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Abstract A robust version of method of Instrumental Variables accommodating the
idea of an implicit weighting the residuals is proposed and its properties studied. Firstly,
it is shown that all solutions of the corresponding normal equations are bounded in
probability. Then the weak consistency of them is proved. The algorithm, evaluating
the estimate, is described and results of small MC study discussed.

Keywords Robustness · Instrumental variables · Implicit weighting · Consistency
of estimate by instrumental weighted variables

1 Introduction of basic framework

Let N denote the set of all positive integers, R the real line and R p the p-dimensional
Euclidean space. We assume that all r.v.’s are defined on a basic probability space
(�,A, P). The linear regression model given as

Yi = X
′
iβ

0 + ei =
p∑

j=1

Xi jβ
0
j + ei , i = 1, 2, . . . , n (1)
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544 J. Á. Víšek

will be considered (all vectors throughout the paper will be considered to be the column
ones). We shall assume that:

C1 The sequence
{
(X

′
i , ei )

′}∞
i=1

is sequence of independent and identically distrib-

uted (p + 1)-dimensional random vectors (i.i.d. r.v.’s) with absolutely continu-

ous distribution function FX,e(x, v). Moreover, E

{
(X

′
1, e)

′ · (X ′
1, e)

}
is positive

definite matrix and the density fe|X (v|X1 = x) is uniformly in x bounded by a
positive constant Ue.

Remark 1 Let us notice that we have not assumed that the explanatory variables Xi ’s
and the error terms ei ’s are not correlated. If the model (1) contains the intercept, we
have Xi1 = 1, i = 1, 2, . . . , n.

The error term is in econometric texts called disturbance. We will use mostly the
former and only in the case of mentioning some economic applications we employ
the later one.

In what follows FX (x) and Fe(r) will denote the corresponding marginals of
FX,e(x, r). Finally, let us recall that the (Ordinary) Least Squares (O L S) are the
most frequently used estimator of regression coefficients.

Definition 1 The estimator of the regression coefficient given as

β̂(OLS,n) = arg min
β∈R p

n∑

i=1

(
Yi − X

′
iβ
)2 = arg min

β∈R p

{
(Y − Xβ)

′
(Y − Xβ)

}

(where X = (X1, X2, . . . , Xn)
′

is the design matrix and Y = (Y1,Y2, . . . ,Yn)
′

is
response vector) is called the (Ordinary) Least Squares.

Sometimes, there are reasons, why the observations are to have different influence
on the value of the estimator of regression coefficients. Then the classical statistics and
econometrics advise to utilize the Weighted Least Squares (W L S) given as follows.

Definition 2 Let Un : {1, 2, . . . , n} → [0, 1] and denote Un(i) = wi . Moreover, let
W = diag {w1, w2, . . . , wn} be diagonal matrix of weights andw= (w1, w2, . . . , wn)

′
the vector of weights. Then the solution of the extremal problem

β̂(WLS,n,w) = arg min
β∈R p

∑n
i=1wi

(
Yi − X

′
iβ
)2

= arg min
β∈R p

{
(Y − Xβ)

′
W (Y − Xβ)

}
=
(

X
′
W X

)−1
X

′
W Y. (2)

is called the Weighted Least Squares.

Remark 2 The mapping Un represents some external rule which is establish prior to
evaluating β̂(WLS,n,w). One of rules, sometimes (or frequently?) used, is that one based
on the diagonal elements of the hat matrix X

(
X ′ X

)−1
X ′, see Chatterjee and Hadi

(1988).
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2 Recalling reasons for instrumental variables

It is well known that in the case when the orthogonality condition E {Xi ei } = 0 is
broken, the ordinary least squares are not consistent. The best known example of
the situation, when the orthogonality condition fails, is the model assuming that the
explanatory variables are measured with random error. Assume that

Yi = V
′
i β

0 + ui , i = 1, 2, . . . , n (3)

with Eui = 0 and Eu2
i = σ 2 ∈ (0,∞) and that we observe Ṽi = Vi + ηi , assuming

usually that Eηi = 0, Eηi · η′
i = �η with �η nonsingular and Eηi · ui = 0. Then,

substituting Ṽi = Vi + ηi into (3), we obtain

Yi =
(

Ṽi − ηi

)′
β0 + ui = Ṽ

′
i β

0 − η
′
iβ

0 + ui = Ṽ
′
i β

0 + wi , (4)

where wi = −η′
iβ

0 + ui . But then

E

(
Ṽi · wi

)
= E

[
(Vi + ηi ) ·

(
−η′

iβ
0 + ui

)]
= −�ηβ0.

Then β0 �= 0 implies that �ηβ0 �= 0 and then due to the fact that

β̂(OLS,n) =
(

Ṽ
′
Ṽ
)−1

Ṽ
′
Y =

(
1

n
Ṽ

′
Ṽ

)−1 1

n
Ṽ

′
Y = β0 +

(
1

n
Ṽ

′
Ṽ

)−1 1

n
Ṽ

′
w, (5)

the OLS-estimator of regression coefficients of model (3) is inconsistent. Another
example considers the lagged response variable as explanatory one, see Judge (1985)
or Víšek (1998a).

The problem is treated, in econometrics, by means of the Method of Instrumental
Variables. Another possibility how to solve the problem is to find so called the Total
Least Squares, see e.g. Van Huffel (2004).

Definition 3 For any sequence of p-dimensional random vectors {Zi }∞i=1 the
solution(s) of the (vector) equation

n∑

i=1

Zi

(
Yi − X

′
iβ
)

= 0 (6)

will be called the estimator obtained by means of the method of Instrumental Variables
(or Instrumental Variables, for short) and denoted by β̂(IV,n).

Remark 3 The elements of the sequence {Zi }∞i=1 are usually called instruments. In the
case that the model (1) contains intercept, without loss of generality we may assume
that Zi1 = 1 and EZi j = 0, j = 2, 3, . . . , p and i = 1, 2, . . .. We do not lose gener-
ality at first, due to the fact that Zi1 = 1 represents constants and hence they cannot
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be correlated with the error terms (in fact we have then Zi1 = Xi1). Secondly, what
concerns the assumption that EZi j = 0, j = 2, 3, . . . , p, if it would not be fulfilled,
we can “move” EZi j into the intercept of the original model (1).

Sometimes (see e.g. Judge 1985) β̂(I V,n) is defined as a solution of the extremal
problem

β̂(I V,n) = arg min
β∈R p

{
(Y − Xβ)

′
Z Z

′
(Y − Xβ)

}

where Z = (Z1, Z2, . . . , Zn)
′

is the matrix of instruments, X is the design matrix
and Y is the response vector. Similarly as in the case of the (Ordinary) Least Squares,
sometimes we have reasons for employing the classical Weighted Instrumental Vari-
ables

β̂(WIV,n,W ) = arg min
β∈R p

{
(Y − Xβ)

′
W Z Z

′
W (Y − Xβ)

}
=
(

Z
′
W X

)−1
Z

′
W Y (7)

where W is a diagonal matrix of weights. Let us stress that the weights are again
assigned to the observation a priori, usually according to an external (heuristic, fre-
quently geometric) rule.

For the heuristics which show the reasons for defining β̂(IV,n) in just described way
see Bowden and Turkington (1984), Judge (1985), Manski and Pepper (2000), and
Stock and Trebbi (2003). In nineties the method became a standard tool in many case
studies of dynamic regression model since the correlation of explanatory variables
and disturbances frequently appeared (in economic data). Many papers considering
possibilities how to select the instruments for explanatory variables brought applica-
ble results, see e.g. Arellano and Bond (1991), Arellano and Bover (1995), Erickson
(2001), Hahn and Hausman (2002), Heckman (1996), and Sargan (1988) [for examples
of implementation see: for SAS—Der and Everitt (2002), for R and S-PLUS—Fox
(2002)].

As (6) is an analogy of the normal equations for the Ordinary Least Squares, β̂(IV,n)

is not robust with respect to the outliers and/or leverage points. Hence we are going to
define its robustified version. We shall use the idea of implicit weighting the squared
residuals which was firstly employed in the method of the Least Weighted Squares,
see Víšek (2000c).

3 Why the implicit weighting of residuals

Prior to continuing, we need to enlarge a bit the notations. For any β ∈ R p, define the
i th residual as ri (β) = Yi − X

′
iβ and r2

(h)(β) the hth order statistic among the squared
residuals, i.e. we have

r2
(1)(β) ≤ r2

(2)(β) ≤ · · · ≤ r2
(n)(β). (8)
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Instrumental weighted variables 547

Without loss of generality we may assume that β0 = 0 (otherwise write β−β0 instead
of β).

Víšek (1992, 1996, 2002c) revealed that for the M-estimator with discontinuous
ψ-function, the deletion of even one observation may cause very large change of the
estimate. Víšek (2000b) conjectured and Víšek (2006d) established the same result
for the Least Trimmed Squares (LT S). Similarly, it appeared that robust, especially
the high breakdown point estimators can be very sensitive to a very small change
of data. It started with the paper by Hettmansperger and Sheather (1992) showing
by a case study that Least Median of Squares estimator (L M S) (Rousseeuw 1984)
changes a lot its value when small change data is made. Their result was due to a bad
algorithm, they used, and Víšek (1994) corrected the result employing the algorithm
by Boček and Lachout (1995). However the phenomenon really exists, for the theo-
retical explanation see Víšek (1996b, 2000a). Both these unpleasant consequences of
(high) robustness have one denominator, namely that the estimators do relay to much
on a group of observations, they have selected (considering these observations to be
“clean” or “proper”, as you want), while the others are assumed to be contamination,
i.e. they are deleted from the data. A remedy can be to weight down the observations
which seem to be suspicious, i.e. to depress their influence on the value of the estima-
tor smoothly. It led to a proposal of the Least Weighted Squares (LW S) in the form
(Víšek 2000c; see also Víšek 2002a,b):

Definition 4 Let w : [0, 1] → [0, 1] is a weight function. Then the solution of the
extremal problem

β̂(LWS,n,w) = arg min
β∈R p

n∑

i=1

w

(
i − 1

n

)
r2
(i)(β) (9)

will be called the Least Weighted Squares.

