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Abstract In situations where limited knowledge of a system exists and the ratio
of data points to variables is small, variable selection methods can often be mislead-
ing. Freedman (Am Stat 37:152–155, 1983) demonstrated how common it is to select
completely unrelated variables as highly “significant” when the number of data points
is similar in magnitude to the number of variables. A new type of model averaging
estimator based on model selection with Akaike’s AIC is used with linear regression
to investigate the problems of likely inclusion of spurious effects and model selec-
tion bias, the bias introduced while using the data to select a single seemingly “best”
model from a (often large) set of models employing many predictor variables. The
new model averaging estimator helps reduce these problems and provides confidence
interval coverage at the nominal level while traditional stepwise selection has poor
inferential properties.
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1 Introduction

It is well known that statistical testing for variable selection results in models with
poor inferential properties (Rencher and Pun 1980; Freedman 1983; Miller 2002,
p. 85; McQuarrie and Tsai 1998, p. 427). Yet, it is common in scientific literature to
see exploratory analyses using multiple linear or logistic regression on many variables
and variable selection based on hypothesis testing. In these situations the number of
models is often similar in magnitude to the size of the sample. The analysis is explor-
atory, yet the results are often presented as if they are confirmatory because some
of the explanatory variables have large t-values (e.g. >2) giving the impression of
importance.

Freedman (1983) demonstrated that variable selection methods based on testing for
significant F statistics commonly include explanatory variables with no relation to the
response and spuriously inflate R2 when such irrelevant variables are present. This
problem is often referred to as “Freedman’s paradox.” Freedman’s paradox results
in spurious effects appearing important. Others have demonstrated the same effect
from other perspectives (Rencher and Pun 1980; Hurvich and Tsai 1990; George and
McCulloch 1993). All of these investigations affirm that model selection is important,
but selecting a single best model does not solve the problem regardless of what method
is used to select the model. New approaches to model selection appear in recent books
by Massart (2007) and Claeskens and Hjort (2008), but these methods do not address
model selection bias.

Freedman’s paradox is an extreme case of model selection bias, the bias introduced
while using the data to select a single seemingly “best” model from a large set of
models employing many predictor variables. Yet, model selection bias also occurs
when an explanatory variable has a weak relationship with the response variable. The
relationship is real, but small. Therefore, it is rarely selected as significant. When the
variable is selected it is usually because the effect was overestimated with that dataset.
These weak relationships do not necessarily result in a model with too many parame-
ters (overfit); rather, parameters are poorly estimated. Miller (2002, p. 165) suggests
that there is little that can be done to avoid selection bias. We propose an approach to
substantially lessen the problem.

Model averaging is one of several methods for making formal inference from
multiple models (Burnham and Anderson 2002). This approach is quite different
from standard variable selection methods where inference is made only from the
selected model. Model averaging admits from the beginning of the analysis that there
is substantial uncertainty as to what model is best and what combination of vari-
ables is important. On the contrary, selection methods such as stepwise selection
pick a single best model. Inference is then conditional on this model and variables
not in the model are, therefore, deemed unimportant. These are two very different
approaches.

Here we contrast model averaging and stepwise selection for their performance
in identifying variables unrelated to the response. Often variables included in
exploratory analyses have little or no influence on the response variable and there
is therefore the potential for many spurious conclusions. Our objective is to illus-
trate model averaging versus stepwise selection in protecting against including spu-
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rious variables, i.e. to guard against Freedman’s paradox. In addition, we contrast
model averaging and stepwise selection for their performance with weakly related
variables.

2 Methods

The methods used here follow Freedman (1983) where applicable. One thousand
matrices of 40 rows and 21 columns were generated using normally distributed random
numbers with mean zero and variance one. The 40 rows represented data where n = 40.
Column one was the response variable and columns 2–21 were explanatory variables.
Freedman (1983) used 100 rows and 51 columns. We were unable to use such a large
number of variables because the computing load was prohibitive.

