz + o{(nh)−1},

where TK (z) = 2K (z) − K ∗ K (z) is the fourth order kernel in Jones et al. (1995,
Theorem 1). In addition, m̂1(x; h) = g−1{η̂1(x; h)} has the bias of O(h4) and the
variance of var{m̂1(x; h)} = var{η̂1(x; h)}/g′{m(x)}2 + o{(nh)−1}.

The proof is given in the Appendix. According to Fan et al. (1995), the bias and variance
of the local constant quasi-likelihood estimators, i.e., the non-boosted estimators,
are O(h2) and O{(nh)−1}, respectively, which in turn implies that bias reduction is
achieved without increasing the order of the variance.
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4 Numerical illustrations

This section provides some numerical illustrations in Poisson (example 2) and expo-
nential (Example 3 for α = 1) models. We use the Epanechnikov kernel K (u) =
3
4 (1 − u2)1{−1<u<1}, where 1{·} is the indicator function. The examined conditional
means are

m p1(x) = exp{cos(2πx)}, m p2(x) = arcsin x + 2, for Poisson,

me1(x) = 8 exp(−x2), me2(x) = 3(x + 1)1/2 + 4, for exponential,

and the design density f (x) is the uniform density on [−1, 1]. To measure the per-
formance of resulting estimator m̂(x), we use the square root of average square

errors, RASE =
[

1
300

∑300
j=1{m(x j ) − m̂(x j )}2

]1/2
, for x j = −1 + 2( j − 1)/299,

j = 1, . . . , 300, at which the function m(x) is estimated. The sample size n is 100
throughout. To show how the proposed algorithm works, we demonstrate the beha-
viors for one random sample in Fig. 1 (Poisson) and Fig. 2 (exponential) where m̂b(x)

are plotted for b = 0 (dash), 1 (dot), 2 (dot dash) and 3 (long dash), together with
the true curve (solid). The bandwidth h used in the left and right panels are optimal,
respectively, for b = 0 and b = 3, which are founded numerically with respect to the
RASE. It seems that m̂3(x) in the right panels fit more appropriately to the true curves
than the m̂0(x) in the left panels: the optimal boosted estimators are better than the
optimal non-boosted ones.
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Fig. 1 Estimates in a Poisson case: for m p1(x), a h =0.17, b h =0.42; for m p2(x), c h =0.96, d h =1.67
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Fig. 2 Estimates in an exponential case: for me1(x), a h = 0.54, b h = 0.99; for me2(x), (c) h = 0.97,
d h = 1.26

We examine the boosting for various h, and repeat the procedures 500 times to
illustrate the efficiency. Figure 3 shows the average RASEs against h, where the
plotted numbers 0–3 indicate the corresponding boosting iterations (the 0 corresponds
to non-boosted estimator, i.e., local constant quasi-likelihood estimator). All figures
suggest that boosting works well for appropriate h because each minimum RASE of
the boosted estimate is smaller than that of non-boosted estimate. Note that h which
minimizes the RASE tends to increase as the number of boosting iterations grows. This
phenomenon is identical to that observed in Marzio and Taylor (2004a) for boosting
kernel density estimators. Therefore, we recommend to take somewhat larger h than
the optimal one for non-boosted estimators as the strategy to select h.

Next, we verify the implication in Theorem 1 related to the mean squared error
(MSE). Table 1 compares theoretical MSE expressions given in Theorem 1 and simu-
lated true MSEs in 1000 experiments, where both the non-boosted and one-boosted
estimators, m̂0(x) and m̂1(x) are evaluated at three points x = −0.3, 0, 0.6. The
results show that the asymptotic MSE expressions given in Theorem 1 approximate
the true MSEs well.