Remark 4 Let us mention that the Definition 2 recalled the classical Weighted Least
Squares. Just defined Least Weighted Squares β̂(LWS,n,w) differ from the Weighted
Least Squares β̂(WLS,n,w) by the implicit assigning the weights which may lead to
the improvement in efficiency of estimation. It happens in the case when the leverage
points, i.e. observations having the vector of the explanatory variables far away from
the other data, are present among the data and they were generated by model in
question. There can be also leverage points which represent contamination of data
and they can (seriously) damage the estimation. We are able, e. g. by the hat matrix
X
(
X ′ X

)−1
X ′, (usually) recognize the presence of leverage points among the data

but it is not so simple to decide whether they are “in model” or whether they are
contamination, see again Chatterjee and Hadi (1988).

As the Least Trimmed Squares and the Least Median of Squares are special cases
of the Least Weighted Squares, it is straightforward that LW S can adapt to various
situations. It hints that by “tailoring” the weight function to the character of data, we
can create the estimator which is “appropriately robust” but avoiding the problems
we have discussed a few lines earlier. Moreover, when we put some lower bound on
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values on the weight function, we facilitate the use of the estimator also for the panel
data where we cannot afford to delete any observation completely - since otherwise
we disturb the correlation structure of data. In addition, avoiding the discontinuous
weight function we get rid of the high subsample sensitivity while keeping all plau-
sible (robust) properties for finite sizes of data sets. That is why in what follows we
shall assume that the weight function has following properties:

C2 Weight functionw : [0, 1] → [0, 1] is absolutely continuous and nonincreasing,
with the derivative w′(α) bounded from below by −L (L > 0), w(0) = 1.

Please see also Čížek (2002) where the estimator is called the Smoothed Least
Trimmed Squares. Although this name indicates that for a special case of weight
function, we obtain the Least Trimmed Squares (LTS) as a special case of the Least
Weighted Squares, it may however obscure the fact that LWS are able to control
subsample sensitivity (see Víšek 1996, 2000c, 2002c). The same is true about the
behaviour of LTS versus LWS with respect to a small shift of an observation (see
Víšek 1996b, 2000a). The last but not least, as we have already mentioned, LWS can
be used for panel data processing, while LTS can not because the deletion of (even
only) one observation from panel data may destruct the correlation structure of the
error terms and/or of explanatory variables.

For any i ∈ {1, 2, . . . , n} and any β ∈ R p, let us define the random rank of the i th
residual as

π(β, i) = j ∈ {1, 2, . . . , n} ⇔ r2
i (β) = r2

( j)(β) (10)

[the definition is an analogy of rank which is used in nonparametric statistics, see e.g.
Hájek and Šidák (1967)]. Then we have

β̂(LWS,n,w) = arg min
β∈R p

n∑

i=1

w

(
π(β, i)− 1

n

)
r2

i (β). (11)

Now, we are going to show that (11) (and hence also (9)) has always a solution. In
order to see it, let us denote for any n ∈ N by Pn be the set of all permutations of
the indices {1, 2, . . . , n} and denote πi the i th coordinate of the vector π ∈ Pn . (The
following considerations do not represent an algorithm for the evaluation of LW S.
The algorithm will be discussed later directly for the proposed Instrumental Weighted
Variables.) Let us consider following steps:

1. For any β ∈ R p and arbitrary π ∈ Pn put S (β, π) =∑n
i=1w

(
πi −1

n

)
r2

i (β).

2. Recalling that we have defined π(β, i) in (10) (i = 1, 2, . . . , n), for any β ∈ R p

put π(β) = (π(β, 1), π(β, 2), . . . , π(β, n))′ ∈ Pn . As π(β) ∈ Pn we have

min
β∈R p

min
π∈Pn

n∑

i=1

w

(
πi − 1

n

)
r2

i (β) ≤ min
β∈R p

n∑

i=1

w

(
π(β, i)− 1

n

)
r2

i (β),
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i.e.

min
β∈R p

min
π∈Pn

S (β, π) ≤ min
β∈R p

S (β, π(β)) . (12)

3. Fix β̃ ∈ R p and notice that according to the definition in the step 1 and due to
(10) we have

S
(
β̃, π(β̃)

)
=

n∑

i=1

w

(
π(β̃, i)− 1

n

)
r2

i (β̃) =
n∑

i=1

w

(
i − 1

n

)
r2
(i)(β̃). (13)

But it means that the smallest residual obtains the largest weight, the second small-
est residuals obtains the second largest weight, etc. Finally, any sum, in which the
weights are prescribed to residuals in any other way, can’t be smaller. Hence for
any β ∈ R p and π ∈ Pn , we have

S (β, π(β)) ≤ S (β, π) . (14)

4. (12) and (14) yield

min
β∈R p

min
π∈Pn

S (β, π) = min
β∈R p

S (β, π(β)) . (15)

5. Fix ω0 ∈ �, π ∈ Pn , and evaluate the (classical) Weighted Least Squares, please

see Definition 2), with the mapping Un(i) = U (π)
n (i) = w

(
πi −1

n

)
, i.e. with the

weight matrix W (π) = diag
{
w
(
π1−1

n

)
, w
(
π2−1

n

)
, . . . , w

(
πn−1

n

)}
. In this

case Un(i) = U (π)
n (i), i = 1, 2, . . . , n, is uniquely given by π and we shall write

in what follows β̂(WLS, n, π) instead of β̂(WLS, n, U (π)
n ).

β̂(WLS, n, π)= arg min
β∈R p

n∑

i=1

w

(
πi −1

n

) (
Yi −X ′

iβ
)2 =(X ′W (π)X

)−1
X ′W (π)Y

where Y = (Y1,Y2, . . . ,Yn)
′ and X = (X1, X2, . . . , Xn)

′. Then we have for any
β ∈ R p,

S
(
β̂(WLS, n, π), π

)
≤ S(β, π). (16)

6. Repeat it for all π ∈ Pn and for our ω0 ∈ � (we have fixed in step 5) define π(ω0)

by

π(ω0) = arg min
π∈Pn

S
(
β̂(WLS, n, π), π

)
.
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7. Then for any π ∈ Pn ,

S
(
β̂(WLS, n, π(ω0)), π(ω0)

)
≤ S

(
β̂(WLS, n, π), π

)
. (17)

8. Due to (17) and then due to (16), for any π̃ ∈ Pn and any β̃ ∈ R p,

S
(
β̂(WLS, n, π(ω0)), π(ω0)

)
≤ S

(
β̂(WLS, n, π̃), π̃

)
≤ S

(
β̃, π̃

)
,

i.e., due to the fact that π̃ ∈ Pn and β̃ ∈ R p were arbitrary,

S
(
β̂(WLS, n, π(ω0)), π(ω0)

)
= min

β∈R p

min
π∈Pn

S (β, π) . (18)

Finally, due to (15) and then due to (13),

S
(
β̂(WLS, n, π(ω0)), π(ω0)

)
= min

β∈R p

S (β, π(β)) = min
β∈R p

n∑

i=1

w

(
i − 1

n

)
r2
(i)(β)

and hence, due to definition of β̂(LWS, n, w)(ω0) (see (9)), we have β̂(WLS, n, π(ω0))

(ω0) = β̂(LWS, n, w)(ω0).

9. Repeating steps 1–8 for all ω’s, we conclude the proof of existence of solution of
(11).

As a byproduct of the previous considerations we have found that the Least Weighted
Squares estimator β̂(LWS, n, w)(ω0) is, at fixedω0 ∈�, equal to the (classical) Weighted
Least Squares estimator β̂(WLS, n, π(ω0))(ω0) with the weights w(π(ω0)) =(
w(

π1(ω0)−1
n ), w(

π2(ω0)−1
n ), . . . , w(

πn(ω)−1
n )

)′
. On the other hand, the Weighted Least

Squares estimator β̂(WLS, n, π(ω0))(ω0) is (one of) the solution(s) of normal equations

n∑

i=1

wi Xi

(
Yi − X

′
iβ
)

= 0

with wi = w
(
πi (ω0)−1

n

)
. So, considering successively all ω ∈ �, we verify that

β̂(LWS,n,w) is one of solutions of normal equations

NEY,X,n(β) =
n∑

i=1

w

(
π(β, i)− 1

n

)
Xi

(
Yi − X

′
iβ
)

= 0. (19)

[An alternative way is to show that ∂π(β,i)
∂β

= 0, see Víšek (2006b).]
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4 Instrumental weighted variables

As we have already recalled the estimator obtained by means of the method of Instru-
mental Variable is not robust. On the other hand, the inconsistency of the Least Squares
when the orthogonality condition is broken, as it was explained in Introduction), takes
place generally also for the Least Weighted Squares. That is why we define an estima-
tor which will be an analogy of the estimator obtained by the method of Instrumental
Variables but which will weight down the residuals of those observations which seem
to be atypical.

Definition 5 For any sequence of p-dimensional random vectors {Zi }∞i=1 the solu-
tion(s) of the (vector) equation

NEY,Z ,n(β) =
n∑

i=1

w

(
π(β, i)− 1

n

)
Zi

(
Yi − X

′
iβ
)

= 0 (20)

will be called the Instrumental Weighted Variables estimator (I W V ) and denoted by
β̂(IWV,n,w).

Remark 5 Similarly as in the case of the Least Weighted Squares and the classical
Weighted Least Squares, we shall use in the text which follows both the Instrumen-
tal Weighted Variables and the (classical) Weighted Instrumental Variables, given
for some external rule Un : {1, 2, . . . , n} → [0, 1] and the corresponding diago-
nal matrix W = diag {w1, w2, . . . , wn} with wi = Un(i) and the vector of weights
w = (w1, w2, . . . , wn)

′ as

β̂(WIV,n,w) = (Z ′W X
)−1 (

Z ′W Y
)
.