All possible first-order linear regression models are fit to these simulated data
(220 = 1,048,576 models). All models include an intercept. Information-theoretic meth-
ods are used to rank and weight each model (Burnham and Anderson 2002). Models
are ranked with AICc where

AICc = −2 log L
(
β̂, σ̂ 2|g j , data

)
+ 2K + 2K (K + 1)

n − K − 1
(1)

where g j is the j th model in the set of candidate models and K is the number of esti-
mable parameters in model g j . Also, β̂ and σ̂ 2 are the maximum likelihood estimates
of the K parameters. We chose to use this slight modification of Akaike’s AIC (Akaike
1973) for two reasons: (1) because AICc was explicitly developed for the Guassian
linear models (Sugiura 1978) and (2) because it performs a little better than AIC in sit-
uations where sample size is small relative to the number of parameters (Hurvich and
Tsai 1989). Of course as sample size n becomes large relative to K , AICc converges
to AIC.

Quantitative measures of the strength of evidence begin with an estimate of Kull-
back–Leibler information loss,

� j = AICcj − min AICc (2)

(Burnham and Anderson 2002, p. 74). Then, exp
(− 1

2� j
)

is the likelihood of model
j given the data (Akaike 1979) and

Pr
[
g j | x

] = w j = exp
(− 1

2� j
)

∑R
i=1 exp

(− 1
2�i

) (3)

is the probability that model j is the best of all R models given the data (Akaike
1978, 1979). These model probabilities have been termed “Akaike weights, wi ”
as they serve as weights in model averaging and related applications. Given a set
of R models representing R science hypotheses, one of these model is, in fact,
the best model in a Kullback–Leibler sense. Model selection under an information-
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theoretic approach attempts to estimate the probability of model j being this K-L best
model.

These Akaike weights or model probabilities are formal probabilities, but differ
from Bayesian posterior probabilities, even if uninformative prior model probabilities
are assumed. While the information-theoretic and Bayesian model probabilities have
different meanings, we have seen several cases where numerical values for real data
are quite similar.

Inference about model parameters, βi , is based on a new type of model averaging
estimator which averages β̂i across all models, those including and excluding β̂i . The
estimator is

˜̄βi =
R∑

j=1

w j β̂i j (4)

where β̂i j ≡ 0 if variable i is not included in model j (Burnham and Anderson 2002,

p. 152). The ˜̄βi estimator is different than other model averaging estimators which

only average over models including β̂i , often denoted ˆ̄βi (Buckland et al. 1997). The
two estimators converge for dominant variables, but for variables with a weak rela-

tionship to the response | ˜̄βi | < | ˆ̄βi | because ˜̄βi is a type of shrinkage estimator. The

unconditional variance of ˜̄βi is estimated as

vâr[ ˜̄βi ] =
R∑

j=1

w j

[
vâr

(
β̂i j | g j

)
+

(
β̂i j − ˜̄βi

)2
]

(5)

where vâr(β̂i j |g j ) ≡ 0 if βi is not included in model j . The variance is given in
Burnham and Anderson (2002, p. 345). Confidence intervals were computed here as
˜̄βi ± 2.03

√
vâr[ ˜̄βi ]. The value 2.03 is used here because it is the critical value of a

t-distribution with 35 degrees of freedom which is approximately the model averaged
degrees of freedom for the models in the model set. The exact critical value used here
is of little importance because the degrees of freedom are large enough to produce a
critical value near two regardless of the exact number of degrees of freedom used. The
random number generation and analysis process was repeated 1,000 times. Achieved
confidence interval coverage for each βi was computed from the simulation repli-
cates. Analysis was performed in SAS Proc IML (SAS Institute Inc. 2001). SAS code
is available from the authors.

The same procedure of generating random numbers and performing first order linear
regression on the data was also done using stepwise selection. Variables were included
at p ≤ 0.15 (Rawlings 1988). Variables were removed at p > 0.15. These α levels
for inclusion and removal are the SAS default settings for stepwise selection. Due to
the much more rapid computing of stepwise regression, 10,000 simulation replicates
were performed. Confidence intervals are computed for βi each time β̂i is in a model
selected as best. The analysis was performed in SAS Proc REG (SAS Institute Inc.
2001).

123



Model selection bias and Freedman’s paradox 121

To further illustrate the issue of model selection bias, we generated 1,000 data sets
with explanatory variables. Variable 1 was weakly correlated with the response,

Y = 0.05X1 + ε, ε ∼ N (0, 1) (6)

The remaining seven variables were uncorrelated with the response. Each data set con-
tained 40 observations. All first order linear regression models were fit to the data. The
parameter estimates were model averaged, as above. In addition, stepwise selection
was used to select a best model for comparison.

