Ann Inst Stat Math (2009) 61:629-661
DOI 10.1007/s10463-008-0190-4

Third-order asymptotic expansion of M -estimators
for diffusion processes

Yuji Sakamoto - Nakahiro Yoshida

Received: 27 December 2004 / Revised: 4 June 2007 / Published online: 18 November 2008
© The Institute of Statistical Mathematics, Tokyo 2008

Abstract For an unknown parameter in the drift function of a diffusion process, we
consider an M -estimator based on continuously observed data, and obtain its distribu-
tional asymptotic expansion up to the third order. Our setting covers the misspecified
cases. To represent the coefficients in the asymptotic expansion, we derive some for-
mulas for asymptotic cumulants of stochastic integrals, which are widely applicable
to many other problems. Furthermore, asymptotic properties of cumulants of mixing
processes will be also studied in a general setting.
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1 Introduction
Suppose that we are interested in an unknown parameter 6p € @ C R?, and that we

can observe a continuous path X = (X;),¢[0,7] of a d-dimensional stationary diffusion
process satisfying a stochastic differential equation

dX, = Vo(X,)dr + V(X,)dw;. (1)
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630 Y. Sakamoto, N. Yoshida

Here Vo = (V)i=1,..a : RY - R,V = (V;’)izl ,,,,, dj=t,..r R > RIQR
(whose smoothness conditions are mentioned in Remark 1), and w is an r-dimensional
standard Wiener process defined on some probability space (€2, §, P). We then expect
that the observations X have information about the parameter value 6.

First, let us discuss the maximum likelihood method just to illustrate a more gen-
eral estimation scheme we will consider later. To estimate 6y based on observations
X satisfying (1), we usually model the observation process X in a parametrized
d-dimensional stationary diffusion process described by the equation

dX, = Vo(X,;,0)dt + V(X)dw,, 6 =@®",...,07) 0O, )

..........

R? @ R” are given functions. Note that in this setting the functions Vo and V in the
true process (1) are unknown and 6y is unknown target, but the model (2) with 6 = 6
does not always coincide with the true model (1). Therefore, the system process (1) in
principle has no relations with the parametric model (2) the statistician uses to estimate
his/her statistical parameter 6, that is, the misspecified case is in our scope. For model
(2), the log-likelihood function ¢ is given by

dvg r S v —1
UX.60) = log T=(Xo)+ | Vo(V V)™ (X1 0)dX;
*
1 (T,
= / VeV V)"V (X,, 0)dt, 3)
0

where Vg is a stationary distribution of a diffusion process satisfying (2) and vy is a

o -finite measure on RY dominating all 7. By using ¢, we can compute the maximum
likelihood estimator as a solution of the likelihood equation §,€(X, 0) = 0,5, = #,

a=1,...,p.
More generally, we may use a minimum contrast estimator defined as a solution of
the stochastic equation §,¥ (X,0) =0,a =1, ..., p, where

T T
(X, 0) :A(X0,9)+/ [S‘(X,,O)dXt—i—/ C(X,,0)dt
0 0

forgivenfunctionsfi ‘RYx O - R, B:RIx® — R®R‘1,C‘ ‘RYx ® > R.
On the order hand, it is also possible to consider an estimator defined as a root of

T
H(X,0) := h(Xr,0) — h(Xo,0) —/ Aph(X,,0)dt =0
0

for a given function 4 : R? x ® — R”, where ,;zig is the generator of (2):

d 9 1 d r ) 82
Ay =D Vi, 07—+ D> ViV () ——.
i=1 axt 2 ij k=1 dxtx/
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Third-order asymptotic expansion of M -estimators for diffusion processes 631

From It6’s formula, 6,¥ and H,., the a-th element of H, can be rewritten as

T
8a¥ (X, 0) = 8,A(Xo, 0) +/ 8a B(X:, 0)V (X1)dw,
0

T
+ / BaB (X1, O)Vo(Xy) + 8.C(Xy, 0))dt
0

T T
and H,. (X, 0) =/ Vihg: (X¢, 0)V (X;)dw; —i—/ (o — oy)hg. (X;, 0)dt, respec-
0 0

tively. Here h,. is the a-th element of i, Vih,, = (01hy;, ..., 0ahg;), 0; = 9/9x",
and <7 is the generator of the diffusion process (1).

Unifying the above estimators, we here consider an M -estimator corresponding to
a p-dimensional estimating function ¥ = (Y., ..., ¥.) that has a representation
[under the true model (1)]

T T
Va; (X, 0) = Ag; (X0, 0) +/ By, (X;, 6)dw, +/ Ca; (Xy, 0)ds “)
0 0

for some mappings A,., B,. and C,.. Note that (4) does not give the definition of
the estimating function ¥, but a representation. In an actual situation, ¥ becomes
the derivative of ¥ (or £), or H itself, given above, and for each estimating function,
functions A, B and C in the representation (4) are given by

Ay (x,0) = 8,A(x,0) or 0,
Bu:(x,0) = 8,B(x,0)V(x) or Vihg (x,0)V(x), ®)
Cu:(x,0) = 8,B(x,0)Vo(x) + 8,C(x,0) or (o — p)ha.(x,06).

In this article, we consider M -estimators éT whose estimating functions have the
representation (4). Applying Theorem 6.4 in Sakamoto and Yoshida (2004) or its
original version, Sakamoto and Yoshida (1999), with the Hérmander type condition
in Kusuoka and Yoshida (2000), we obtain their distributional asymptotic expansions
up to the third order.

The theory of the first-order statistical inference for diffusion processes has been
well developed. We refer the reader to the text books by Kutoyants (1984, 1994),
Prakasa Rao (1999), and Kutoyants (2004). Regarding the Edgeworth expansion and
the higher-order statistical inference for ergodic diffusions, the second-order distri-
butional expansion of a martingale with its application to the maximum likelihood
estimator is in Yoshida (1997); Edgeworth expansions of M-estimators in Sakamoto
and Yoshida (1998a) by the global approach (martingale approach).

The aim of the present article is to derive and validate a third-order asymptotic
expansion formula for the M -estimator of the diffusion process (diffusion M formula).
After that, we will make an expansion formula for the maximum likelihood estimator
(diffusion MLE formula) as a special case of this result. Our guiding principles are
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632 Y. Sakamoto, N. Yoshida

the local approach (mixing approach) and the Malliavin calculus. See Sakamoto and
Yoshida (1999, 2004) for more details.

A third-order diffusion MLE formula was originally obtained in Sakamoto and
Yoshida (1998b). It used the Bartlett type identities, as the use of those identities is
very common in independent models. However, in this article, we will derive diffusion
MLE formula without Bartlett type identities because it is not necessarily easy to prove
those identities rigorously for diffusion models. And, again, we can obtain the same
third-order diffusion MLE formula as Sakamoto and Yoshida (1998a) if we assume
the Bartlett type identities. From a practical point of view, it is meaningful to give
explicit expressions to the coefficients appearing in the expansion. For this purpose,
we will provide certain cumulant formulas for stochastic integrals.

2 Expansion formulas

To define the M-estimator, we will first show the existence of the solution of the
estimating equation, and after that we will present an expansion formula. Finally, we
will apply the result to the maximum likelihood estimator.

We denote by v the stationary distribution of X satisfying (1), and also assume
E|Xo|* < oo forany k > 1. Assume that the parameter space @ is a bounded convex
open set in R?. Fix 6y € © arbitrarily. For the sake of simplicity, the derivatives of v
and the functions A, B, C in ¥ w.r.t 6 are expressed as

Aa;almak (x,0) = 8(11 ce SQkAa;(xv 0), Ba;almak (x,0) = 8a1 ce 8ak Ba;(x, 0),
Ca;a|~~ak (x» 9) = 5a1 e (Sakca; (xa 9)» Wa;almak (9) = 5111 te 8ak‘ﬁa; (9)

For a measurable function f : RY — R, let G(f) be a function such that &/ G(f) =
f—v(f),and [f] = —(VG(f))V,where v(f) = fRd f(x)v(dx). Assume that

[DM1] (i) foreach x € R? and a € {1,...,p}, Au: (x, ), Bg:(x,-), Cy: (x, -) are of
class C3 on ©:
(ii) there exist positive constants C;, m;,i = 1, 2, 3 such that for any x € R4,
k=1,...,5a,ar€{l,...,p},

sup |Aa;a1~»-ak(x» o) <Ci(1+ |x|)ml,

6e®
SUp | Byay-.q (X, 0)| < Ca(1 4 [x)™2,
fe®
sup |Ca;a1-~ak(xv 0)| < Cz(1+ |x|)m3;
0B

[DM2] fora, b, c,ai,az € {1, ..., p}, there exist functions G(Cy.) (-, 6p),
G(Caza1) (-, 00), G{Casa1ar) (-, 60), G(B}. - By ) (-, 00), G(B., - B;.)(:, 60),
G([B}. - B}.1- B%)(-, ), where B}, , = By;4 + [Cq;al;

[DM3] (i) foreacha € {1, ..., p}, v(C, (-, 600)) = 0;
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Third-order asymptotic expansion of M -estimators for diffusion processes 633

(i) fora,b,c,ar,a; € {1,..., p}, the functions Cq;, Cu:a;> Cazayar> B -
* * * * * * ’
Bb;, Ba;al . Bb;, [Ba; . Bb;] . Bc; € ¢, where

%:[f:Rdx(H)—HR Im > 0,3C > 0,
IG(f)(x,00) < CA+|xD™, [[f1(x,6)] < C( + le)m].