5 Algorithm for the instrumental weighted variables

We have already learnt that the algorithm for evaluating (a tight approximation to) the
robust estimator play an important role for reasonability of any further considerations.
We have mentioned the algorithm for the L M S by Boček and Lachout (1995) based
on simplex method. Similarly, the algorithm for LT S was discussed and successfully
tested in Víšek (1996b, 2000a). Modifying this algorithm so that we evaluate the
Weighted Least Squares (2) instead of the Ordinary Least Squares (5) (at one step
of the algorithm) appeared to be reliable algorithm for the Least Weighted Squares.
Finally, an analogous modification of this algorithm, but now evaluating the Weighted
Instrumental Variables (7) instead of the Ordinary Least Squares (5) can be used for
Instrumental Weighted Variables. We are going to describe it in details (we shall fol-
low the main steps of Víšek (2006c)). Nevertheless, prior to the explanation of the
algorithm, step by step, let us say a few words generally. They allow to keep the below
given explanation reasonably simple and transparent.

The algorithm consists of two cycles, outer and inner. Both of them need some
stopping rule. Let us start with the stopping rule for the inner (the reason is that the
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stopping rule for outer will be connected with the definition of the stopping rule for
the inner cycle).

The stopping rule for the inner cycle
At the moment when we reach, by an iterative process (performed just by the inner

cycle), the minimum of the functional S
(
β̂
(WIV,n,w)
(t)

)
(see (21)), we stop the cycle.

In other words, when the value of the functional S
(
β̂
(WIV,n,w)
(t)

)
in two successive

steps of the inner cycle is the same, we stop the repetitions of the inner cycle and
start a new repetition of the outer cycle. It means that for each repetition of the outer

cycle we reach some value of the functional S
(
β̂
(WIV,n,W )
(t)

)
, say S

(
β̂
(WIV,n,W )

(final)

)
.

Evidently, there is a regression model which corresponds to S
(
β̂
(WIV,n,W )

(final)

)
. If the

value S
(
β̂
(WIV,n,W )

(final)

)
is the smallest one among the values, we have reached up to this

moment, we denote the corresponding model the best . Of course, it may happen that
the model which was denoted as the best , may lose this “characteristic” at the end of
some next repetition of the outer cycle and another model attains this “characteristic”.
It may also happen that in the repetitions of the outer cycle we repeatedly reach this
minimal value and, also the corresponding best regression model is repeatedly found.

The stopping rule for the outer cycle
Either the number of repetitions of outer cycle reached an a priori given (usually large)
number of repetitions (see below, in the stage A, the “maximal number of repetitions,
say kmax”). Or an a priori given number of the same models denoted at given moment
as the best is attained.

If the former branch of the stopping rule was applied, we may expect that there
is no reasonable model for data in question. The reason is the fact that the algorithm
found plenty (say several hundreds or thousands) different models for our data. If the
latter branch of the stopping rule took place, it indicates that (hopefully) there can be
some structure in data. Really, if we obtain at the end of outer cycle several times (say
20 times) the same regression model, say M (which corresponds to the minimum of

the functional S
(
β̂
(WIV,n,w)
(t)

)
reached during the whole process of repeating the outer

cycle) and the total number of repetitions of outer cycle is reasonable (say several
hundreds), we may expect that the model M is acceptable for our data.

Now, let us explain the algorithm step by step. We assume that we have at hand data,
i.e. the vector of response variable Y = (Y1,Y2, . . . ,Yn)

′ and matrices of explanatory
and of instrumental variables

X =

⎡

⎢⎢⎢⎣

X11, · · · , X1p

X21, · · · , X2p
...

...

Xn1, · · · , Xnp

⎤

⎥⎥⎥⎦ , Z =

⎡

⎢⎢⎢⎣

Z11, · · · , Z1p

Z21, · · · , Z2p
...

...

Zn1, · · · , Znp

⎤

⎥⎥⎥⎦ ,

respectively. The instrumental variables are selected so that they are as much as pos-
sible of the same quality and character as the explanatory variables, however they are
not correlated with the error terms (disturbances) of the regression model in ques-
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tion. Finally, prior to starting the description of the algorithm, let us recall the notion
“points in general position”, proposed by Rousseeuw and Leroy (1987) (Chap. 3, par-
agraph 4). We utilize a bit weaker definition than Rousseeuw and Leroy used, because
it is sufficient to our purposes.

Definition 6 A k-tuple of points in the k dimensional Euclidean space Rk is said to
be in general position, if they uniquely determine k − 1 dimensional plane.

Notice that e.g. three points in R3, if falling on line, don’t determine uniquely
two-dimensinal plane.

Remark 6 Let us realize that in our framework (of the regression model (1) ), the
minimal number of points in general position is equal to p. Assume, we have
selected p points, i.e. (Yi , Xi1, Xi2, . . . , Xip)

′, i = 1, 2, . . . , p. In the case when
the model contains intercept, i.e. Xi1 = 1 for i = 1, 2, . . . , p, we take take into ac-
count for establishing p − 1 dimensional plane going through selected observations
just (Yi , Xi2, Xi3, . . . , Xip)

′, i = 1, 2, . . . , p. So, we have p points in R p.
In the case when model does not contain intercept we consider points

(Yi , Xi1, Xi2, . . . , Xip)
′, i = 1, 2, . . . , p and point (0, 0, 0, . . . , 0)′ because employ-

ing model without intercept implies that the regression plane goes through the origin
(after all, intercept is not estimated and hence any estimated model contains origin).

A. Select some maximal number of repetitions of the outer cycle, say kmax, minimal
number of the best models (as the “best model” was described a few lines above),
say bmin, put k = 0, b = 0 and Stotal = ∞.

B. Select randomly p observations
(
Yi j , Xi j 1, Xi j 2, . . . , Xi j p

)′
, j = 1, 2, . . . , p.

If they are in general position evaluate the (regression) plane going through them,
otherwise repeat selection of observations. It gives an initial estimate of regres-
sion coefficients. Let us denote it by β̂initial. Evaluate for all observations the

squared residuals r2
i (β̂initial) =

(
Yi − X ′

i β̂initial

)2
, i = 1, 2, . . . , n, establish the

order statistics of them r2
(i)(β̂initial)’s, see (8), and the ranks π(β̂initial, i), see (10).

Further, define the diagonal matrix

W
(
β̂initial

)
= diag

{
w∗

1, w
∗
2, . . . , w

∗
n

}
with w∗

i =
(
π(β̂initial, i)− 1

n

)

and evaluate

S
(
β̂initial

)
=
(

Y −X β̂initial

)′
W
(
β̂initial

)
Z

′
Z W

(
β̂initial

) (
Y − X β̂initial

)
.

Then put t = 1 and Smin,k = S
(
β̂initial

)
. Finally, evaluate

β̂
(WIV,n,W )
(1) =

(
Z ′W

(
β̂initial

)
X
)−1 (

Z ′W
(
β̂initial

)
Y
)
.
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C. Evaluate for all observations the squared residuals r2
i (β̂

(WIV,n,w)
(t) ) =

(
Yi − X ′

i β̂
(WIV,n,w)
(t)

)2
, i = 1, 2, . . . , n, establish the order statistics of them

r2
(i)(β̂

(WIV,n,w)
(t) )’s, see again (8) and the ranks π(β̂(WIV,n,w)

(t) , i), see once again
(10). Finally, define the diagonal matrix

W
(
β̂
(WIV,n,w)
(t)

)
=diag

{
w∗

1, w
∗
2, . . . , w

∗
n

}
with w∗

i =
(
π(β̂

(WIV,n,w)
(t) , i)− 1

n

)

and evaluate

S
(
β̂
(WIV,n,w)
(t)

)
=
(

Y − X β̂(WIV,n,W )
(t)

)′
W
(
β̂
(WIV,n,w)
(t)

)
Z

×Z
′
W
(
β̂
(WIV,n,w)
(t)

) (
Y − X β̂(WIV,n,w)

(t)

)
. (21)

D. If S
(
β̂
(WIV,n,w)
(t)

)
< Smin,k , put Smin,k = S

(
β̂
(WIV,n,W )
(t)

)
. Otherwise go to F.

E. Evaluate the Weighted Instrumental Variables

β̂
(WIV,n,W )
(t+1) =

(
Z ′W

(
β̂
(WIV,n,w)
(t)

)
X
)−1 (

Z ′W
(
β̂
(WIV,n,w)
(t)

)
Y
)
,

put t = t + 1 and go to C.
F. If Smin,k = Stotal, put b = b + 1 (i.e. in just finished inner cycle again the regres-

sion model which is at this moment considered as the “best model” up to this
moment—as described in previous—was attained).

G. If Stotal > Smin,k , put Stotal = Smin,k and b = 1. If k = kmax, go to H, otherwise
put k = k+1. If the number of already estimated models, for which the functional
(21) is equal to Stotal reached bmin (i.e. b = bmin), go to H. Otherwise go to B.

H. Return as the estimate by means of the Instrumental Weighted Variables
β̂(IWV,n,w) (see (20) ) the estimate of regression coefficients which corresponds
to Stotal.

6 Simulation study

We are going to present and briefly comment results of small simulation study. As the
understanding of the simulation study is crucial for attaining a trust to the described
algorithm, we try to explain each step very carefully. Three experiments were per-
formed. First of all let us explain what is common for them.

6.1 Common steps of the first and second experiment:

S1 The regression model

Yn = β1 · Xn1 + β2 · Xn2 + β3 · Xn3 + εn, n = 1, 2, . . . , 50, (22)
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was considered. After having generated data
{
Y ∗

n , [X∗
n]′, [Z∗

n ]′}50
n=1 - details are

described below, the estimates by means of the Ordinary Least Squares, the
Least Weighted Squares and the Instrumental Weighted Variables were applied
on them.