3 Results

While β̂i is an unbiased estimate of βi under both model averaging and stepwise selec-
tion in the situation where βi = 0, the distributions of the β̂i are quite different for
the two methods (Fig. 1). The model averaged estimates are asymptotically normally
distributed. The β̂i from the single best stepwise model estimates have a bimodal dis-
tribution which excludes the true value of zero and this procedure frequently selects
spurious variables (Freedman’s paradox).

Fig. 1 Histograms of β̂1 scaled to densities for model averaging and stepwise selection for linear regression
where true β1 = 0
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Table 1 Confidence interval
coverage for model averaged
parameter estimates from 1,000
Monte Carlo simulation
replicates and stepwise selection
from 10,000 simulation
replicates

For these simulation n = 40 and
all βi ≡ 0

Parameter Model Stepwise
averaging selection

β1 0.963 0.444

β2 0.957 0.403

β3 0.948 0.416

β4 0.961 0.406

β5 0.958 0.419

β6 0.944 0.407

β7 0.967 0.431

β8 0.965 0.413

β9 0.956 0.425

β10 0.959 0.421

β11 0.954 0.431

β12 0.960 0.435

β13 0.953 0.405

β14 0.949 0.419

β15 0.972 0.404

β16 0.963 0.425

β17 0.955 0.409

β18 0.963 0.417

β19 0.958 0.405

β20 0.960 0.447

Confidence interval coverage for the model averaged parameters is very near the
nominal 95% level (Table 1). Confidence interval coverage for parameters selected by
stepwise selection is poor, averaging only 41.9%.

For the linear regression analysis with a weak correlation, model selection bias

is clearly evident for stepwise selection, Ê[ ¯̂
β] = 0.168. When model averaging is

used the average estimated parameter value is much closer to the true value of 0.05,

Ê[ ¯̃
β] = 0.031. Bias divided by standard error is much larger for stepwise selection,

|(0.168 − 0.05)|/0.183 = 0.645, than it is for model averaging, |(0.031 − 0.05)|/
0.159 = 0.119.

4 Discussion

Model selection bias is often severe when making inference from an estimated best
model, particularly when using stepwise selection. The bimodal distribution of param-
eter estimates of uncorrelated variables suggests standard confidence intervals are of
limited use for inference about the parameter. The problem becomes worse for weakly
correlated variables because a large bias begins to appear. Model averaging provides
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much reduced bias in estimates of the parameters unrelated to the response variable
and the parameter estimates have an approximately normal distribution.

Inference from parameter estimates and variances based on model averaged results
provide a more realistic portrayal of the uncertainty in the estimates. If little is known
about the system generating the data and little can be done to reduce the set of candi-
date models, then model selection uncertainty will be high, particularly if sample size
is small. Given an analyst has a set of exploratory data with a sample size of the same
order as the number of variables, the analyst is likely to make relatively few spurious

conclusions if the ˜̄βi model averaging estimator is used.
On the contrary, stepwise selection gives variances which are too small. Even more

striking with stepwise selection is the arbitrary nature of the inclusion α level. We
chose α = 0.15 because it is the default in many statistical software packages. If we
chose α = 0.05 for inclusion and exclusion of a variable, 95% confidence interval
coverage is 0% for the case of β ≡ 0.

Stepwise selection fares poorly when examining weakly correlated variables. In
our example, the average estimated β is more than three times larger than the true
value. More importantly, the bias in β̂ relative to its standard error is large. In this
situation, stepwise selection is not selecting the weakly correlated variable too fre-
quently. Rather, it only selects the variable when it is greatly overestimated. Model
averaging, while not perfect, provides better estimates and a more realistic variance.
Interestingly, the model averaged variance is smaller than the stepwise selected vari-
ance, yet produces a confidence interval with better coverage because of the reduced
bias. Therefore, model averaging was better here than stepwise selection in terms of
both bias and coverage in the case of weakly correlated variables.