For simplicity, we will hereafter denote 4. 4 (X, 0) by ¥4.4(0). Let

Za: = TV2(T W0, (00) — 50:(00)), Zap = TV (T a:p(60) — Pa:(60)),
Zave = T2 (T Warbe (00) — Ve (B0)),

where ,:(0) = E[Ya:(0)1/T. Vaaya, @) = El¥acaya (0)]/T. In case the

matrix (\7,1;;,(90))5 p—1 is nonsingular, let (17“?1’) = (ﬁa;h(éo))’l, Z% = =44 Zy.,
. ey . ) - o -

Z% = =05 Zyp, 2%, = =V Zaipe, and 05, = =05 Vype(00), Uy =
-’ — . - . . .

=Y Uy pea(00), and A% = =044 v(Ay. (-, 6p)). Hereafter, we omit 6 in functions

of 0 when they are evaluated at 0 = 0, €.8., Va:q-..qp = Vaza;---a; (00)-
Moreover, we suppose that there exists a positive constant a such that

E[E[f195] - ELA| =7 e £l

for any s, t € R4, s < ¢, and for any bounded %’g OO)-measurable function f, where

f@f =o[X; e INRL]Vv A, I CR, 4 is the o-field generated by null sets. Here
we say that X has the geometric-mixing property if this condition holds true. Under a
very mild condition, the geometric-mixing property of diffusion processes was proved
by Kusuoka and Yoshida (2000). See Veretennikov (1987, 1997) for non-degenerate
diffusion, Masuda (2004) for Lévy OU process, Meyn and Tweedie (1992, 1993a,b)
for discrete or continuous-time Markov process.

Theorem 1 Suppose that there exists an open subset @ C © such that 6y € @ and
that

inf
01,0260, |x|=1

1
N (/ v (Ca;b('s 01 + s(0, — 91))) ds)
0

> 0. (©6)

Moreover, assume that for any a,b,c = 1, ..., p, §;V(Au:p(-,0)) = v(Au:pe (-, 0)),
8V(Ca:p(+,0)) = v(Cape (-, 0)). Then, under the conditions [DM1] and [DM3] (i),
foranym >0, y € (0, 1),

P[(3107 € O such that ¥(O7) =0) and (|07 — 6yl < TV =1—o(T™™),

where 31 stands for unique existence. Furthermore, for any extension of or, say or,
and for any B € C3(0) := {f € C*(O) | f,df, 3> f are all bounded), let 0} =
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br — T~ B(ér). Define R§ by

. 1 . 1
VT @5 —00)" = 2% + — | 2%,2% + =v*, 725725 + A% — ge
\/T b 2 bc
1 1—; -a;, =e; b; ¢, 7d, =a; b; ¢ —d,
+r (8 (u“bcd +3vabevecd) VASVAVASE SV AV ARV AL

Vb a peipd L a b e i gby e
—1—51) CdZ”bZC’Z ’—i—EZ“bCZ VAL +Z“bZ VA

: . S a4 e 1
—7b5,8% + AP (Za’h + va;ﬂzc,)) + ng. @)

Then there exist C > 0 and & > 0 such that

P [T’1/2|R§‘| <CT™*? a=1,..., p] — 1 —o(T ). ®)

It is possible to choose a measurable version of Or by the measurable selection
theorem, cf. Pfanzagl (1994): on a certain event described in the proof of the existence
of a root ér, apply the measurable selection theorem to the functional —|{(0)] to
obtain a measurable version of f7, and next extend it to the whole sample space as
a measurable mapping. The above-mentioned theorem ensures the existence of a
consistent sequence of M-estimators. On the other hand, it is possible to show the
convergence of any sequence of M-estimators with a convergence rate if we apply the
polynomial type large deviation inequality (Yoshida 2005).

For the M -estimator OT or the bias-corrected version 9* defined in Theorem 1, their
distributional asymptotic expansion can be derived from Theorem 6.4 of Sakamoto
and Yoshida (2004).

7 »
Let Z\V=T12(z Z,)and Z=T"2(7 Zpipr Z z

et = (Z1;, ... Zp)and Z "= (Zi1s oo s Zpips Ziits -+ Zpipp)-

To designate the dependency of T, write Z(To) = (Z;Q)T, R ZLQ)T) and Z(T1 ) =

) ()] o ) . S
ZivgrZppr - Ziange - £y pp.1)- Then the Stratonovich stochastic differ-

ential equatlons they satlsfy are given by

dZ(O) = Ba; (Xl‘a 9()) o dwt + C* (Xta eo)dta

dZ\),, = Ba:p(X:, 60) o dw; + Cjhp(Xy, G0)dr,
dZ{)., = Bape(Xy. 60) o dwy, + CJ, (X1, B0)dr,

where C*A(x 0) = Cya(x,0)—5 Zj IZk 1Vk(x)akBl{;A(x,9)—1}(CQ;A(-,90))
for A = {¢ aj,ajaz}, a; = 1, ..., p. Note that the d-dimensional diffusion process
= (X', ..., X%) defined by (1) satisfies

dXi = VI(X) o dw/ + Vi (Xpdr,
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Third-order asymptotic expansion of M -estimators for diffusion processes 635

where V1 is the (i, j)-th element of V and Vi is the i-th element of Vj, and Viis
defined by Vi = Vi — 3 3°/_; >4, VE VI, i =1,....d. Denote by B! the i-th
element of By; and let Vo1 = (Vg ..., Vg, Cf., ..., Chyand Vip = (V! ..., V7,

1
B’ .. Bl Di=1,...,r
Assumethat

[L] for some integer g; < p + p there exists a g1-dimensional random variable
Z7 consisting of the elements of Zy M such that

(i) Cov(T~V 2Z*) converges to a positive definite matrix, where Z; =
. Zr),

(i) Zp = LZy for some g2 X q1 matrix L, where Zrisa ¢>-dimensional
random variable consisting of the other elements of Z(!) than those of
Zr,and ¢1 + g2 = p* + p°,

(iii) for some x in supp(v) Lle[Vo, Vi, ..., Vi(x, 0) = RA+P+ar, where
Vo_(V()lCl,.. )V_(V,lBl,...,Bél),i:l,...,r,C;‘.‘
is the drift of the Stratonov1ch stochastic differential equation for the j-th
element of Z;, B; is the i-th element of its diffusion coefficient.

Here Lle[V(), Vi, ..., V.] denotes the linear manifold spanned by U:io Y., Yo =
Vi,...,V,}, 2, = {[V], VIIVeZX._1,j=01,...,r} and [\_/j,V] is the Lie
bracket.

In order to represent coefficients in the expansion formula, we put (74b)y=
(V(Ca:p)) ™" (evaluated at 6p), A% = —49 v(A.), and AP = §ETHD Y (A ).
For any index sets A, B, C and D, let B:;A = Ba,A +[Cy:al,

Fu;A,b;B ZV(B:;A 'B;;B) F[uAbB]cC —V([ a: A Bb 3] B*C),
Fla:Ab:B1.1e:c.d:D) = V(B4 - Byl - [Bhc - Bj.pD),

Fita:a.b:B1.e:c1.a:0 = V(([B}. 5 - Bl Biicl- Bj. p).
Moreover, the following are also requisite for the formula:

b ~a;a’' ~b;b' 1 _
p® = vV Fyr pr, (pap) = (p
fab — pwa Db;b Ty — Aa;a ]jb;b Fa’,b/ _ pwa Ab b Wb

Tab = Cov[Ay; (Xo0), Ap; (X0)] — v(Ag; G(Cp;)) — v(G(Cq;) Ap;)

ab)—l

T
+2v(G(Cy;) G(Cp;)) + E |:G<Ca;)(XT)/ BZ;(Xz,Q)dwt}
0
T
+E [/ B} (X;, Q)dth<Cb;)(XT):| ,
0

. 1 " -
*a; ~ ~ ~b';b
n be — 2va i ( pcc’F b, +v pbb/Fa’;c,b”; - V(Ca’;bc)) 5

*a; ~aa' (~c';c” -
N pe=V (V IOCC/FaQbyC”; - V(Ca’;bc) s
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[3] [3]
1~ Al - 1 ~ d’ ~
U*ch = gva ¢ —V(Ca';ped) + E pdd Pda Fa':be,ar; | + § Z /L*bc n*ad’ d’
(be,d) (be,d)

[3]
_ S N N -
A*ubc — _paa vb’b pee Z F[a’;,b’;],c/l
(ab,c)
6
xabed ~aa’ ~b;b ~cic ~d;d’ S 3
H =BT ReeD Z (Futas pst.esnar + B pinaryes)
(a'b',c',d")
[3]

+ Z F[a’;,b’:],[c’;,d’;]
(a/h/ /d/)

*a; __ ~a;a ~c';c”
VB,C_V pcha ;B,c”;

~*a;b,c;d=\~}a;a1~)c;c a/bc’d_v ffvdf ’bf’

VSV Fosa e + VTV VI Fo g
and

~ e by e P N N R A - —
N*a,’b,’c,d — _pma vb,b pese (F[a’;,b/;],c/;d + F[a/;,c/;d],b’; + F[b’;,c/;d],tl/;)
xC; ~aa ~b:b ~e:e [ & - -
+V jyeva’a phib e (F[a/;,h’;],e’; + Fla;,e.0; + F[b/;,e’;],a/:) .