S2 All experiments were ten times repeated. The results were collected in tables
below. The results of each repetition create one column in each table of one
triplet of tables (more details will be given in the separate explanation for the
first, the second and the third experiment).

S3 Each repetition of given experiment contains 100 samples, each sample consists
of 50 observations. Each sample was generated as follows.

S4 A finite sequence {Tn}52
n=1 of 3-dimensional random vectors normally distributed

with zero mean and unit covariance matrix was generated.
S5 Then, the autoregressive sequence {Vn}51

n=1 was defined by

Vn = 0.5 · Tn+1 + 0.5 · Tn .

S6 The sequences of explanatory and instrumental variables, {Xn}50
n=1 and {Zn}50

n=1,
were constructed

Xn = Vn+1 and Zn = Vn .

Notice please that for any j, k ∈ {1, 2, 3},

cov
(
Xnj , Znj

) = cov
(
Vn+1, j , Vnj

)

= cov
(
0.5 · Tn+2, j + 0.5 · Tn+1, j , 0.5 · Tn+1, j + 0.5 · Tnj

)

= 0.25

and

var
(
Xnj
) = var

(
Znj
) = 0.5.

On the other hand

cov
(
Xnj , Znk

)=cov
(
0.5 · Tn+2, j + 0.5 · Tn+1, j , 0.5 · Tn+1,k + 0.5 · Tnk

)=0.

Finally,

corr (Xn, Zn) =
⎡

⎣
0.5, 0, 0
0, 0.5, 0
0, 0, 0.5

⎤

⎦ (23)

i.e. the instrumental variables are correlated with the explanatory ones.

S7 The error terms
{
ε
(�)
n

}50

n=1
, � = 1, 2, 3, were created by

ε(�)n = (−1)�+1
3∑

k=1

Tn+2,k
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(index � = 1, 2, 3 is for the first, the second and the third experiment, respec-

tively). Notice please that again cov
(

Xnj , ε
(�)
n

)
= (−1)�+10.5, j = 1, 2, 3,

� = 1, 2, 3 and var
(
ε
(�)
n

)
= 3, � = 1, 2, 3 and hence

corr
(

Xn, ε
(�)
n

)
= corr

(
0.5 · Tn+2 + 0.5 · Tn+1, (−1)�+1

3∑

k=1

Tn+2,k

)

=

⎡

⎢⎢⎢⎢⎣

(−1)�+1 0.5√
1.5

(−1)�+1 0.5√
1.5

(−1)�+1 0.5√
1.5

⎤

⎥⎥⎥⎥⎦

for � = 1, 2, 3. It indicates that the explanatory variables are correlated with the
error terms. On the other hand

cov
(

Znj , ε
(�)
n

)
= 0, j = 1, 2, 3, � = 1, 2, 3,

i.e. the instrumental variables are not correlated with the error terms.
Now, we are going to describe the special features of the first experiment.

S8 The values of response variables Yn’s were calculated as

Yn = 7 · Xn1 − 3 · Xn2 − 5 · Xn3 + ε(1)n , n = 1, 2, . . . , 50.

Then for k = 1, 2, . . . , 5, we put Y ∗
k = 5 · Yk and Y ∗

k = Yk for 6 ≤ k ≤ 50,
X∗

n = Xn, Z∗
n = Zn, n = 1, 2, . . . , 50. It means that the first five response

variables were “converted” into outliers, or in other words, a contamination of
data (on the level of 10% of observations having damaged response variable)
was perform.

S9 Data
{(

Y ∗
n , [X∗

n]′, [Z∗
n ]′)′

}50

n=1
were taken into account. Then the estimates of

regression coefficients estimated by means of the Ordinary Least Squares, by
the Least Weighted Squares and by the Istrumental Weighted Variables eval-
uated. It was done for each of 100 repetitions (each repetition produced data{(

Y ∗
n , [X∗

n]′, [Z∗
n ]′)′

}50

n=1
). Let us denote the results β̂(LS,50)

(k) , β̂
(LWS,50,w)
(k) and

β̂
(IWV,50,w)
(k) , k = 1, 2, . . . , 100.

S10 The mean values were calculated

β̂
(LS,50)
(mean) = 1

100

100∑

k=1

β̂
(LS,50)
(k) , β̂

(LWS,50,w)
(mean) = 1

100

100∑

k=1

β̂
(LWS,50,w)
(k) ,

β̂
(IWV,50,w)
(mean) = 1

100

100∑

k=1

β̂
(IWV,50,w)
(k) .
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These (empirical) means are presented in the next triplet of Tables 1, 2 and 3,
in the columns denoted (at the second row of Tables 1, 2 and 3) by 1.

S11 The whole procedure, starting with S1 up to S10, was 10 times repeated and
values collected in 1, 2 and 3. Each repetition gave results in one column of 1,
2 and 3, i.e. the results of first repetition are in the second columns of 1, 2 and
3, the results of second repetition are in the third columns of 1, 2 and 3, etc.

The second experiment:

S′8 The values of response variables Yn’s were calculated as

Yn = 2.4 · Xn1 − 3.1 · Xn2 + 2.8 · Xn3 + ε(1)n , n = 1, 2, . . . , 50.

Then we put Y ∗
n = Yn for 1 ≤ n ≤ 50 and X∗

n = Xn and Z∗
n = Zn for

1 ≤ n ≤ 45. Finally, for n = 46, 47, . . . , 50 we put X∗
n = Xn + 5 and

Z∗
n = Zn + 5. Then we took into account the data

{(
Y ∗

n , [X∗
n]′, [Z∗

n ]′)′
}50

n=1
. It

means that the last five explanatory as well as instrumental variables were “con-
verted” into leverage points. In other words, a contamination of data (on the level
of 10% of data having wrong explanatory as well as instrumental variables) was
performed.

S′9, S′10, S′11 The steps S′9, S′10, S′11 coincide with S9, S10 and S11.

Table 1 The first experiment: β1 = 7, β2 = −3, β3 = −5

Ordinary Least Squares

1 2 3 4 5 6 7 8 9 10

β̂1 7.996 8.000 8.014 8.027 8.019 8.001 8.003 7.974 8.014 8.027

β̂2 −2.022 −1.999 −1.976 −1.998 −1.999 −2.001 −2.001 −2.002 −1.976 −1.998

β̂3 −3.971 −3.986 −4.026 −4.031 −4.017 −4.003 −3.995 −3.983 −4.026 −4.03

Least Weighted Squares

β̂1 8.019 7.994 7.980 8.009 8.04 8.008 8.015 7.963 7.980 8.010

β̂2 −2.021 −1.998 −2.000 −2.011 −2.026 −2.007 −1.998 −1.976 −2.000 −2.011

β̂3 −3.968 −3.978 −4.025 −4.038 −4.002 −4.018 −3.985 −4.013 −4.025 −4.038

Instrumental Weighted Variables

β̂1 6.817 6.735 6.868 7.099 6.871 7.095 7.474 6.688 6.868 7.0993

β̂2 −3.790 −3.073 −3.208 −3.276 −3.255 −3.420 −3.915 −3.077 −3.208 −3.276

β̂3 −5.534 −4.785 −5.384 −5.144 −5.006 −5.139 −5.747 −5.260 −5.384 −5.144
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Table 2 The second experiment: β1 = 2.4, β2 = −3.1, β3 = 2.8

Ordinary Least Squares

1 2 3 4 5 6 7 8 9 10

β̂1 3.406 3.393 3.396 3.386 3.395 3.394 3.407 3.412 3.393 3.400

β̂2 −2.100 −2.111 −2.088 −2.105 −2.085 −2.104 −2.107 −2.103 −2.095 −2.096

β̂3 3.793 3.819 3.788 3.823 3.797 3.809 3.797 3.797 3.801 3.789

Least Weighted Squares

β̂1 3.405 3.393 3.394 3.377 3.396 3.388 3.419 3.403 3.407 3.398

β̂2 −2.099 −2.109 −2.085 −2.102 −2.070 −2.101 −2.113 −2.101 −2.096 −2.098

β̂3 3.777 3.823 3.784 3.829 3.793 3.805 3.811 3.798 3.796 3.788

Instrumental Weighted Variables

β̂1 2.446 2.296 2.160 2.352 2.221 2.289 2.227 2.311 2.316 2.343

β̂2 −3.261 −3.218 −3.222 −3.122 −3.125 −3.172 −3.254 −3.200 −3.102 −2.999

β̂3 2.892 2.832 2.748 2.896 2.632 2.603 2.797 2.677 2.688 2.742

Table 3 The third experiment: β1 = −1, β2 = 4, β3 = 2

Ordinary Least Squares

1 2 3 4 5 6 7 8 9 10

β̂1 −0.025 0.025 −0.011 0.001 −0.015 0.011 0.006 −0.002 −0.006 −0.011

β̂2 5.013 4.979 4.996 5.006 5.006 4.985 4.986 5.017 5.001 5.027

β̂3 3.008 2.999 3.018 2.993 3.014 3.001 3.006 2.989 3.012 2.994

Least Weighted Squares

β̂1 −0.012 0.023 −0.004 0.005 −0.019 0.006 0.013 0.001 −0.022 −0.006

β̂2 5.010 4.973 4.997 5.005 4.991 4.986 4.990 5.022 4.997 5.027

β̂3 3.007 3.007 3.026 3.000 3.016 2.998 3.008 2.981 3.007 2.995

Instrumental Weighted Variables

β̂1 −1.151 −1.077 −1.176 −1.109 −0.966 −1.045 −1.025 −1.057 −1.034 −1.008

β̂2 3.961 3.894 3.921 3.933 3.895 3.833 3.768 3.789 3.801 3.920

β̂3 1.986 1.846 1.893 1.840 1.891 1.862 1.998 1.997 1.743 1.831

The third experiment:

S′8 The values of response variables Yn’s were calculated as

Yn = −Xn1 − 4 · Xn2 + 2 · Xn3 + ε(1)n , n = 1, 2, . . . , 50.