We compared model averaging to stepwise selection, but we wish to emphasize that
it is not stepwise selection specifically that is central to the problem. The real issue
is selecting a single best model and making inference only from that model when the
size of the sample is small. Most methods will produce results similar to stepwise
selection, we just chose stepwise as an example.

The use of AICc as a model selection criterion in this context is based on the philos-
ophy that there are important variables to be found. Our use of no important variables
in the example is intended to be an extreme case of Freedman’s paradox and used to
demonstrate the effectiveness of model averaging. When undertaking a study at least
a few of the explanatory variables are expected to be related to the response variable.
Model averaging based on AICc has been shown to be effective for variables that
have a real effect on the response (Burnham and Anderson 2002). Anderson (2008,
pp. 129–132) provides a detailed example.

Methods exist to perform model averaging in a Bayesian framework (Hoeting et al.
1999). It has been shown AIC and AICc can be derived as a Bayesian result and the
Akaike weights are posterior model probabilities (Burnham and Anderson 2002,
p. 303). This derivation is based on a specific prior model probability. With this rela-
tionship between the information-theoretic and Bayesian derivations of the model
weights, both methods are likely to produce similar results. In this paper we wish to
emphasize the importance of model averaging to reduce Freedman’s paradox rather
than to debate the relative merits of different model averaging methods.
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An important issue exists in the definition of a particular β when other variables
are included or excluded from a model. The parameter βi is defined as the conditional
relationship of Xi on Y given the other variables in the model are held constant. The
estimated effect of βi may change given the estimated values of other β j in the model.
One may therefore wonder about the legitimacy of averaging βi cross models with
different sets of parameters. Here we are addressing the case of a variable that is
unrelated to the dependent variable. Therefore, it is guaranteed that the independent
variable is pairwise orthogonal with all of the other independent variables. Given the
variables are pairwise orthogonal, the estimated slopes will be the same regardless of
what variables are in the model.

Our success in reducing the number of spurious effects and model selection bias
is due to two reasons. First, the model averaged estimates provide estimates with less
bias, while selection when using hypothesis testing procedures results in β̂i being
biased away from zero; on average, β̂i is unbiased, but in any given selected model β̂i

is far from 0. With model averaging, the distribution of ˜̄βi has a mode at zero. Second,
the unconditional variances provide a better estimate of the uncertainty and therefore
provide better confidence interval coverage. Part of the effectiveness of model aver-
aging in this example is due to the use of AICc rather than AIC. AIC tends to select
overfit models when sample size is small relative to the number of parameters in the
model. Simply ranking models with AICc and not model averaging, or using a step-
wise algorithm based on AIC, will produce similar results as the stepwise selection
presented here. The critical step to reducing the number of spurious effects is to model
average. Others are also finding that model averaging is advantageous (e.g. Burnham
and Anderson 2004; Yang 2007; Wheeler and Bailer 2007; Wheeler 2009).

We do not advocate using all possible models when attempting to answer scientific
questions. In research situations, some information is likely to be known from past
research or theory to help develop a scientifically reasonable set of a priori candidate
models. Then the data could be analyzed under this reduced set of models and model
averaged inferences can be made. The a priori model set allows only reasonable mod-
els into the candidate set and it alleviates the computing burden in model averaging
over all first order models.

Our analysis took a large amount of computing time because of the analysis of
many simulation replicates. An analysis of a single data set can be done in a reason-
able amount of time (∼10 min). Model averaging is not out of reach of data analysts
who need rapid results. Computing speeds continue to increase and this method easily
lends itself to parallel processing. Therefore, a problem which is currently out of reach
may be reasonably accomplished in the near future.

Our emphasis in this research is to demonstrate how information-theoretic meth-
ods and model averaging can help guard against spurious results when analyzing
exploratory data and data sets with small sample sizes. Scientists often worry about
failing to find an effect, but they should be equally concerned about how easy it is to,
unknowingly, obtain a spurious effect. Freedman (1983, p. 152) contains a very telling
statement: “To sum up, in a world with a large number of unrelated variables and no
clear a priori specifications, uncritical use of standard methods will lead to models that
appear to have a lot of explanatory power. That is the main—and negative—message
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of the present note.” We agree and add that model averaging substantially reduces this
problem.
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