Here Z( ab.c)’ Z( ab.c.d)’ etc. are summations over the indicated number of terms
obtained by rearranging the subscripts. For M > 0 and y > 0, the set &(M, y) of
measurable functions from R” — R is defined by

EM,y)={f: R’ - R, measurable, | f (x)| < M(1 + |x]|)V},

and for f € &(M, y), r > 0 and a positive definite matrix o, let

w(f.r.o)= /Rp sup{| f(x +y) — fO)] : |y| < r}p(x; o)dx,

and let

e T
ar-a (V5 7) = ¢ (x; 0) dx@ ...3xak¢(x’ o)

where ¢ (x; o) is the density function of p-dimensional normal distribution N, (0, o).
Hereafter, for a matrix o = (o“b ), we will often write %’ to denote o, for example,
hay...qp (X; U“b) for hgy...q (x; 0).
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Third-order asymptotic expansion of M -estimators for diffusion processes 637

By using these notations, we obtain the third-order diffusion M formula:

Theorem 2 Let M, y > 0, and p > (p“b) Assume that [L], [DMZ] [DM3](ii)
and the conditions in Theorem 1 hold true. For any B € C2 (®) and 07 defined in

Theorem 1, let 9; = 0r — ,B(QT) /T. Moreover, assume that the diffusion process
X given (1) has the geometrically strong mixing property. Then there exist positive
constants c, C, € such that forany f € &(M, y)

ELF (T @ — 60))] — / dy® £ (5O 2(vD)| < co(f, ET-EHD2, pab)
+o(T™h), )

where

1
ar20?) = oy ©; p) ( Tcabchabc(y(o); p?)

+ — B )h (y(o),p“b)Jr A*“bhab(y(o) aby

1 <~a' cd
— (A% P
/—T cd

1
U (YO 0% +

AT DT Cabccdefhabcdef (y(0)§ pab)) s

B = g _ Aai cabe _ jrabe 4 6/1*y 0" agh'h,
A*ab _ zab 4 o ()'L*acd + A0 ‘e pd d) ll*l?d + ZSE,N*a;’C’;,b;C + ¢ i, @,
2 (A7, — 8 B) + 85 M, Py 43U, 0°7) o0
+@ 0t = B (200 - B°).
cabed _ pprabed | g abe (~*££}pef _ 501) +24 ()'L*abe + 217«*,,/ /pb bpe e) [L*c;/epd’d
+12 (Pbb/Pdd,M*c; By NGB0 d/) + 24U*ch/d,,0b bpc'e pd'd,

Remark 1 In Theorem 2, it is implicitly assumed that V', Vj are of class C;’O, the set
of smooth functions whose derivatives of positive order are bounded, and B, 4 (-, 6),
Ca: (-, 00), Al <2, are C*°-functions on R4 with all derivatives having at most poly-
nomial growth order for Condition (iii) in [L], while Condition [DM2] in Theorem 2
requires that G(Cy.qy..q,) (- 60) € C*(RY) (k=0,1,2;a,a1,...,ar=1,..., p),
etc. [We only consider a classical solution to the Poisson equation, not a weak solu-
tion in the distribution theory. ] Under the ellipticity assumption for V' V', it is known
that the smoothness of function f is transferred to the solution G(f) of the Pois-
son equation. In one-dimensional case, G (-) is just a duple integral operator and has
an explicit expression. Then it is easy to see the smoothness of G(f). See Yoshida
(1997), where the growth rate is also presented. On the other hand, we should note
that introducing the Poisson equation here is only for convenience of giving a closed
form of the coefficients in the asymptotic expansion formula. The existence of those

@ Springer



638 Y. Sakamoto, N. Yoshida

coefficients can be verified by the mixing assumption, without the assumptions of
Poisson equations if we do not require closed forms given by Theorem 2. Also, it is
possible to construct a solution to the Poisson equation for a zero-mean function as
an integral of the semigroup under the mixing condition [see Theorem 3 of Kusuoka
and Yoshida (2000), also Pardoux and Veretennikov (2001, 2003) for more explicit
presentation]. In robust estimation, the estimating function is often constructed by
giving a function G for G(f). In a standard case of the maximum likelihood estimator
for a correctly specified model, it is possible to replace the second-order coefficient
expressed through a Poisson equation by a consistent empirical estimator, so that
the existence of the coefficient is sufficient in practice up to the second order under
studentization if necessary.

Remark 2 Condition [L](iii), which is referred to as Hormander type condition,
ensures the non-degeneracy of the distribution. It requires only differentiation of coef-
ficient vector fields, and is practically convenient. Instead of this condition, we can use
other mild conditions which guarantee local degeneracy of the Malliavin covariance.
If the Malliavin covariance is nondegenerate at a skeleton in the support of the process,
then the local degeneracy in the vicinity follows. See Yoshida (2004) for details. The
inifinite differentiability assumption can be relaxed under a stronger nondegeneracy
condition.

The asymptotic expansion of the maximum likelihood estimator can be easily
derived from this result, for the misspecified or specified case. Here we confine our-
selves to the specified case for the sake of simplicity. Suppose that observation X
satisfies (2) with & = 6y and that the estimating function v is the derivative of the
log-likelihood function (3). For the key functions A, B, C, we then have

0 _ 0 ! 7N — 117

A x.0) = 2 (log—(x)) Ba;(x,e)_W(VO(VV) V(x,e)),
9 i

Cq;(x,0) = (VO(VV) (x, 0)(Vo(x, 90)——V0(x 9)))

For the diffusion MLE formula, we put

ﬁAl,Az = v(Ba, - Ba,), FAl,[Az,Ag] =v(Ba, - [Ba, - Ba;)),
Fia, as1.1As.A40 = V([Ba, - Bay1- [Bas - Ba,)),
Fiia;,As).450,44 = V([[Ba, - Ba,]- Bas]- Ba,),

where B4’s are evaluated at 8 = 6. By using these ﬁ, we define p,p, p”b F(Z)c, ne,

and i7*4_ by pab = Fap, (0°°) = (pap) ™",

[3]

Fa(g)c = Fab.c — Flaplc + z Fiab).e»
(ab,c)
. 1 1 - 1 1
i = g T and = (R ).
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Third-order asymptotic expansion of M -estimators for diffusion processes 639

; 32 10g dV9
9 b = v PN - b
6=80 ¢ 904067 " dx |g_g,

Moreover, let

Ad — pua’,,(_3 dve

004 dx
C 1 dV9 (X ) d 1 dV(g (X )
Tqap = Cov og — » o 108 —— .
ab 004 % dx |y_g 0 900 % dx gy O
Let h®1 "% (x; o) = @b -~-J“kbkhbl...;,k (x; o) for a positive definite matrix o =

().
With these notations, the diffusion MLE formula is obtained as follows:

Theorem 3 Let M, y > 0, and p > (p®). Assume the same conditions as in The-
orem 2 for the diffusion process X and the estimating function v = 3£/9d6. For any
B € C123 (®) and the extended ér, let é; = ér — ,B(ér)/T. Then there exist positive
constants ¢, C, & such that for any f € &M, y)

ELF (T @ — 60))] — / dy® £ (5O 2D)| < co(f, CT-E+D2, pab)

+o(T™h, (10)

where

hebe (y @ paby

qr2(3?) = o (v, p“b)( f o

1 L 1
+——paa (1@ = BOR (05 p) + ﬁAth“b(y(o); p?)

JT
! 1
g Canedn G5 0 e h® N (s p“h)),
Cope = =307 B =B — A%

oy = Tab + 2Lap — p<d (Fbcd,a + Fab.cd — Fac,pd — Fla,el,1b,d) + 2Flab,c),d

+2ﬁ[ac,b],d + 4ﬁ[b,d],ac + ﬁ[c-d,b],cz + 2ﬁ[[b,c],a],a’ + 2ﬁ[[b,c],d],a)

1 -
d ( 1)~ ( 1) 1 (1) ( 1) (€] (= 1)

1 (D (=D
+Fc(e a) (de f + de,f))
ooy (= BV = B+ 2paar (AT, — 868
CZth = _12( [ab]c]d+Fab Cd"l‘F[abc )+3Fab 1,[c,d] — 4ﬁabc,d

3 5d 1 1 ~(—1
F12FCYD B — )+12p€f( e )+F;))rjfyd).

ab,c
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Remark 3 In Theorem 3, the representation of the coefficients in the expansion are
obtained without the Bartlett type identities [BI1]-[BI4], [DV1]-[DV3] in Sakamoto
and Yoshida (2004). If one assumes those identities, the representation will become
the same one as Sakamoto and Yoshida (1998b).