In practice, the bandwidth h must be estimated from the data. One way of choosing
h is to use likelihood based cross-validation. The method is useful when the form of
Q(m, y) is known, as in generalized linear models. The bandwidth ĥ selected by the
cross-validation is the h maximizing

n∑

i=1

Q{m̂−i (Xi ), Yi },
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Fig. 3 Average RASE plots: a for m p1(x), b for m p2(x), c for me1(x) and d for me2(x). The plotted
numbers 0–3 indicate the corresponding boosting iterations

Table 1 Theoretical MSE expressions and simulated MSEs for non-boosted and one-boosted estimators,
m̂0(x) and m̂1(x)

T/S B m p1(h = 0.2) m p2(h = 1.2) me1(h = 0.8) me2(h = 1.7)

T 0 0.052, 0.628, 0.018 0.031, 0.040, 0.098 1.39, 2.01, 0.51 0.44, 0.39, 0.44

S 0 0.088, 0.294, 0.040 0.030, 0.025, 0.097 1.19, 1.65, 0.77 0.49, 0.49, 0.98

T 1 0.062, 0.231, 0.038 0.024, 0.028, 0.037 1.14, 1.36, 0.66 0.42, 0.49, 0.61

S 1 0.083, 0.266, 0.039 0.024, 0.025, 0.057 1.18, 1.32, 0.76 0.44, 0.49, 0.90

In the table, each MSE evaluated at x = −0.3, 0, 0.6 is described in the order corresponding to that of x .
‘T’ and ‘S’ denote Theoretical and Simulated values, respectively. B means the boosting iteration number

where m̂−i (·) corresponds to the version of m̂(·) that is constructed by eliminating
i th data (Xi , Yi ). Table 2 shows the average RASEs in 500 simulation experiments
for respective boosting iteration numbers 0–3, with bandwidths selected using cross-
validation. The bandwidths selected here are chosen among finite candidates, which
consist of 50 equi-spaced points on the intervals given in the second line of Table 2.
These intervals are determined empirically according to the variability of ĥ. By the
results in Table 2, we ascertained that the boosted estimation, at least once, works
better than non-boosted estimation, even if the bandwidths are estimated using cross-
validation. Consequently, it is worthwhile to apply the boosting algorithm in practical
situations.
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Table 2 Average RASE for each boosting number, with bandwidth selected by cross-validation

B m p1 m p2 me1 me2
[0.1,1.5] [0.2,2] [0.13,2.3] [0.1,4.5]

0 0.376 0.282 1.274 1.090

1 0.372 0.278 1.263 1.062

2 0.369 0.273 1.263 1.076

3 0.370 0.269 1.255 1.108

B means the boosting iteration number. The candidate bandwidths consist of 50 equi-spaced points on the
intervals given in the second line of the table

5 Concluding remarks

We propose a boosting algorithm for local constant quasi-likelihood estimators that
provides bias reduction. The method is valid in both computation and implementation.
There are still some issues. The first is the selection of h. A reasonable solution in
generalized linear models is to use likelihood-based cross-validation. In some cases in
which the resulting estimators are given explicitly, the required computations for cross-
validation are few. However, in other cases in which numerical maximizations are
required, including logistic regression, the required computations could be expensive.
For this reason, better selection criteria are needed. The second is how to stop the
boosting iteration. In our examinations, the two-boosted and three-boosted estimators
work better than the one-boosted estimators. However, as Bühlmann and Yu (2003)
pointed out, many boosting iterations cause overfitting. To avoid this, we have to
stop the iteration based on a stopping rule such as cross-validation. The third is to
analyze the two-boosted and more-boosted estimators because we have only justified
the one-boosted estimators in this paper.

Acknowledgments The authors would like to thank the referees for helpful suggestions that improve the
paper considerably.

Appendix: Proof of Theorem 1

Preliminary Let qi (η, y) = (∂ i/∂ηi )Q{g−1(η), y} for i = 1, 2. Since Q satisfies
(1), qi is linear in y for fixed x , q1{η(x), m(x)} = 0 and q2{η(x), m(x)} = −ρ(x),
where ρ(x) = [g′{m(x)}2V {m(x)}]−1. Also let σ 2(x) = var(Y |X = x).