Then for n = 1, 2, . . . , 5 we put Y ∗
n = 5 · Yn and Y ∗

n = Yn for 6 ≤ n ≤ 50.
Moreover, for n = 46, 47, . . . , 50 we put X∗

n = 5 · Xn and Z∗
n = 5 · Zn .

Finally, X∗
n = Xn and Z∗

n = Zn for 1 ≤ n ≤ 45. Then we took into account
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the data
{(

Y ∗
n , [X∗

n]′, [Z∗
n ]′)′

}50

n=1
. It means that the first five response variables

were again “converted” into outliers and the last five explanatory as well as
instrumental variables were “converted” into leverage points. In other words,
a contamination of data (on the level of 10% of observations having damaged
response variable and another 10% of them having wrong explanatory as well
as instrumental variables) was performed.

S′9, S′10, S′11 The steps S′9,S′10,S′11 coincide with S9, S10 and S11.

(All programs for evaluating all employed estimators as well as the “framework” for
the simulation study are available from the author on request.)

6.2 Conclusions of simulation study

It is evident that the contamination 10% together with correlation between the regres-
sors and the error terms destroyed the Ordinary Least Squares as well as the Least
Weighted Squares. The situation under presence of outliers can be coped quite well by
the Instrumental Weighted Variables. The performance of the Instrumental Weighted
Variables under presence of leverage points is nearly of the same quality.

There are at least two things which may be of interest. Firstly, the estimation is sat-
isfactorily good although the correlation between the explanatory and the instrumental
variables is rather weak, see (23). In practice, the economic data often exhibit higher
autocorrelation in the time series of explanatory variables and hence we have (fre-
quently) at hand better instruments, see e. g. Víšek (2003b).

Secondly, the estimation by means of the Ordinary Least Squares and by the Least
Weighted Squares was mainly destroyed by correlation between the explanatory vari-
ables and error terms, as it is indicated by a similar “bias” of the respective estimates.
If the damage would be caused (mainly) by contamination, the bias would be much
larger for the Ordinary Least Squares in comparison with the Least Weighted Squares
[which are able to cope with the contamination of data in the case when there is no
the correlation between explanatory variables and error terms, see Plát (2004b)]. The
phenomenon can be presumably explained as follows: For the Ordinary Least Squares
we have

β̂(OLS,n) =
(

X
′
X
)−1

X
′
Y = β0 +

(
1

n
X

′
X

)−1 1

n
X

′
e,

compare with (5). A similar asymptotic (Bahadur) representation can be derived for

β̂(LWS,n,w), see Mašíček (2003) or Víšek (2002b). Then 50 observations already “acti-

vated” the law of large numbers and so
(

1
n X

′
X
)−1

and 1
n X

′
e are already near to

EX1 X ′
1 and to EX1e1, respectively, and hence the bias.

So, it seems that (a bit preliminary) conclusion may be that neglecting the
correlation between regressors and error terms may be much more dangerous than
the omission of the presence of contamination of data, especially when it is not of
very large (high, if you want) level.

123



560 J. Á. Víšek

7 Consistency of the instrumental weighted variables

For any β ∈ R p the distribution of the absolute value of residual will be denoted
Fβ(r), i.e.

Fβ(r) = P(|Y1 − X
′
1β| < r) = P(|e1 − X

′
1β| < r) (24)

(remember, we have assumed β0 = 0). Similarly, for any β ∈ R p the empirical
distribution of the absolute value of residual will be denoted F (n)β (r). It means that,
denoting the indicator of a set A by I {A}, we have

F (n)β (r) = 1

n

n∑

j=1

I
{|r j (β)| < r

} = 1

n

n∑

j=1

I
{
|e j − X

′
jβ| < r

}
. (25)

Realize now that denoting |ri (β)| = ai (β), the order statistics a(i)(β)’s and the order
statistics of the squared residuals r2

(i)(β)’s assign to given fix observation the same rank,
i.e. the residual of given fix observation (say for i = i0, for some i0 ∈ {1, 2, . . . , n})
is in the sequence

r2
(1)(β) ≤ r2

(2)(β) ≤ · · · ≤ r2
(n)(β) (26)

and in the sequence
a(1)(β) ≤ a(2)(β) ≤ · · · ≤ a(n)(β) (27)

on the same position. In other words, if the squared residual of the j th observation
is the �th smallest among the squared residuals, also the absolute value of the j th
residual is the �th smallest among the absolute values of residuals. Then looking for
the empirical distribution function of the absolute values of residuals, we observe that
the first “jump” (having the magnitude 1

n ) is at the smallest absolute value of residuals,
i.e. at a(1)(β). But due to the sharp inequality in the definition (25) of the empirical

distribution function (see (25)), it holds F (n)β (a(1)(β)) = 0. Hence, at the �th “jump” at

a(�)(β), we have F (n)β (a(�)(β)) = �−1
n . Now, let us realize that a(π(β,i))(β) = |ri (β)|.

It means that at the π(β, i)th “jump”, we have

F (n)β (a(π(β,i))(β)) = F (n)β (|ri (β)|) = π(β, i)− 1

n
(28)

(for π(β) see (10)) and so (20) can be written as

n∑

i=1

w
(

F (n)β (|ri (β)|)
)

Zi

(
Yi − X

′
iβ
)

= 0. (29)

In what follows we shall denote the joint d. f. of explanatory variables, of instrumen-
tal variables and of error terms by FX,Z ,e(x, z, r) and of course the marginal d.f.’s by
FX,Z (x, z), FX,e(x, r), FX (x), FZ (z) etc. We will need also the following notation.
For any β ∈ R p the distribution of the product β

′
Z X

′
β will be denoted F

β
′ Z X ′

β
(u),

i.e.
F
β

′ Z X ′
β
(u) = P(β

′
Z1 X

′
1β < u) (30)
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and similarly as in (24) and (25), the corresponding empirical distribution will be
denoted F (n)

β
′ Z X ′

β
(u), so that

F (n)
β

′ Z X ′
β
(u)= 1

n

n∑

j=1

I
{
β

′
Z j X

′
jβ < u

}
= 1

n

n∑

j=1

I
{
ω ∈ � : β ′

Z j (ω)X
′
j (ω)β < u

}
.

(31)
For any λ ∈ R+ and any a ∈ R put

γλ,a = sup
‖β‖=λ

F
β

′ Z X ′
β
(a). (32)

Notice please that due to the fact that the surface of ball {β ∈ R p, ‖β‖ = λ} is
compact, there is βλ ∈ {β ∈ R p, ‖β‖ = λ} so that

γλ,a = F
β

′
λZ X ′

βλ
(a). (33)

For any λ ∈ R+ let us denote

τλ = − inf‖β‖≤λ β
′
E

[
Z1 X

′
1 · I {β ′

Z1 X
′
1β < 0}

]
β. (34)

Notice please that τλ ≥ 0 and that again due to the fact that the ball {β ∈ R p, ‖β‖ ≤ λ}
is compact, the infimum is finite, since there is a β̃ ∈ {β ∈ R p, ‖β‖ ≤ λ} so that

τλ = −β̃ ′
E

[
Z1 X

′
1 · I {β̃ ′

Z1 X
′
1β̃ < 0}

]
β̃. (35)

The classical regression analysis accepted the assumption that EZ1 X
′
1 is regular and

E {e1|Z1} = 0 (see e.g. Bowden and Turkington 1984 or Judge 1985) to be able to
prove consistency of the estimator obtained by the method of Instrumental Variables.
We need to assume similar ones. The following more or less academic considerations
give us an inspiration. Transforming the variables so that we put X̃11 = X11 and for
any j = 2, 3, . . . , p,

X̃1 j = X1 j −
j−1∑

k=1

λ jk X̃1k

where λ jk are selected so that cov(X̃1 j , X̃1k) = 0 for j �= k, we have the matrix
EX̃1 X̃

′
1 diagonal and the model for transformed data, namely Yi = X̃

′
i β̃ + ui has

the same “explanatory” abilities as (1). New explanatory variables
{

X̃i

}∞
i=1

would

not allow presumably so direct (physical, biological, economic etc.) interpretation,
nevertheless they have also at least one advantage, namely that overfitting the model
does not imply automatically a decrease of efficiency of the etimates of regression
coefficients, see Chatterjee and Hadi (1988).
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Assuming that we shall look for a sequence of instrumental variables
{

Z̃i

}∞
i=1

for

the sequence of transformed explanatory variables
{

X̃i

}∞
i=1

. We would like to find

it so that also EZ̃1 X̃
′
1 is regular and diagonal. In other words, we would like to find

the instrumental variables so that Z̃1 j is correlated only with X̃1 j (of course for all
j = 2, , 3 . . . , p). Assume that it is possible. Then we may assume that EZ̃1 j X̃1 j > 0
(otherwise we take instead of Z̃1 j the instrumental variable −Z̃1 j ). Then however
EZ̃1 X̃

′
1 is positive definite. These (let us repeat academic) considerations can inspire

us to made following assumptions about the instrumental variables:

C3 The instrumental variables {Zi }∞i=1 are independent and identically distributed
with distribution function FZ (z). Moreover, they are independent from the
sequence {ei }∞i=1. Further, the joint distribution function FX,Z (x, z) is abso-

lutely continuous, E
{
w(Fβ0(|e1|))Z1 X

′
1

}
as well as EZ1 Z

′
1 are positive definite

(one can compare C3 with Víšek (1998a) where we considered instrumental M-
estimators and the discussion of assumptions for M-instrumental variables was
given) and there is q > 1 so that E {‖Z1‖ · ‖X1‖}q < ∞. Finally, there is a > 0,
b ∈ (0, 1) and λ > 0 so that

a · (b − γλ,a
) · w(b) > τλ (36)

for γλ,a and τλ given by (32) and (34).