Remark 4 In case one applies this third-order diffusion MLE formula to the
Ornstein-Uhlenbeck process, it turns out that Condition (i) of [L] is not satisfied due
to the complete linearity of this exceptional model. However, Sakamoto and Yoshida
showed in 2000 that even in such a case, the third-order diffusion formula of Theo-
rem 3 still holds true as mentioned in Uchida and Yoshida (2001). See Sakamoto and
Yoshida (2003) and Remark 5 in Sakamoto and Yoshida (2004).

3 Proofs of theorems in Sect. 2
3.1 Cumulants of a mixing process

In this section, we will study the cumulants of a mixing process. The results will be
applied to stochastic integrals in the next section which leads to the proof of Theorem 2.

Let (2, Z,P)bea probability space with sub o-fields Z1, where I is any interval
in R, satisfying that .Z; C %, if I C J. Assume that for p > 1. ¢ > 1 with
1/p+1/q < 1, there exist a > 0 and b > 0 such that

|Cov(F, G)| < ae U= F|, 1G], (11)

forany s, € R, s <t, and for any F € J( 00,5] ﬂLP(Q) and G € ¥ [,,oo) N
L, (). This inequality is often referred to as covariance inequality, from which the
cumulants of measurable functions w.r.t. .}, for some intervals /; can be estimated
by the maximal gap of intervals I;.

Lemmal Lete > 0, p > 2, m k € Nwith2 <k < pand kv 3 < m, and
let my, mo and m3 be positive integers satisfying m| + my + m3z < m. Suppose
that {t;}i=1,..m is a real valued sequence such that t| = --- = ty, < ty,41 <

S tytmy < byqmgl = = tm1+m2+m3~and that {G;}i=1,...m is a sequence of
R-valued random variables such that G; € fﬁ(_oo,,i]ﬂLp(Q)fori =1,...,my, G;
€ FF—ea)NLp(Q) fori =mi+1,...,mi+ma, and G; € F F—e.00) N Lp(Q)

fori =my+my+1,...,m| +my+ ms. Then there exist positive constants b and
¢ depending only on p and k such that for any finite subsequence i1 < iy < --- < iy
of {1,...,m},
k
ICum[Gi, -+, Gy ]l < ce®ECM TGy, 1,
j=1
where g = max{t;,,, —t;; [j=1,....k— 1}
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Proof This assertion is more or less known, but here we provide a proof for

selfcontainedness. Let u; = E[Gg, -+ Gg,, ] for any index set A = {ay, ..., o}
C {l,...,m}. Fix a subsequence i; < --- < iy of {l,..., m} arbitrarily. Then it
follows from Holder’s inequality that for any disjoint decomposition of {i1, ..., it}
into Ay, ..., A,
k
ICum[Giy, -+, Gy Il < c1(k) [T 1Gi; N (12)
j=I

where cq(k) = Zf-‘zl(i — 1)!Nl.k and Nik is the number of the decompositions of
{1,...,k}intoi parts. Letn be anindexin {1, ...,k — 1} suchthatg =¢;, ,, —1,,and
let AV = {it,...,iy} and A® = {in+1, ..., ix}. In the case where g > ¢, one can
easily show from (11) and Holder’s inequality that for any disjoint decompositions of
{i1,...,ik}into Ay, ..., Ajand foranyi =1,...,j,

k
—b(g—
HAW R 4@ = ey ) [pg@ (“Ai_“Al?”“A,@) MAyy "'MA_,-‘fae s 8)| IIIGi,- llps
j=1

for some positive constants a and b depending on p and k, where Agl) =A;NAD
and Al@ = A; N A®. Note that if AEI) =¢or Al(.z) = ¢, then uy, — MAZ{I)MAEI) = 0.
Therefore, we obtain that

k

ICum[Giy, -+, Gyl = D (=/7'G =Dt D ((MAI —MA<1|>MA<12>)
J=1 {1k} /j
X/’LAQ"'MAj+"'

+“A§”'““A<12) T ,U«AZ{L)IMAIQI (I"l‘Ai - /“‘Al?"“AfZ))

XI’LAHH e I’LAI’ + .-+ I'LAEI)MAEZ) o I‘LA(,I_)]I‘LA(,Z_)]
X(,U«Aj _,U«A;_I)MA;Z)))

k
< a1k e ®E O TG, 11, (13)
j=1

for some positive constant ¢} depending on p and k. Here Z stands for the

{1.....k}/j
summation over all decompositions of {1, ..., k} into j disjoint nonempty parts
Ay, ..., A;. Combining this with (12), we obtain the desired result. O

The cumulants of a process whose increments are measurable w.r.t. %, for disjoint
intervals /; are evaluated by this lemma.
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Proposition1 Let p > 2, k e Nwith2 <k < p, Fy € ﬁﬁz‘[o] N Lp(fz ' RY), and
let G = (Gy)ier, and H = (Hp)ier, be Rd-valuedprocesses such that G; — G €
ﬁj[s,t] N Lp(fZ :RY) foranys < t, H; € ﬁj[t,oo) N LP(Q : RY) for any t > 0.
Suppose that sup,_, E|(G; — G)//t — s|P := B, < o0, sup, E|H;|” < oo. Denote
Gr/NT and (Fy+ G + Hr)/NT by Gt and Vrr, respectively. Then, for any T > 0
and any index set {ay, ...,ar}, a; = 1,...,d,

Cum|[yyf', ..., U] = Cum [GF, ..., GF] + T 2RP ™, (14)

where 1&% and G‘; are a-th elements of Y and G, respectively, and RaTl'"a" is some
constant bounded as T — oo. Furthermore, there exists a positive constant c(p, k)
depending only on p and k such that

|Cum [GS, ... GF]| < c(p. k)lgﬁ/PTf(k—z)/z.
In particular, R‘;b and R‘}b" satisfy

(2]
R§? = Cov[F§, F§1+ Cov[H{, HJ1+ ) (CovlF§, G}
(@.b)
+Cov[GF, HpD) + 0(™°"),
[3]
R§P® = Cum[F§, F§. F§1+ Cum[H{, H}, H{1+ »_ Cum[F§, F{. G%]
(ab,c)
[3] 3]
+ > Cum[F§. G5, G4+ D (Cum[GY. G4, Hf]
(a,bc) (ab,c)
+Cum[G4, HY, HS ) + O(Te ®7/2),

for someb >0, wherea, b, c =1, ...,d, and F§, G, and H} are a-th elements of
Fo, Gt and Hr, respectively.

Proof (a) First, we consider the inequality
|Cum [G‘;‘ e GaTk]| < c(p, k),Bf,/pT_(k_z)ﬂ.
This estimation is fairly familiar; however, we present here the proof to facilitate the

understanding of the second half (b). Let (AG;);o,1,...,[T]+1 be a sequence of random
variables defined by

Go @i=0
AGi =16 =G 1 =i<[T) .
Gr -G (i =I[T]+1)
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Note that AG; € ﬂﬁ[i,l,i], i =0,...,[T]+ 1. From the multilinearity of the
cumulant, we have

|Cum[GT (_}‘}k”

T1+1 [T]+1
< |7k Z ZCum[AG . AGE ]
i1=0 ir=0
[T]+1 [T
<T

T2 Z > |em[acy..... 4Gy

m=1 M=m (i . ix}eI¥(m,M)

’

where ﬂlk(m, M) = {{iy, ..., ik} | min(iy,..., i) = m, max(iy,...,ixy) = M}.
Note that the number of elements of flk (m, M) is equal to N{‘ (M — m), where
NE(x) = (x + DF —2xF + (x — DFif x > 1, and N¥(x) = 1if x = 0. Applying
Lemma 1 with ¢ = 1, we see that there exist positive constants b and ¢, depending
only on p and k such that for any index set {iy, ..., ix} € flk(m, M),

‘Cum [AG?I', L AG?:] < e—b((g—l)vO)ﬁf)/p7

where ¢ = max{ij+1) —ijlj=1,....,k—1,},{iq),... i} is an index set satis-
fying {i(1), .. .igy} = {i1, ..., ix}andi(1y < --- <i@). Since g = (M —m)/(k — 1),
we obtain that

[T1+1[T]+1
> > |em[acp..... a6y
m=1 M=m (i, . i}eIFm,M)