We present the conditions: (i) The function q2(η, y) < 0 for η ∈ R and y in
the range of the response variable; (ii) The functions f (4), η(4), σ 2, V ′′ and g(4) are
continuous; (iii) For each x ∈ supp( f ), ρ(x), σ 2(x) and g′{m(x)} are nonzero; (iv)
The kernel K is a symmetric probability density with support [−1, 1]; (v) x is an
interior point of supp( f ). Furthermore, we assume that h ∝ n−1/9, which is the
optimal rate that minimizes the asymptotic MSE of order O{h8 + (nh)−1}. See the
argument below Theorem 1 of Jones et al. (1995). We also write ( fρ)(x) = f (x)ρ(x)

and (m f )(x) = m(x) f (x).

123



244 M. Ueki, K. Fueda

Let δ∗ = a−1
n δ, η̂i (x) = η̂i (x; h) for i = 0, 1, m̂0(x) = m̂0(x; h) and

�n(δ∗) =
n∑

i=1

K

(
Xi − x

h

)(
Q[g−1{η̂0(Xi ) + anδ∗}, Yi ] − Q[g−1{η̂0(Xi )}, Yi ]

)
,

where an = (nh)−1/2. Condition (i) implies that �n is concave in δ∗. Let δ̂∗ be the
maximizer of �n(δ∗), then

δ̂∗ = 1

( fρ)(x)
Wn + op(1) where Wn = an

n∑

i=1

K

(
Xi − x

h

)

q1{η̂0(Xi ), Yi }. (7)

The derivation of (7) is as follows. Using Taylor expansion,

�n(δ∗) = Wnδ∗ + 1

2
Anδ∗2 + a3

n

6

n∑

i=1

K

(
Xi − x

h

)

q3(ηi , Yi )δ
∗3

, (8)

where ηi is between η̂0(Xi ) and η̂0(Xi ) + anδ∗, and An = a2
n
∑n

i=1 K
(

Xi −x
h

)

q2{η̂0(Xi ), Yi }. By η̂0(x) = η(x) + op(1),

E(An) = h−1 E[K
(

X1 − x

h

)

q2{η(X1), m(X1)}] + o(1) = −( fρ)(x) + o(1)

and var(An) = O(a2
n); using An = E(An) + Op{var(An)

1/2}, we have An =
−( fρ)(x) + op(1). A similar argument in Fan and Gijbels (1996, p. 212) shows that
the last term in (8) is bounded by Op(an). Therefore, �n(δ∗) = Wnδ∗− 1

2 ( fρ)(x)δ∗2+
op(1). Using the quadratic approximation lemma (Fan and Gijbels 1996, p. 210), we
obtain (7).

Bias First, we derive the bias. Let µ2 = ∫
z2 K (z)dz. Using 1

n

∑n
i=1 Kh(Xi − x) =

f (x) + 1
2 h2µ2 f ′′(x) + Op(h4) by conditions (ii), (iv) and (nh)−1/2 ∝ n−4/9 ∝ h4,

it follows from (2) that

g−1{η̂0(x)} = m̂0(x) = 1

n f (x)

n∑

j=1

Kh(X j − x)Y j

{

1 − 1

2
h2µ2

f ′′(x)

f (x)

}

+ Op(h
4).

(9)
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Using q1{η(x), y} = g′{m(x)}ρ(x)[y − g−1{η(x)}], (7) is rewritten as

δ̂∗ = anh

( fρ)(x)

n∑

i=1

Kh(Xi − x)ρ(Xi )g
′{m(Xi )}

×
⎡

⎣Yi − 1

n f (Xi )

∑

j 	=i

Kh(X j − Xi )Y j

{

1 − 1

2
h2µ2

f ′′(Xi )

f (Xi )

}
⎤

⎦ + Op(a
−1
n h4).