Remark 7 Let us briefly discuss assumptions we have made. Let us recall that the
Least Squares (β(LS,n)) are optimal only under normality of error terms. Here the opti-
mality means that they reach the lower Rao–Cramer bound (of course, in multivariate
Rao–Cramer lemma we consider the ordering of the covariance matrices in the sense
of ordering the positive definite matrices).On the other hand, a small departure from
normality may cause (and usually does) a large decrease of efficiency (see e.g. Fisher
1920, 1922). So, without the assumption of normality of the error terms β̂(LS,n) is
much worse, in fact they are the best unbiased estimator only in the class of linear
unbiased estimators, for a discussion showing that restriction on linear estimators can
be drastic see Hampel et al. (1986). Sometimes, however we may meet with the state-
ment that we do not need necessarily the normality of error terms, just because β̂(LS,50)

is still (without normality) the best unbiased estimator in the class of linear unbiased
estimators. And the restriction on the class of linear unbiased estimators is justified by
a claim that we have to restrict ourselves on the class of linear estimators, as in the the
class of linear unbiased estimators, the estimators are scale- and regression-eqivariant.
Let us recall that having denoted M(n, p) the set of all matrices of type (n × p) and
recalling that the estimator β̂ can be considered as a mapping

β̂(Y, X) : M(n, p + 1) → R p,
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the estimator β̂ of β0 is called scale-equivariant, if for any c ∈ R+,Y ∈ Rn and
X ∈ M(n, p) we have

β̂(cY, X) = cβ̂(Y, X)

and regression-equivariant if for any b ∈ R p,Y ∈ Rn and X ∈ M(n, p),

β̂(Y + Xb, X) = β̂(Y, X)+ b.

But, there are a lot of nonlinear estimators which are scale- and regression-
equivariant. In the regression framework, the estimators as the Least Median of
Squares, the Least Trimmed Squares or the Least Weighted Squares can serve as
examples [for an interesting discussion of this topic see again Hampel et al. (1986),
and also Bickel (1975) or Jurečková and Sen (1993)].

Since LWS are also based on L2-metric, we guess that they are approximately
optimal for finite sample sizes under the (approximative) normality of error terms, for
some hint consult Mašíček (2003). As the present proposal of robustified instrumental
variables is based on the same metric (due to the normal equations (20)), we can expect
that the estimate can be approximately optimal under (approximative) normality of
the error terms. But then our assumptions seem to be quite acceptable.

The only assumption which deserve further discussion is the assumption (36). We
are going to show that it is a restriction on the weight functionw. Let us return to (32)
(or to (33)). We have

γλ,a = F
β

′
λZ X ′

βλ
(a) = P

(
β

′
λZ1 X

′
1βλ ≤ 0

)
+ P

(
0 < β

′
λZ1 X

′
1βλ ≤ a

)
.

If we assume for a while Z j = X j , for any fix λ ∈ R+ we have

lim
a→0+ F

β
′
γ X X ′

βγ
(a) = 0 (37)

but generally, (if Z j is not X j ) we have (again for fix λ ∈ R+)

lim
a→0+ F

β
′
γ Z X ′

βγ
(a) = P

(
β

′
λZ1 X

′
1βλ ≤ 0

)
. (38)

On the other hand, for any a > 0 we have

γλ,a < 1. (39)

Now let us turn to τλ. As

E

∣∣∣β
′
Z1 X

′
1β

∣∣∣ ≤ ‖β‖2
E {‖Z1‖ ‖X1‖} ≤ ‖β‖2

E {‖Z1‖ ‖X1‖}q < ∞,

we have
lim sup
‖β‖→0

∣∣∣ β
′
E

[
Z1 X

′
1 I {β ′

Z1 X
′
1β < 0}

]
β

∣∣∣ = 0. (40)
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In other words, τλ can be done arbitrary small (just selecting λ ∈ R+ so that ‖λ‖ is
small). It says that if w(b) ≡ 1, there is b ∈ (0, 1) > γλ,a (even for any a > 0). It
means that (37), (38), (39) and (40) indicate that (36) can be always fulfilled but we
may have restricted possibility to depress the influence of “bad” observations.

In what follows there are defined some constants inside the proofs of lemmas. They
are assumed to be defined only inside the corresponding proof. Now we can prove:

Lemma 1 Let Conditions C1, C2 and C3 be fulfilled. Then for any ε > 0 and δ > 0
there is θ > δ and � > 0 such that

P

({
ω ∈ � : inf‖β‖≥θ −1

n
β

′
NEY,Z ,n(β) > �

})
> 1 − ε.

In other words, any sequence
{
β̂(IWV,n,w)

}∞
n=1

of the solutions of the (sequence of)

normal equations NEZ ,n(β̂
(IWV,n,w)) = 0 (see (19)) is bounded in probability.

Proof The plan of the proof is simple: We shall show that for any positive ε there are
positive κ and nε so that for any n > nε with probability at least 1 − ε, outside the
ball of the diameter κ the expression − 1

nβ
′
NEY,Z ,n(β) is positive. The way how to

demonstrate it is based on the idea to show that quadratic part of − 1
nβ

′
NEY,Z ,n(β) is

positive and hence for enough large β it overcomes the linear one. In order to establish
the positivity of quadratic part, we evaluate the number of terms in the corresponding
sum which are negative and the number of terms which are positive and simultaneously
having weight larger than a constant c (of course, there are some other positive terms,
contribution of which will be neglected, since their weights are smaller than c). Since
the mean of sum of the negative terms is bounded from below in probability, we
estimate from below the value of quadratic term.

First of all, denote the set of all indices i = 1, 2, . . . , n by In , for b from Condition
C3 the set of indices for which F (n)β (|ri (β)|) ≥ b by Ib and finally, for any β ∈ R p

denote the set of indices for which β
′
Zi X

′
iβ < a by Ia(β). Of course, the set of indices

Ib also depends on β but due to the fact that we shall need only an upper estimate of
number of elements of Ib which doesn’t depend on β, we have omitted β in notations.
Returning to (26) or (27), we easy verify that the empirical d.f. overcomes b at least
at its [nb] + 1 jump, i.e. at least [nb] of n observations are in I C

b . Hence

#Ib ≤ n · (1 − b)+ 1 (41)

where # A stays for the number of elements of the set A. Denote E {|e1| · ‖Z1‖} = γ (1)

and E {‖X1‖ · ‖Z1‖} = γ (2) and fix a positive ε. Further, let λ > 0 be that from C3
and put (see (36))

δ = a · (b − γλ,a
) · w(b)− τλ

5
.
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Recalling that we have assumed that β0 = 0, we shall consider for β ∈ R p

−1

n
β

′
NEY,Z ,n(β) = −1

n

n∑

i=1

w
(

F (n)β (|ri (β)|)
)
β

′
Zi

(
ei − X

′
iβ
)

= 1

n

n∑

i=1

w
(

F (n)β (|ri (β)|)
)
β

′
Zi X

′
iβ − 1

n

n∑

i=1

w
(

F (n)β (|ri (β)|)
)

ei Z
′
iβ. (42)

Let us start with the first term in (42) and put τ (1) = δ/(2L · γ (2) · λ2), for L see C2.
Due to Lemma 4 we can find n1 ∈ N so that for any n > n1 there is a set B(1)n such
that P(B(1)n ) > 1 − ε/5 and for any ω ∈ B(1)n ,

sup
β∈R p

sup
r∈R

∣∣∣F (n)β (r)− Fβ(r)
∣∣∣ ≤ τ (1).

Employing the law of large numbers, find n2 ∈ N so that for any n > n2 there is a
set B(2)n such that P(B(2)n ) > 1 − ε/5 and for any ω ∈ B(2)n

1

n

n∑

i=1

‖Zi‖ · ‖Xi‖ < 2γ (2).

Since then for any n> max {n1, n2} and anyω ∈ B(1)n ∩B(2)n (of course P
(

B(1)n ∩ B(2)n

)

> 1 − 2ε
5 )

1

n
sup
β∈R p

∥∥∥∥∥

n∑

i=1

{
w
(

F (n)β (|ri (β)|)
)

− w
(

Fβ(|ri (β)|)
)}

Zi X
′
i

∥∥∥∥∥

≤ 1

n
L · τ (1) ·

n∑

i=1

‖Zi‖ · ‖Xi‖ ≤ L · τ (1) · 2γ (2) = δ

λ2 ,

we have for any n > max {n1, n2}, any ω ∈ B(1)n ∩ B(2)n and any β ∈ R p,

1

n
sup
β∈R p

∣∣∣∣∣

n∑

i=1

{
w
(

F (n)β (|ri (β)|)
)

− w
(
Fβ(|ri (β)|)

)}
β

′
Zi X

′
iβ

∣∣∣∣∣ ≤
δ · ‖β‖2

λ2 . (43)

Notice please that for any β ∈ R p, for indices for which F (n)β (|ri (β)|) ≤ b, we have

w
(

F (n)β (|ri (β)|)
)

≥ w(b). Now, let us consider for any β ∈ R p,

1

n

n∑

i=1

w
(
Fβ(|ri (β)|)

)
β

′
Zi X

′
iβ

= 1

n

n∑

i=1

w
(
Fβ(|ri (β)|)

)
β

′
Zi X

′
iβ · I {β ′

Zi X
′
iβ < 0}

+1

n

n∑

i=1

w
(
Fβ(|ri (β)|)

)
β

′
Zi X

′
iβ · I {β ′

Zi X
′
iβ ≥ 0}
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≥ 1

n

n∑

i=1

β
′
Zi X

′
iβ · I {β ′

Zi X
′
iβ < 0}

+1

n

∑

In\Ib

w(b)β
′
Zi X

′
iβ · I {β ′

Zi X
′
iβ ≥ 0} (44)

where we have employed monotonicity ofw(r). Notice please that (44) holds for any
β ∈ R p. Utilizing Lemma 10 find such n3 ∈ N that for all n > n3 we have

P

({
ω ∈ � : inf‖β‖≤λ

1

n

n∑

i=1

β
′
Zi X

′
iβ · I {β ′

Zi X
′
iβ < 0} > τλ − δ

2

})
> 1 − ε

5

(45)
and denote the corresponding set by B(3)n . Employing Lemma 5 find n4 ∈ N so that
for all n > n4 we have