[T]+1[T]+1
<c ’32 Z Z N]k(M _ m)e*b(((M*m)/(kfl)*l)VO)

m=1 M=m

[T1+1 fm+k—2 [T]+1
<apy Y, ( S NM-my+ D> Nf(M_m)eb«Mm)/(knn)

= M=m M=m+k—1
[T1+1 [ k=2 [T]-m+1
— 4 — k

camt Y (S Mo+ 3 ML) < oo g

m=1 \M'=0 M'=k—1

for some positive constant c3 depending only on k. Thus we have that

Cum[G7,....GF] < c(p, k),Bf,/pT_(k—D/z_

@ Springer



644 Y. Sakamoto, N. Yoshida

(b) Next, we will consider the remainder term R7'“.Let A = {ai, ..., ar}, and
for any disjoint decomposition A1 U Ay = A, let

CumifAz = Cum [Fg”, L FMGE L GaTz’k’m]
Cumﬁ’lffA2 = Cum [Fg“, L FYMUHP H;M_’”]
Cum§’, = Cum [G§, L G P H ]
where A| = {ai1,..., a1} and Ay = {az1, ..., a2 xk—m}. Moreover, for any disjoint

decomposition A1 U A U A3 = A, let

F.G.H _ ap dm GO ay  yyasi as k—m—I
Cumf G = Cum [ B RS GEL L GRLHP HP
where A1 = {ay1,....a1m}, A2 = {a21,...,ay) and Az = {az1, ..., a3 k—i—m}-

Then it follows from the multilinearity of the cumulant that

Cum [y, ..., U] = Cum [GF, ..., GF] + T 2RP ™,
where
R?}mak = Cum[Fal, e, Fak] + Cum [Hal, e, Hak]
F.H
+Z (CurnA1 Ay —i—CumA2 A + CuInA1 Ay + CumAz,Al
A/2
+Cum ,+ CumA2 A1)
F.G.H F.G.H F.G.H F.G.H
+ Z (CumAl’Az’A3 + CumAl’AS’A2 + CumAz’Al’A3 + CumAz,A&A1
A/3
F.G.H F.G.H
+CumA3aA1’A2 + CumA3,A2,A1) . (15)
In the same way as in the discussion for Cum[(_}‘}l e, G‘;’f], we obtain that
F.G
’CumAl’A2
aj dlm ap a2 k—m
<> > cum [F§, Ry AGE L aG |
M=0 {iy,....ix_m)es5 " (M)
and
[T]+1
o= > S fem[ac.. aog |

M=0 {i1,....im}e 73" (M)
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where

FAM) = {{ir. ... i} [0<ij <M. j=1,....1 max(iy.....i) = M),
fé(M):{{il,...,il}lMSijS[T]—i-l,j:l,...,l, min(iy, ..., ;) = M}.

The numbers of elements of ﬂzl (M) and f3l (m) are given by Né(M) =M+1D—M
and Né(M) =(T]+2 - M)l —(T]1+1- M)l, respectively. Applying Lemma 1
with ¢ = 1 again, we obtain that

[T]+1
_ _ —m)— k—
‘Cumi],GAz‘ < Z Néc "(M)ey e b((M/(k—m) I)VO)”FO”’;ﬁI(? m)/p
M=0
k,
< ca(p. k) [ Foll gy ™7, (16)

where c4(p, k) is a positive constant depending only on p and k. Similarly, we have

[T]+1
G.H — — — k —
’CllmAhAz’ < Z N§(M)C2€ b(([T1+1-M)/k I)VO)IBp/p Sl;p ”HTHI;, m
M=0

k _
< es(p )By” sup | Hr [, (17

for some positive constant c5(p, k). Furthermore,

[T]+1 [T]+1
F,.G,H a aim
)CumAl’Az’A.%) < Z Z ‘Cum[FO”, Y N
i1=0 i1=0
a a as az k—m—I
AGER . AGE HE L H
< (IT]+ 1)) ¢ e DUTHD/CED=DVON g K g7 sup || || 1=
T
— 1 —]—
< co(l, p. )T T/D | Ry K g7 sup IHr 57 (18)

for some positive constant c¢(l, p, k). Since

|Cum | < cae IR sup 1H 157, (19)
T

we see that R‘;l "% = 0(1)as T — oo.From (15), (18) and (19), the representations

of R“Tb and R“Tbc are obtained. O

Corollary 1 Inaddition to the conditions of Proposition 1, suppose that forany T > 0,
E[GT] = 0. Then, for any T > 0 and any index set {ay, ..., ar},ai = 1,...,d,

|E[GY - GF]| < MB,/”. (20)
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where

c(p. 1Ail),

)
-
-~

and c(p, k) and B, are positive constants in the statement of Proposition 1.

Proof Foranyindexset A={iy, ..., is}, in€{l,..., k}, letka :Cum[Go}i1 e G?‘].
Then

k
A —lA;
< DI AV
J=1Ar++A;={1,...k}
|A122
k
k - - f
< ﬂp/pT k/2+[k/2]z Z /_,c(p, IAi|)§M:31>/p'
J=1A++A=(1....k}
|As|=2

3.2 Proof of Theorem 1

We will apply Theorem 6.2 of Sakamoto and Yoshida (2004) to prove Theorem 1. We
note that 6y above does not always play a role of specifying the true model because
the statistical model (2) may not include the true equation (1). Therefore, the model
considered here is more general than that in Sect. 6 of Sakamoto and Yoshida (2004).
But all of the results in Sect. 6 of Sakamoto and Yoshida (2004) still hold true for the
model here because the difference between these models is not essential in the proofs.

For convenience of explanation, here we write down the conditions for Theorem 6.2
of Sakamoto and Yoshida (2004): for K € N, g > l and y > 0O:

[COIX v e CK(O) as.;

[Clly suprog, [T B0)|, < cofora=1,.... p;
c215,
sup rj_‘y (r%%;al---a,( @) — 1_)a;almaK (9)) H < o0
T>Ty, 0c® q

[C3] There exists an open set @) including 6y such that

1
¥ (/ Va:p (01 4 5(62 — 91))(15‘)
0

inf

) > 0;
T>Ty, 61.6:€0, |x|=1
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[C4] ] K sup
T>Ty

SUp |2 Vg (0)] H <oofora,aj=1,....p.j=1,....K.
0e® q

Here rr = T2, 94010, 0) = E[Va:ay-a,(0)]. In Theorem 6.2 of Sakamoto
and Yoshida (2004), it is assumed that for given m > 0 and y € (3/4,1), [CO]4,
[C1]p,, [CZ]p2 " k=1,2,3,[C3], and [C4]‘;73 hold true for some p; > 4m, pr >
max(p, 4m), p3 > m with 3/44+max(m/pa, m/(4p3)) <y <1 —m/p;. Moreover,
it is also assumed that 8.v4.5(6) = Vg:p(0). In the following, we will verify these
assumptions under the conditions of Theorem 1.

In general, if a measurable function f : R? x ® — R satisfies (i) f(x,) e CX(®)
for each x € R? and (11) for any compact set K C ©, there exist posmve constants
M and m such that Z i—0 SUPgek |8]f(x 0)] < M(1+ |x|)", then fo f(Xy, 0)dw,

is differentiable w.r.t. 6 and 8, fo (X, 0)dw, = fo 8a f(X;, 0)dw;. See Kunita
(1990). Therefore, we see that under Condition [DM1], Condition [CO]* holds true
and

T T
wa;al---ak 0) = Aa;al--~ak (X0, 0) +/0 Ba;al--~ak (X;, 0)dw, +/0 Ca;alv--ak (X;, 0)dt

fork =1, ...,4. Moreover, we see that fork =1, ...,4,

1 1
‘-)a;alu-ak @) = FE[wa;almak @)1= ?V(Aa;al--'ak -, 0)) + V(Ca;alu-ak (.9))

due to the existence of the moments of X;, r € R, up to any order. Therefore, the con-
dition in Theorem 1 concerning the differentiability of v(A,.p (-, 6)) and v(Cg:5 (-, 0))
w.r.t 6 leads 8.v4:5(6) = Vg:p(0). Condition [C3] can be easily proved under the
condition (6). Hence, if the conditions [C1],,, [C2]F Doy k=1,2,3, and [C4]4 for
any p;1 > 1, pp > 1, p3 > 1, ¥y € (0, 1) are verified, the proof will be completed

Under Condition [DM1], Burkholder—Davis—Gundy’s inequality and Jensen’s
inequality yield that for any ¢ > 1, there exists a positive constant ¢, such that
fork=1,...,5a;j€{l,...,p},

=< Cq”Ba;a]-“ak(X01 9)”(]' (21)

T
HT‘/2/ Buayap (X1, 0) - duy
0 q

On the other hand, Condition [DM1] and Corollary 1 lead that for any positive integer
m=>2,q >m

T
HT—W /O (Casarar (X1, 0) = V(Caraya (-, 0))) dt

< M/”Ca;aynak (XOa Q)Hq’a
m

(22)

where M’ is a positive constant independent of 6. By using these inequalities with
Condition [DM3](i), we see that for any p; > 1, there exist ¢, > 0, M > 0, q > p1
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such that