(10)

In addition, using conditions (ii), (iv) and
∫

Kh(v − u)(m f )(v)dv = (m f )(u) +
1
2 h2µ2(m f )′′(u) + O(h4),

E(δ̂∗) = annh

( fρ)(x)

∫

( fρ)(u)Kh(u − x)g′{m(u)}

×
[

m(u) − 1

f (u)

∫

Kh(v − u)(m f )(v)dv

{

1 − 1

2
h2µ2

f ′′(u)

f (u)

}]

×du + O(a−1
n h4)

= − a−1
n

( fρ)(x)

∫

( fρ)(u)Kh(u − x)g′{m(u)}h2µ2

×
{

(m f )′′(u)

2 f (u)
− (m f ′′)(u)

2 f (u)

}

du + O(a−1
n h4)

= −a−1
n

g′{m(x)}
2 f (x)

h2µ2
{
(m f )′′(x) − (m f ′′)(x)

} + O(a−1
n h4). (11)

According to Fan et al. (1995), the bias of η̂0(x) is given as

E{η̂0(x)} − η(x) = g′{m(x)}
2 f (x)

h2µ2{(m f )′′(x) − (m f ′′)(x)} + O(h4). (12)

Combining (11) and (12), we can show that the bias of η̂1(x) = η̂0(x)+ δ̂(x) is O(h4).

Variance Secondly, we derive the variance. Define η̂∗
i (x) = a−1

n [η̂i (x)−E{η̂i (x)|X}]
for i = 0, 1, where E{·|X} is the conditional expectation under given X1, . . . , Xn .
Then, it holds that var{η̂1(x)} = a2

n E{η̂∗
1(x)2}+E

([E{η̂1(x)|X}−η(x)]2
)−[E{η̂1(x)}

− η(x)]2, where the third term, the squared bias, is {O(h4)}2. To calculate the second
term, we first note, using the Taylor expansion for (9), that

η̂0(x)−η(x)= g′{m(x)}
n f (x)

n∑

j=1

[

Kh(X j −x)Y j

{

1− 1

2
h2µ2

f ′′(x)

f (x)

}

−(m f )(x)

]

+Op(h
4).

(13)
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From (10) and (13),

E{η̂1(x)|X} − η(x) = E{η̂0(x) − η(x)|X} + E{δ̂(x)|X} = D + Op(h
4), (14)

where D = 1
n

∑n
i=1 Ri + 1

n2

∑n
i 	= j Si j , Ri = R(Xi ), Si j = S(Xi , X j ),

R(Xi ) = g′{m(x)}
f (x)

[

Kh(Xi − x)m(Xi )

{

1 − 1

2
h2µ2

f ′′(x)

f (x)

}

− (m f )(x)

]

+ 1

( fρ)(x)
Kh(Xi − x)ρ(Xi )g

′{m(Xi )}m(Xi ),

S(Xi , X j ) = − 1

( fρ)(x)
Kh(Xi − x)

ρ(Xi )g′{m(Xi )}
f (Xi )

Kh(X j − Xi )m(X j )

×
{

1 − 1

2
h2µ2

f ′′(Xi )

f (Xi )

}

.

Note that E(D) equals the bias of η̂1(x) with error O(h4), i.e., E(D) = O(h4).
Observing that E1(R1) and E12(S12) are of order O(1),

E(D2) = E

⎛

⎝ 1

n2

∑

i, j

Ri R j + 2

n3

∑

i

∑

j 	=k

Ri S jk + 1

n4

∑

i 	= j

∑

k 	=l

Si j Skl

⎞

⎠

= {E1(R1)}2 + 2E1(R1)E12(S12) + {E12(S12)}2 + O(n−1)

= {E12(R1 + S12)}2 + O(n−1) = {E(D)}2 + O(n−1) = O(h8),

where E1 and E12 represent expectations with respect to X1 and (X1, X2), respectively.
Therefore, the second term is also of order O(h8).