P

({
ω ∈ � : sup

β∈R p
sup
u∈R

∣∣∣F (n)
β

′ Z X ′
β
(u)− F

β
′ Z X ′

β
(u)
∣∣∣ ≤ δ

2 · a · w(b)

})
> 1 − ε

5
(46)

and denote the corresponding set by B(4)n . Recalling that, due to the fact how the
empirical distribution function is defined, we have

F (n)
β

′ Z X ′
β
(a) = #{i : β ′

Zi X
′
iβ < a}

n
= #Ia(β)

n

(where again # A denotes the number of points of the set A), we conclude that (46)
implies for any n > n4 and ω ∈ B(4)n ,

#Ia(β) <

(
F
β

′ Z X ′
β
(a)+ δ

2 · a · w(b)
)

· n ≤
(
γλ,a + δ

2 · a · w(b)
)

· n (47)

(for γλ,a see (32)). Finally, find n5 ∈ N so that for all n > n5 we have

a · w(b)
n

< δ. (48)

Considerω ∈ B∗
n = B(3)n ∩B(4)n and n > max {n3, n4, n5}. Let us recall once again that

for any β ∈ R p, for indices for which F (n)β (|ri (β)|) ≤ b, we havew
(

F (n)β (|ri (β)|)
)

≥
w(b). Hence, (41) and (47) imply that the number of indices for which β

′
Zi X

′
iβ ≥ a

and simultaneously w
(

F (n)β (|ri (β)|)
)

≥ w(b) is at least

n−n · (1 − b)− 1 − n ·
(
γλ,a + δ

2 · a · w(b)
)

=n ·
(

b − γλ,a − δ

2 · a · w(b)
)

−1.
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Now, taking into account (45) and (48) we have for any n > max {n3, n4, n5}, any
ω ∈ B∗

n = B(3)n ∩ B(4)n and any ‖β‖ = λ,

1

n

n∑

i=1

β
′
Zi X

′
iβ · I {β ′

Zi X
′
iβ < 0} + 1

n

∑

In\Ib

w(b)β
′
Zi X

′
iβ · I {β ′

Zi X
′
iβ ≥ 0}

≥ a ·
(

b − γλ,a − δ

2 · a · w(b) − 1

n

)
· w(b)− τλ − δ

2

= a ·
(

b − γλ,a − 1

n

)
· w(b)− τλ − δ > 3δ.

Consider now any β ∈ R p, ‖β‖ = θ ≥ λ and put β̃ = θ−1 · λ · β. Notice please that
for any β ∈ R p for which β ′Zi X ′

iβ < 0, also β̃ ′Zi X ′
i β̃ < 0 and similarly for the case

when β ′Zi X ′
iβ ≥ 0. Then

∥∥∥β̃
∥∥∥ = λ and hence, again for any n > max {n3, n4, n5}

and any ω ∈ B∗
n = B(3)n ∩ B(4)n (due to (44))

1

n

n∑

i=1

w
(
Fβ(|ri (β)|)

)
β

′
Zi X

′
iβ

≥ 1

n

n∑

i=1

β
′
Zi X

′
iβ · I {β ′

Zi X
′
iβ < 0} + 1

n

∑

In\Ib

w(b)β
′
Zi X

′
iβ · I {β ′

Zi X
′
iβ ≥ 0}

=
(
θ

λ

)2
⎧
⎨

⎩
1

n

n∑

i=1

β̃
′
Zi X

′
i β̃ · I {β̃ ′

Zi X
′
i β̃ < 0}

+1

n

∑

In\Ib

w(b)β̃
′
Zi X

′
i β̃ · I {β̃ ′

Zi X
′
i β̃ ≥ 0}

⎫
⎬

⎭ > 3

(‖β‖
λ

)2

δ. (49)

Now, we shall consider the second term in (42). Recalling that we have denoted
E {|ei | · ‖Z1‖} = γ (1), we can find n6 ∈ N so that for any n > n6 there is B(5)n so
that P(B(5)n ) > 1 − ε/5 and for any ω ∈ B(5)n we have

1

n

∣∣∣∣∣

n∑

i=1

w
(

F (n)β (|ri (β)|)
)

ei Z
′
iβ

∣∣∣∣∣ ≤ (γ (1) + δ)‖β‖. (50)

Consider n > max {n1, n2, n3, n4, n5, n6} and ω ∈ Bn = ∩5
j=1 B( j)

n . Of course,
P (Bn) > 1 − ε and (42), (43), (49) and (50) imply that for any β ∈ R p, ‖β‖ ≥ λ

−1

n
β

′
NEY,Z ,n(β) ≥ 2

(‖β‖
λ

)2

δ − (γ (1) + δ)‖β‖.
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Then there is a κ > 0 such that for any β ∈ R p, ‖β‖ > κ with probability at least
1 − ε we have

−1

n
β

′
NEY,Z ,n(β) > δ.

��
Remark 8 The fact that for any i and any ω ∈ � the matrix Xi X

′
i is positive semidef-

inite allows to prove the same assertion (i.e. that all solutions of the normal equations
are bounded in probability) for the Least Weighted Squares in significantly simpler
way, see Mašíček (2003).

Lemma 2 Let Conditions C1, C2 and C3 be fulfilled. Then for any ε > 0, δ ∈ (0, 1)
and ζ > 0 there is nε,δ,ζ ∈ N so that for any n > nε,δ,ζ we have

P

({
ω ∈ � : sup

‖β‖≤ζ

∣∣∣∣∣
1

n

n∑

i=1

w
(

F (n)β (|ri (β)|)
)
β

′
Zi

(
ei − X

′
iβ
)

−β ′
E

[
w
(
Fβ(|r1(β)|)

)
Z1

(
ei − X

′
1β
)] ∣∣∣∣∣ < δ

})
> 1 − ε.

Proof Denoting E {|e1| · ‖Z1‖} = γ (1) and E {‖X1‖ · ‖Z1‖} = γ (2), let us fix a
positive ε, δ ∈ (0, 1) and ζ > 0. Recalling that we have assumed that β0 = 0, we
shall consider for β ∈ R p, ‖β‖ ≤ ζ ,

− 1

n
β

′
NEY,Z ,n(β)=−1

n

n∑

i=1

w
(

F (n)β (|ri (β)|)
)
β

′
Zi

(
ei − X

′
iβ
)

= 1

n

n∑

i=1

w
(
F (n)β (|ri (β)|)

)
β

′
Zi X

′
iβ− 1

n

n∑

i=1

w
(
F (n)β (|ri (β)|)

)
ei Z

′
iβ.

(51)

Let us start with the first term in (51) and put τ (1) = δ/(16γ (2)ζ 2 · L), for L see
Condition C2. Due to Lemma 4 we can find n1 ∈ N so that for any n > n1 there is a
set B(1)n such that P(B(1)n ) > 1 − ε/8 and for any ω ∈ B(1)n ,

sup
β∈R p

sup
r∈R

∣∣∣F (n)β (r)− Fβ(r)
∣∣∣ ≤ τ (1). (52)

Employing the law of large numbers, find n2 > n1 so that for any n > n2 there is a
set B(2)n such that P(B(2)n ) > 1 − ε/8 and for any ω ∈ B(2)n ,

1

n

n∑

i=1

‖Zi‖ · ‖Xi‖ < 2γ (2). (53)
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Since then for any n > n2 and anyω ∈ B(1)n ∩B(2)n (of course P
(

B(1)n ∩ B(2)n

)
> 1− ε

4 )

1

n
sup

‖β‖≤ζ

∥∥∥∥∥

n∑

i=1

{
w
(

F (n)β (|ri (β)|)
)

− w
(
Fβ(|ri (β)|)

)}
Zi X

′
i

∥∥∥∥∥

≤ 1

n
L · τ (1) ·

n∑

i=1

‖Zi‖ · ‖Xi‖ ≤ L · τ (1) · 2γ (2) = δ

8ζ 2 ,

we have for any n > n2 and any ω ∈ B(1)n ∩ B(2)n ,

1

n
sup

‖β‖≤ζ

∣∣∣∣∣

n∑

i=1

{
w
(

F (n)β (|ri (β)|)
)

− w
(
Fβ(|ri (β)|)

)}
β

′
Zi X

′
iβ

∣∣∣∣∣ ≤
δ

8
. (54)

Employ Lemma 3 and find for � = δ

16·L·γ (2)ζ 2 such τ (2) > 0 that for

T (τ (2)) =
{∥∥∥β(1)

∥∥∥ ≤ ζ,

∥∥∥β(2)
∥∥∥ ≤ ζ,

∥∥∥β(1) − β(2)
∥∥∥ < τ(2)

}
(55)

we have

sup
(β(1),β(2))∈T (τ (2))

sup
r∈R

∣∣Fβ(1) (r)− Fβ(2) (r)
∣∣ < �.

Then for any n > n2 and any ω ∈ B(1)n ∩ B(2)n ,

1

n
sup

(β(1),β(2))∈T (τ (2))

∣∣∣∣∣

n∑

i=1

{
w
(

Fβ(2) (|ri (β
(2))|)

)

−w
(

Fβ(1) (|ri (β
(2))|)

)} [
β(1)

]′
Zi X

′
iβ
(1)

∣∣∣∣∣

≤ L ·� · ζ 2 · 1

n

n∑

i=1

‖Zi‖ · ‖Xi‖ ≤ δ

8
(56)

(notice that the in the previous inequality the subindices of the d.f.’s are β(1) and β(2)

but the arguments are the same, namely ri (β
(2))). Further denote γ (3) = E

{ ‖Z1‖ ·
‖X1‖

}q , γ (4) = E ‖X1‖ and applying the law of large numbers find n3 > n2 so that

for any n > n3 there is a set B(3)n such that P(B(3)n ) > 1 − ε/8 and for any ω ∈ B(3)n
we have

1

n

n∑

i=1

{‖Zi‖ · ‖Xi‖}q < 2γ (3) and
1

n

n∑

i=1

‖Xi‖ < 2γ (4).
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Finally, let us recall that w(r) ∈ [0, 1], so that for any pair r1, r2 ∈ R we have
|w(r1)− w(r2)| ≤ 1 and hence for any q ′ > 1,

|w(r1)− w(r2)|q ′ ≤ |w(r1)− w(r2)|. (57)

Then select a τ (3) ∈
(

0,min

{
τ (2), δ ·

(
2q ′ · 2q · 8 · Ue · L · [γ (3)]

q′
q · γ (4) · ζ 2q ′)−1

})

(for Ue see C1) and put

T (τ (3)) =
{∥∥∥β(1)

∥∥∥ ≤ ζ,

∥∥∥β(2)
∥∥∥ ≤ ζ,

∥∥∥β(1) − β(2)
∥∥∥ < τ(3)

}
.