1T Y200 00) 1 py < T~ V21144 (X0, 60) 1
+cp, ”Ba; (Xo, 90)”2;71 + M”Ca;(XO’ 90)”51’,

which prove Condition [C1], .
In the same way, we have that for any p» > 1,y € (0,1), k = 1,2,3, and
a,ai,...,ar=1,..., p,thereexistcp, >0, M > 0,q"” > p> such that

”TV/Z(T_II/fa;almak (9) - ‘_)a;al---ak (9)))”;72
= T2 (2772 Ay (Ko, D)y + s | Basar - (X0: ) 2

+ Moy KXo, O)llg)

Combining this with Condition [DM1], one can prove Conditions [C2] , V, =1,2,3.
Furthermore, we will consider the Condition [C4]?73 for p3 > 1: ||supgep
Ya;a@)llp; < oo forany a = 1,..., p, and index set A, |[A| = 4. Because a

continuous version of ¥,.4(6), |A| = 4, can be chosen owing to [DM1](i), it follows
from the GRR inequality thatif 84+2p/r < 1,8 > 0,r > 0, and p = dim(®), there
exists a positive constant Cg depending p, B, r, and the shape of the boundary of ®&
such that

sup |7~ g 4(0) < CoT (T Wara) sup 10 — Bo1P + T ra: 4 (G0)1,
0e® 0e®

where

1
) = [//(u(e])—f(ej]n) deldezl
61 — 62|PF

for any continuous function f : ® — R. Therefore, putting C o p=Co Supyeg |6—6oP,
we have that for any p3 > r,

<Co.p [T“ |7 (Aa:a(Xo. ),

T
r (T—”2 / Baa(Xs, -)dw,)
0
T
+ HT (T—l/ Can (X, ~)dt)
0 p3

sup |7 Yra; 4 (0)]
0e®

p3

L2

pP3
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Applying Burkholder—Davis—Gundy’s inequality, we obtain that

P3 3
HT (T‘”Z/ a (X1, >dw1) < |O|“2/ / NG VSN
0 0 |0 — 6| P+ 2 ps

X || Ba; 4 (X0, 01) — Ba: A (X0, 02) | 1;d61d65.

Since

P 1 P3
1 Bas (X0, 01) — Baa(Xo, 02115 < | > / Buspur (X0 02 + (61 — 62))du
=10 P3
X161 — 621
< C'loy — Bo)

for some constant C’ > 0, it can be shown that for any p > 1, p3 > r,

T C P3
HT(T‘I/Z/ Ba;A(Xt,.)dw,) <|@|*—// (c”*) d6;dor< oco.
0

P P
In the same fashion, one can show that for any p3 > 1, |7 (A4 a(Xo, )l p; < 00

and | Y(T~! fOT Ca;a(Xy, )dt)| py < oo. In this way, Condition [C4]j,‘,3 holds true
for any p3 > 1 under Conditions [DM1]. Thus the proof is completed. O

3.3 Cumulants of stochastic integrals

Our aim of this section is to derive asymptotic expansions of the cumulants of stochastic
integrals in the case where the integrands are functions of a diffusion process with a
geometric strong mixing property. For this purpose, we will use the following identities
concerned with the moments of stochastic integrals and the Lebesgue integrals of
processes, which are not always functions of diffusion processes.

Lemma 2 Let {Capla,p=1,...q be a given sequence, and { fs}a=1,...q be R -valued

..........

bounded progressively measurable processes on a probability space (S, Z, P).
Define I, = \/LT fOT fa®) - dw; and Jup, = %fOT fa@) - fo(®)dt — Cup, where w =
(wr)ier, is a standard Wiener process on (Q, j, ﬁ). Then

1 1
E |:exp (e“la — EsasbJab)} = exp (Ee“ehCab) ) (23)
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Moreover,
E[Ialb - -]ab] = Cab (24)
E[IaIbIC - chla - JcaIb - Jablc] =0 (25)
[6] [3] [3]
E|Ldpylcla— Y Jalela+ D, Japdea | = D, CapCea.  (26)
(ab,c,d) (ab,cd) (ab,cd)

If there exist the expectations in the left-hand size of equalities above, these equalities
hold true for unbounded processes { f,}.

Proof Let Y; = «/LT fé &% £, (s) - dws — % fol %P £,(s) - fp(s)ds. Then it follows
from Ito’s formula that exp(Y;) = 1+ \/L? fot exp(Ys)e? f, (s) - dwy, which shows that
(23) holds. Differentiating both side of it w.r.t ¢ successively and substituting & = 0

into the results provide other equations. By using the ordinary method, we can extend
these results to the case where { f,} are unbounded. O

We apply these identities to the case where integrands are functions of the diffusion
process defined as follows. Let (€2, %, P) be a probability space, and X = (X;);eRr,
an R9-valued stationary diffusion process satisfying

dXt = VO(Xt)dt + V(X,)dwt

where Vp : R — R4, V : R - RY @R, and w = (w;);eR, is an R -valued
standard Wiener process on (2, %, P). For any interval I C R, let #; = o[w; —
wg, X; : s,t € I]. Assume that (i) there exist ¢ > 0, b > 0 such that (11) holds
true with j, = %/, and (ii) E|X,|k < oo for any t € Ry, k > 1. Note that under
this assumption Fyp = f(Xo), G = fOT g(X;) - dw; and Hr = h(Xr) satisfy the
condition of Proposition 1 if f, g and h are measurable function having at most
polynomial growth order. Denote by v the measure of the stationary distribution of
X, and write v(f) = fRd f(x)v(dx). Moreover, for a function f: R? - R, let Gy
be a function such that fsszf = f,and [f] = -V - VGf, if they exist, where

f=1—=vhH.
Lemma 3 Let {f,}4=1,....q4 be functions: R? — R’ having at most polynomial growth

order,and I, = T~ [T fo(Xp)-dwy, Jap = T [ (FalXD)- (X)) =v(fu- fp))dr.
Then

E[L, Iyl =v(fa- fp).
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Assume that there exist Gm and [ f, - fp] having at most polynomial growth order,
then

1
E Ja Ic = —F= a” “Je o\——= s
[Jan1c] ﬁv([f Sol- fo) + (Tﬁ)
1 1
Elaped) = zv(Ufa - fol - Ue fa) + 0 (Tz)
1 % 1
Cum(ly, Ip, I.] = v([fa - fol- fo)+ O ( )
f(ab c) Tﬁ

Moreover, assume in addition that there exist Gm and [[ fa - fol- fc] having at
most polynomial growth order, then

[2]

1

Elaplelal = — | D v fa- fol- fol - f) + v fa - fol - [fe - fa))

T (c,d)

1
+0 (T)
1 [6]
Cumlla, Iy, le. ol = 7 {2 W(ALfa~ fol - fel - fa) + v(ULfa~ fol - fal - fo))
(ab,c,d)
1
E S U B S +0(T2)
(ab,cd)

Proof Since E|X;|F < oo forany r € Ry and k > 1 and f, has at most polynomial
growth order, the stochastic integral I, is well defined, and 7, and J,, have moments
up to any order. Therefore, applying (24) of Lemma 2 with C,p = v(f, - f»), one has

EllaIp] = ElJap) +v(fa - fo) = v(fa - o)

From the existence of Gm and [ f, - fpl, Itd’s formula says that

1
E[JabI]—f [ / [fa - fol - dw; ], }

1
+T\/TE [(Gfa'fb—v(fa'fb)(XT)
T
_Gfu‘fb—v(fa~fb)(X0))/0 fc(X[) . dwti| .

Because the polynomial growth orders of f, and G+ ensure the existence of the
moments of G+ Tl (Xr)and I,,wecanapply (16) and (17) in the proof of Proposition 1
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to them and obtain that

T
E [(Gfa'fbv(fa'fh)(XT) - Gfa~frv(fa~fb)(X0))/0 Je(X:) 'dwz} = 0(l)

as T — oo.

Note that E[G 1. f,—v(f,- i) (X0) fOT fe(Xy) -dw,] = 0. Besides, since the polynomial
growth order of [f, - fp] implies the existence of the moments up to any order of
fOT[fa - fp](Xy) - dw;, we obtain from the first result for E[1, ] that

1 1
ﬁ‘f'([fa ol fo)+ O (T_ﬁ) . 27)

In the same way, the expansion for E[J;J.4] can be obtained. Combining (25) of
Lemma 2 and (27), we also obtain the expansion for Cum[/,, I, I.]. Moreover, it
follows from (16) and (17) that

E[Jahlc] =

1 1 r 1
ElJaplelal = ﬁE [ﬁ/o [fa- fol- dw,ICId:| +0 (ﬁ) )

If there exist Gm and [[f, - f»] - fc] having at most polynomial growth order,
we can apply the result for E[I,1y1.] to the first term in the right-hand side above
and obtain the result for E[J,p1.1;]. Finally, Combining this with the expansion for
E[JapJcq] and (26) of Lemma 2 yields the last result for Cum[/,, Ip, 1., 14]. O

3.4 Proof of Theorem 2

Since we assume that the diffusion process has the geometric-mixing property, Con-
dition [A1] in Sakamoto and Yoshida (2004) holds true for the diffusion process X
and the Wiener process w in place of an e-Markov process Y and a driving process X
there. Under the conditions [DM1], we have that forany A > 0, p > 1, g > p there
exists M > 0 such that

0 0
sup ‘(Zt‘ﬁh—z,( ) | = s (2046 (Ko, 0011y + cph ' 2Bu (X0, 60)l1,
teRy a; p teRy
0<h=A O<h=A

+Mh1/2E|Ca;(X0,90)|‘1) < 0.