It is, after all, sufficient to calculate E{η̂∗
1(x)2}. By (13) and (nan)−1 = anh,

η̂∗
0(x) = anh

g′{m(x)}
f (x)

n∑

j=1

Kh(X j − x)Ỹ j + Op(h
2), (15)

in which Ỹi = Yi −m(Xi ). On the other hand, defining Gr,n = anh
∑n

i=1 Kh(Xi −x){
Ỹi − 1

n f (Xi )

∑
j 	=i Kh(X j −Xi )Ỹ j

}
(Xi − x)r for r =0, 1 and ξ(x)=ρ(x)g′{m(x)},

it follows from Taylor expanding ξ(Xi ) around x in (10), with condition (ii), that

δ̂∗ − E(δ̂∗|X) = 1

( fρ)(x)
{G0,nξ(x) + G1,nξ ′(x)} + Op(h

2)

= g′{m(x)}
f (x)

G0,n + op(1). (16)

123
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The second equality follows from G1,n = op(1), which we show in what follows.
Observing that E(Ỹi Ỹ j ) = 0 if i 	= j and = ∫

σ 2(w) f (w)dw otherwise, we have

1

(anh)2 E(G2
r,n)

= E

[ n∑

i,k=1

Kh(Xi − x)Kh(Xk − x)

{

Ỹi Ỹk − 2

n f (Xi )

∑

j 	=i

Kh(X j − Xi )Ỹ j Ỹk

+ 1

n2 f (Xi ) f (Xk)

∑

j 	=i,l 	=k

Kh(X j −Xi )Kh(Xl −Xk)Ỹ j Ỹl

}

(Xi −x)r (Xk −x)r
]

= I1 − 2I2 + I3 + o(I1 − 2I2 + I3),

where

I1 = n
∫

K 2
h (w − x)( f σ 2)(w)(w − x)2r dw,

I2 = n
∫

Kh(w − x)

∫

Kh(u − x)Kh(u − w)( f σ 2)(u)(u − x)r du(w − x)r dw,

I3 = n
∫

Kh(u − x)

∫

Kh(v − x)

∫

Kh(w − u)Kh(w − v)( f σ 2)(w)

× dw(u − x)r (v − x)r dudv.

Then, I1 = nh2r−2
∫

z2r K 2(z)( f σ 2)(x + hz)hdz = O(a−2
n h2r−2) and

I2 = nh2r−3
∫

K (z)
∫

K

(
u − x

h

)

K

(
u − x

h
− z

)

( f σ 2)(u)

(
u − x

h

)r

duzr hdz

= nhh2r−2
∫

K (z)
∫

K (s)K (s − z)( f σ 2)(x + sh)sr dszr dz = O(a−2
n h2r−2).

Similarly,

I3 = nh2r−4
∫

K (s)
∫

K (t)
∫

K

(
w−x

h
−s

)

K

(
w−x

h
−t

)

( f σ 2)(w)dw shds thdt

= nhh2r−2
∫

K (s)
∫

K (t)
∫

K (z − s)K (z − t)( f σ 2)(x + hz)dzsdstdt

= O(a−2
n h2r−2).

Thus, we deduce that E(G2
r,n) = O(h2r ). Noting that E(Gr,n) = 0, var(Gr,n) =

E(G2
r,n). This implies that Gr,n = Op(

√
h2r ) = Op(hr ), in particular, G1,n = op(1),

thereby yielding (16).
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Combining (15) and (16), we can write

η̂∗
1(x) = g′{m(x)}

f (x)
Zn + op(1), (17)

where Zn = anh
∑n

i=1 Kh(Xi − x)
{

2Ỹi − 1
n f (Xi )

∑
j 	=i Kh(X j − Xi )Ỹ j

}
; conse-

quently, E{η̂∗
1(x)2} =

[
g′{m(x)}

f (x)

]2
E(Z2

n) + o(1). The same arguments as in deriving

(16) apply to the calculation of E(Z2
n), which derives the variance.

Bias and variance of m̂1(x) The assertion regarding the estimator for m(x) is straight-
forwardly obtained by noting m̂1(x) = g−1{η̂1(x)} and using the same process as that
of the proof of Theorem 2 in Fan et al. (1995).
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