(¢))

In the same way, we see that sup [|Z,

T€R+
0<h<A

[DM1] imply the [A2] in Sakamoto and Yoshida (2004) for Z7 = (Z&, Z'"). As
in Theorem 4 of Kusuoka and Yoshida (2000), we see that Condition [L] ensures
[A3] in Sakamoto and Yoshida (2004) for Z?. In standard literature such as Ikeda
and Watanabe (1989), it is assumed that the coefficients of the stochastic differential

— Zt(l)||p < 00. Thus the conditions
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equation are in C;° to prove the non-degeneracy of the Malliavin covariance of the
solution. Here we have assumed L”-boundedness of X, (or L”-finiteness of X by
stationarity) and the only at most polynomial growth condition for coefficients of Z.
However it is sufficient for our purpose. Let § > 0 and k be a positive integer such
that 8 + 1/k < 1/2, and let

F@) ~ F6)] i
M) = I/ / (z_ﬂmuk) mm]

for f € Cp([0, 10]; RY). Then M(Xl[0,5]) € Doo- Let ¢ € C*(R; [0, 1]) such that
Y(y) =1if [y| < 1/2and ¥ (y) = 0if [y[ > 1, and define | by

v =v (e71Xo = xP) ¥ (eM(Xlio.ap) -

Let 2 = (X, Z). Then there exists a constant C such that sup, (g ;) |X:| < C when-
ever Y1 > 0. There is a stochastic differential equation whose coefficients are bounded
with smooth bounded derivatives and its unique strong solution % constructed on the
same probability space as 2 satisfies Z[j9,;y] = 7 {0,791 Whenever ¥y > 0, there-
fore, we may assume that all coefficients and their derivatives are bounded when we
apply the Malliavin calculus. We choose ¢ > 0 sufficiently small so that the uniform
nondegeneracy of the Malliavin covariance of % under truncation by i1 holds. See
Remark 3, p. 575 of Yoshida (2004). After all, we only have to consider the represen-
tation of coefficients of the asymptotic expansion in Theorem 6.4 of Sakamoto and
Yoshida (2004).

For convenience of explanation, here we recall the definitions of the coefficients
used there. Let (g90):=(Cov[Z%, Z")), (gap)=(g"")~L, VE  ,=Cov[Z, a4,

aiay,

Zb ;]gb’b’ lla;hc = (Vai;,c + Vac;,b + Da;hc)/z’ ﬁa;h,c = Val;,c + 1_)a;hc’ and

) 131 REA
a; _ =a,; a; ~ ~a;
chd—g vbcd+zvbc,d T3 Kb g g
(be,d) (be,d)
Put MY, ©) = E[2%,Z5) = V9,V 48P, N4b6, = T1/2E[za;zb2(z“d -

Ve g 24, aebe = T12Cum( 2%, 2%, 2], Fabed — TCum[Z“ VANV AN
From the representation (4) of the estimating function ., we see that the constants
defined just before Theorem 1 satisfy

1 _ 1
Tv(Aa;) + V(Ca;)v Va;A = ?V(AH;A) + V(Ca;A)»

<
i)
I

. ~a: . . - .
Aa, — Aa, + O(T_l), ‘—)a,b — Da,b _ F14L1,b + O(T—Z)
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foranya =1, ..., p and any index set A with |A| < 4. It follows from It&’s formula
that under Condition [DM?2]

Va;4(00) — E[Ya;4(00)] = Aa;a(Xo, 00) — v(Ag;a( 60)) + G(Cu;a) (X7, 60)

T
—G{Cara) (X0, 00) + /0 Bi (X, 60w, (28)

for A = ¢,{a},{a,b}, a,b € {1,..., p}. Combining this with Proposition 1 and
Lemma 3, we see that under [DM2] and [DM3](ii),

Cov I:T_l/zwa;Av T_I/ZWb;B]

_ 1
= FuAap:B+ ? (COV[Aa;A(XO), Ab;B(XO)] - V(Aa;A G(Cb;B>)
_V(Ab;B G(Ca;A>)

T
+2v(G(Ca;4) G(Cp;p) + E [/o B:;Adth<Cb;B>(XT)i|
T
+E [/ B;;Bdw,G(Ca;A)(XT)}) +o(T™h (29)
0

foranya,b € {1, ..., p},index sets A, B with 0 < |A| < 2,0 < |B| < 2. From this
formula, we see that the coefficients defined by the covariances fulfill

1 - — N N —
gab — pab + 7_L_ab +o(T 1)’ Vab,c — V*g,’c +O(T 1)’
Ao = WiheF O, i =05+ 0T,

U g =U S, + 0™, M%.,% =M% + 0.

Note that the constants in the RSH’s were defined in above Theorem 2.

Moreover, under [DM2] and [DM3](ii), the representation (28) with Proposition 1
and Lemma 3 yields expansions of third and fourth order cumulants of 7~'4,. 4,
which imply

Xabc — )‘\*abc + O(Til), Na;,b;’c;d — N*a;,b;’c;d + O(Til),
Habcd — H*abcd + O(T_l).

Since gap = pap — Tap/ T + o(T 1), we have
1. _
bz 8"") = ¢(z; p*) (1 + ﬁr“bham; p‘lb)) +o(T™h.

Combining these results with Theorem 6.4 in Sakamoto and Yoshida (2004), we can
obtain the representation of the coefficient in Theorem 2. O
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3.5 Proof of Theorem 3

The inequality (10) with g7 2 of Theorem 2 is trivial; however, the translation from g7 2
of Theorem 2 into that of Theorem 3 asks routine but thorough and lengthy calculations.
Here we make rough sketches of such calculations for one’s convenience.

Put B(x,0) = Vj(VV)~'V(x,0),C(x,0) = B(x,0)-B(x, 0)— 3 B(x, 0)-B(x, ),
then we see that B,. (x, 6) =6,B(x, 0) and C,. (x, 6) =6,C(x, 0). Theserelations lead
that Cy (x, 6p) =0, G(Ca)(x, 6p) =0, [Cal(x, 60) =0, V(Cap) = — Fap,

[3] [4] [3]
V(Cabe) = — Z Fab,c’ and V(Cypeq) = — Z Fape,a — Z Fab,cd‘
(ab,c) (abc,d) (ab,cd)

Moreover, F’s in Theorem 2 can also be represented by F’s.In particular,

_ _ _ [3]
Fap = Fap, Fabe = Fab.e = Flapler  Fabed = Fabe,d — Z Fiap,c1.d
(ab,c)

Flabie = Fabies Fabnied = Fablicds Fllabl.cd = Fllabl.cld-

Therefore, the constants in the expansion of Theorem 2 are expressed as follows;

) = W(Cap)) " = —Fap)™", (00 = (Fup) ™",
(Pav) = (Fap), 70 =—p,

A = " p"P v (Agy) = " P Lary,

Tqp = Cov[A4(Xp), Ap(Xo)],

790 = @ pPP gy 4+ 24 = p P (14 + 2841,

1, _ _ SIN
/L*L}l;c = _Epaa _Fa’b,c - Fa’c,b + Z Fa’b,c
(a’b,c)

| . y 1~
_Epaa (ic,a/ + Flo/ bl.c + F[a’,c],b) = _Epaa Fb(c,a’)’

[3]
n*?),c = —p* —Fype+ Z Fup,c
(a’b,c)

T - . C R A
= _paa (Fa’c,h + Fbc,a’ + F[a’,h],c) = _paa (F/ ) + F( ) ) s

a'c,b be,a’

(4] [3] [3]

1 . v -
*ch S “ Z Fa’bc,d + Z Fa’b,cd - Z Fa’bc,d

(a’be,d) (a’b,cd) (be,d)

[
[
|
®

(3]
1 dd" ad [=1) (p=D A
5 DI Pt (Fa/d,d/ +Fd/d,a’)

(be,d)
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[3] 31 13]

1 . v .
= —E,OM Fbcd,a’ + z Fa’b,cd + z z F[a’b,c],d
(a'b,cd) (be,d) (a’b,c)
1 d'd" ad F(=1) (=D | A
3 A P (Fa’d,d’ + Fd’d,a’) ’

(be,d)

[3]
)\*ahc — paa phb pcc Z F[u’,b/],c’v
(ab,c)

[6]
bed " obb' ec’ dd’ i "
g rabed _ paa 0 ,OCC,O Z (F[[a’,b/],c’],d’ + F[[a’,b/],d/],c’)
(a'b’,c',d")

3]
+ D> Fawiean |
(a'b’,c'd")

v v

/ /o~ 1
e =P (Fa/b,c - F[a/,h],c) = p* Fa(,b)’c,
M*a;b’cid — pllcl pcc (Fa’b,c’d — F[a’,b],c’d — Fa’b,[c’,d] + F[a’,b],[c’,d])
ad’ " oed () /()
=™ ! p TSy Ty

/ / r~(1 ~ (1 . r ~(1 / ~(
S A N PR S Ty

’ / v v v
= p** p* (F abcd = Fiapca = Fa(e.q)

i AV RSIC))
+Fa b).[ed) — p! Fa’b,er(:’d»f) ’

and

N*(li’bQ’C;d — paa ,Obb pCC (F[a’,b’],c’d_F[a’,b’],[c’,d]) —|— (F[a/,cld],b/_F[a/,[cl,d]],b/)

[3]
. . — .
+ (F[b’,c’d],a’ - F[b',[c’,d]],a’) —p* Fc(/d)’e Z Fla' p1.e
(a’b’,e")

By using these expressions, we can translate coefficients. First, ch b becomes

[3]
¢ hape = hapep™ p" p Z Fla' p,00 =3Fap o =3F ¢ anp —3F e b1
(a’b’,c")
(o . (=173
= —3pabe (Fab,c + F[a,b],c) = —3pabe Fa(h’c/ ),
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Next, putting 1% = —%,0““/1:(71),0”" (= [L*‘chhc), we have

be,a’

[6] (3]
¢ hgpeq = R (F[[a,b],c],d + F[[a,bl,d],c) + D Flablled
(ab,c,d) (ab,cd)
~(—1/3 ~ 1 o . /
+]2habcd1ﬂa(b’c/ )pdd’ (ﬂd _ Md ) _ 12habcdpee
= 2 A=) ~=D
X Z F[a,b],e’ - Fbe’,a Fde,c
(ab,e’)

+12h%4 | Eyp ca — Fab je.d) — Flapl.cd + Fla.bl.je.d]

of =1 A1 - - -
—p‘fr,l(b?efc([,?f» + Fla.bl.cd — Fla.b)[e.d] + Fla,cdl.b

(3]
v v v /o~ 1 v
—Fafe.anb + Fib.cdla = Fib.[e.dl.a — P Fc(d,)g > Flasle
(ab,e")

[3] [31 [3]

—4h" N Fyeaa+ D Fabea+ D D Fiaberd
(ab,cd) (bc,d) (ab,c)

(3]
bed (=D (~(=D ~(1)
+4ha C Z IOEbeC,e (Fad,f + Fdf,a)
(be.d)
(6] 5 5 .
= pobed | — Z (F[[a,b],c],d + Flla.bl.dl.c + Fab.[c.d] + Fla.b).cd

(ab,c,d)

+F[ab,c],d + ﬁ[ab,d],c)

3] [4]
v v ~(—1/3 ~ 17 v
+ > Fasiear— Y. Fapea | +120FS Y pgg (B =)
(ab,cd) (abc,d)

bed ~(D) ~(=1) ~() ~(=1) ~(=1) ( ~(1) ~(=1)
+ 1210 pef (be,arde,c g ¢ lape + Dhpee (Fad‘f + g ))
[6] 5 5 5 5
= hbed [ - Z (F[[a,b],c],d + Flla.pl.dl.c + Fab.[e.d] + Fla.bl,cd
(ab,c,d)
+I:"|ab,¢-1,d + ﬁ[ub,dl,c)

3] [4]
- - ~(~1/3 0 vd
+ E Fla,p),1e,a1— E Fabe,d +12h“”cd1"a(b,c/ paar (B =)
(ab,cd) (abc,d)

bed ~(—=1) ~(D ) /(=1
+12h% pEf (Fab,e + Fae,b) Fcf,d
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= 1 (<12 (Fitasrcrat Faicart Fuavera) +3Fasiica) = 4Fasea

1 ~d vd ~(—1 1 1
F12PG g (B — i) 4120 (R0 + FD,) 1Y)

ab,c
Finally, with

(1) = h® (tap + 2Lap) + h?® (_4F[cz,d],bc + Fla.ay.ib.c] — 2Fiab.cl.a — 2Fpe.al.a
_F[cd,a],b - 2F[[b,c ld — 2F[ b.cldla + Fpe.ad — Fab.cd — chb,a)

+20 pogr (A5 — 868 ) +h pa oy (B — Y (B — i,
we obtain

A*abhab = happ*” ;Obb (tay + 28ap)
! [3] 1 1 ’
—hap | p* p pdd z F[a ld — ZFL(/d/)”O pccpdd Fc(db’) b

(a’c’,d")

+2hab8§/paa ,OC ¢ pbb F[a/ c"bc — F[a/ ",V ¢ —|— F[b’c a'l,c”

- - 1
— P crane + Fve.ona = Fierena = p9 Ty Z Fiaen.y
@<c".f)

Hhapp p" p (Fb’c,a’c’ — Fictae = Fyearcn + Fip el )
pTI ES0 ) + 2hay (774, = 808°) o
+2happ” ”821' P p"hh (Fa/al,b’lb/ - ﬁ[a/,al],b;b/ - ﬁa’al,[b/l,b’]
+Fiat a1 = P! P, erb(;lb)/,f)
[3]

1 i v
+6habp6dph b _gpaa Feap' o + Z Fareap
(a’c,db")

31 3] [3]
FCD(FCD A
+ Z Z Facd Z pefp(la FCdE ( /h/ f+Ffb/ /)
(cd,b") (a’c.d) (cd b’

+hap (B — 1 (B° — 1)

= hab(Tab + 284p) + habpcd 2Isﬁ[a,zzl],bc - 2I\':‘[a,d],[b,c]

+2Fbe,ald — 2Fib.el,al.d + 2Fibe,dl,a — 2Fiib,c1,dl,a
+ic,ad - F[b,c],ad - Fbc,[a,d] + F[h,c],[a,d]
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+2Fge.ab — 2Fa.cdb — 2Fac.jab) + 2Fa.cl.1d b

[3] [31 [3]
- chb,a + Z Fac,db + Z Z F[ac,d],b
(ac,db) (cd,b) (ac,d)
s L) aeD s m0 <
b _cd ef - (= (= A A
+hp ot (= D] Fla.anr=51ara | Tee =2l pe.e > Faas
(ad, f) (ad, f)

[3]

(D)~ (1) (D A1) (=1 ~ (1)

e ZFa(c,)ede,f + Z Ige (Fab,f + Ffb,a)
(cd.b)

+2hay (A5 4 = 8B°) 07" + hap (B — i) (B” — it?)

g a1 ~—1) ~(— - - - - -
= (I)+h ped pe! (Epd(f’;)lﬂ( D _ ) F(l(;’)ﬁrc(d’;) (F( Dy pO )

ce,b bc,e ab, f fb,a
~(=1) o a A1) ~(=1)
_Fce,h Z F[a,d],f - 2Fbc,eFad,f
(ad.f)
(=D (=D ~(1) ~(=D /(=1 ~(1)
+de,e (Fac,f + ch,a) + Fbc,e (Fad,f + Ffd,a) )
1~ - - 1) = _ - -
b cd e =D =D (1) A~ (=D (=D (H
= (D+h"pp! (Erdf,a Lo’ = Theelua f 1 cae (Fab,f+rfh,a)
~(=1) o a A ~(=1)
_Fce,h Z F[a,d],f - 2Fbc,erad,f
(ad.f)
(=1 (A1) A (—1) A=) (&~ A (—=1)
+de,e (Fac,f +ch,a) + Fbc,e (Fad,f +Ffd,a))

1~ - - - - - ~
b cd =1 p=D (1) ) (=D =D (D
= (I)+ha 'OL 'OEf Epdf,a Fce,b - Fbc,erad,f—i_rcd,e (Fab,f +Ffb,a)

[3]
~(=1) - ~(=1) /(=1 (=1 ~(=1)
_Fce,b Z F[a,d],f + de,e bf'c,a + Fbc,e I—de,a
(ad, f)

1~ - - - - - -
b cd e (=D #(=1D (1) (M) (=D (=D (H
= (D+h" p p! (Erdf,a Feop = Dperelua rH cae (Fab,f +Ffb,a)

~ (=1 ~(=1) A1) A1
+de,e ch,a + Fad,frce,b )
(1 -~ - - - ~ ~ ~
_ b cd (=1 m(=1D 1~ (=D (=1 ()
= (I)+ha pc pef (EFdf,a Ile,b - Fbc,eFud,f+ch,e (Fab,f+rfb,a)
~(=1D (A1) ~ (1)
e (Fad,f + Fad,f)) :

O
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