Employing Hőlder’s inequality we arrive at

sup
(β(1),β(2))∈T (τ (3))

1

n

∣∣∣∣∣

n∑

i=1

{
w
(

Fβ(1) (|ri (β
(2))|)

)

−w
(

Fβ(1) (|ri (β
(1))|)

)} [
β(1)

]′
Zi X

′
iβ
(1)

∣∣∣∣∣

≤ sup
(β(1),β(2))∈T (τ (3))

⎧
⎨

⎩

[
1

n

n∑

i=1

∣∣∣w
(

Fβ(1) (|ri (β
(2))|)

)
− w

(
Fβ(1) (|ri (β

(1))|)
)∣∣∣

q ′
] 1

q′

×
[

1

n

n∑

i=1

(∥∥∥β(1)
∥∥∥ · ‖Zi‖ · ‖Xi‖ ·

∥∥∥β(1)
∥∥∥
)q
] 1

q

⎫
⎬

⎭

≤ sup
(β(1),β(2))∈T (τ (3))

⎧
⎨

⎩

[
1

n

n∑

i=1

∣∣∣w
(

Fβ(1) (|ri (β
(2))|)

)
− w

(
Fβ(1) (|ri (β

(1))|)
)∣∣∣

] 1
q′

×ζ 2

[
1

n

n∑

i=1

(‖Zi‖ · ‖Xi‖)q
] 1

q

⎫
⎬

⎭

≤ sup
(β(1),β(2))∈T (τ (3))

⎧
⎨

⎩U
1
q′

e L
1
q′
[
τ (3)
] 1

q′
[

1

n

n∑

i=1

‖Xi‖
] 1

q′

×ζ 2

[
1

n

n∑

i=1

(‖Zi‖ ‖Xi‖)q
] 1

q

⎫
⎬

⎭

≤ ζ 2 · U
1
q′

e · L
1
q′ ·
[
τ (3)
] 1

q′ ·
[
2γ (4)

] 1
q′ ·
[
2γ (3)

] 1
q ≤ δ

8
. (58)
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Finally, utilizing Lemma 8 find τ (4) ∈ (0,min
{
δ/8, τ (3)

}
) so that for any pair

‖β(1)‖ ≤ ζ, ‖β(2)‖ ≤ ζ, ‖β(1) − β(2)‖ ≤ τ (4), we have

∣∣∣[β(1)]E
[
w
(

Fβ(1) (|r1(β
(1))|)

)
Z1

(
ei − X

′
1β
(1)
)]

−[β(2)]′
E

[
w
(

Fβ(2) (|r1(β
(2))|)

)
Z1

(
ei − X

′
1β
(2)
)]∣∣∣ ≤ δ

8
. (59)

Now find a minimal system of open balls of type B(β, τ (4)) covering the p-dimensional
ball with center at zero and radius ζ , i.e. B(ζ ) = {β ∈ R p : ‖β‖ ≤ ζ }. Of course, due
to the compactness of B(ζ ) the system has finite number of balls, say K (ζ ), and

denote this system by
{
B(β( j), τ (4))

}K (ζ )
j=1 . Utilizing the law of large numbers find for

any j ∈ {1, 2, . . . , K (ζ )} some n∗
j ∈ N so that for all n > n∗

j the set

B(4)nj =
{
ω ∈ � : 1

n

∥∥∥∥∥

n∑

i=1

{
w
(

Fβ( j) (|ri (β
( j))|)

)
Xi X ′

i

−E

[
w
(

Fβ( j) (|ri (β
( j))|)

)
Xi X ′

i

]}∥∥∥∥∥ <
δ

8ζ 2

}
(60)

has probability at least 1− ε
8K (ζ ) . Finally put n(1)ε,δ,ζ = max

{
n3, n∗

1, n∗
2, . . . , n∗

K (ζ )

}
and

Bn = B(1)n ∩ B(2)n ∩ B(3)n ∩K (ζ )
j=1 B(4)nj . We have P(Bn) > 1− ε

2 . Since for any n > n(1)ε,δ,ζ
and any β ∈ R p, ‖β‖ ≤ ζ there is j ∈ {1, 2, . . . , K (ζ )} so that

∥∥β − β( j)
∥∥ < τ(4),

taking into account (54), (56), (58), (59) and (60) we have for for any ω ∈ Bn

sup
‖β‖≤ζ

1

n

∣∣∣∣∣β
′

n∑

i=1

{
w
(

F (n)β (|ri (β)|)
)

Zi X
′
i − E

[
w
(
Fβ(|r1(β)|)

)
Z1 X

′
1

]}
β

∣∣∣∣∣ <
δ

2
.

(61)
Now, we shall consider the second term in (51). Along similar lines as in the first part
of the proof, we can find n(2)ε,δ,ζ ∈ N so that for any n > n(2)ε,δ,ζ there is Cn ⊂ � so that
P(Cn) > 1 − ε/2 and for any ω ∈ Cn we have

sup
‖β‖≤ζ

1

n

∣∣∣∣∣

n∑

i=1

{
w
(

F (n)β (|ri (β)|)
)

ei Z
′
iβ − E

[
w
(
Fβ(|r1(β)|)

)
e1 Z

′
1β
]}∣∣∣∣∣ <

δ

2
. (62)

Taking into account (61) and (62), we conclude the proof. ��
C4 The vector equation

β
′
E

[
w
(
Fβ(|r1(β)|)

)
Z1

(
e1 − X

′
1β
)]

= 0 (63)

in the variable β ∈ R p has unique solution β0 = 0.
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Theorem 1 Let Conditions C1, C2, C3 and C4 be fulfilled. Then any sequence{
β̂(IWV,n,w)

}∞
n=1

of the solutions of normal equations NEZ ,n(β̂
(IWV,n,w)) = 0 is

weakly consistent.

Proof To prove the consistency of
{
β̂(IWV,n,w)

}∞
n=1

, we have to show that for any

ε > 0 and δ > 0 there is nε,δ ∈ N such that for all n > nε,δ ,

P
({
ω ∈ � :

∥∥∥β̂(IWV,n,w) − β0
∥∥∥ < δ

})
> 1 − ε. (64)

So fix ε1 > 0 and δ1 > 0. According to Lemma 1 there are �1 > 0 and θ1 > δ1 so
that for ε1 there is n�1,ε1 ∈ N so that for any n > n�1,ε1 ,

P

({
ω ∈ � : inf‖β‖≥θ1

−1

n
β

′
NEY,Z ,n(β) > �1

})
> 1 − ε1

2

(denote the corresponding set by Bn). It means that for all n > n�1,ε1 all solutions of
the normal equations NEY,Z ,n(β) = 0 are inside the ball B(0, θ1) with probability at
least 1 − ε1

2 . Now, utilizing Lemma 2 we may find for ε1, δ = min{�1
2 , δ1} and θ1

such nε1,δ,θ1 ∈ N , nε1,δ,θ1 ≥ n�1,ε1 so that for any n > nε1,δ,θ1 there is a set Cn (with
P(Cn) > 1 − ε

2 ) such that for any ω ∈ Cn

sup
‖β‖≤θ1

∣∣∣∣∣
1

n

n∑

i=1

w
(

F (n)β (|ri (β)|)
)
β

′
Zi

(
ei − X

′
iβ
)

−β ′
E

[
w
(
Fβ(|r1(β)|)

)
Z1

(
ei − X

′
1β
)] ∣∣∣∣∣ < δ.

But it means that

inf‖β‖=θ1

{
−β ′

E

[
w
(
Fβ(|r1(β)|)

)
Z1

(
ei − X

′
1β
)]}

>
�1

2
> 0. (65)

Further consider the compact set C = {β ∈ R p : δ1 ≤ ‖β‖ ≤ θ1} and find

τC = inf
β∈C

{
−β ′

E

[
w
(
Fβ(|r1(β)|)

)
Z1

(
ei − X

′
1β
)]}

. (66)

Then there is a {βk}∞k=1 such that

lim
k→∞β

′
kE

[
w
(
Fβk (|r1(βk)|)

)
Z1

(
ei − X

′
1βk

)]
= −τC .

On the other hand, due to compactness of C there is a β∗ and a subsequence
{
βk j

}∞
j=1

such that

lim
j→∞βk j = β∗
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and due to the continuity of β
′
E

[
w
(
Fβ(|r1(β)|)

)
Z1

(
ei − X

′
1β
)]

(see Lemma 8) we

have
− [β∗]′

E

[
w
(
Fβ∗(|r1(β

∗)|)) Z1

(
ei − X

′
1β

∗)] = τC . (67)

Then the continuity of β
′
E

[
w
(
Fβ(|r1(β)|)

)
Z1

(
ei − X

′
1β
)]

together with Condition

C4 and (65) imply that τC > 0 (otherwise there has to be a solution of (63) inside the
compact C).

Now, utilizing Lemma 2 once again we may find for ε1, δ1, θ1 and τC nε1,δ1,θ1,τC ∈
N , nε1,δ1,θ1,τC ≥ nε1,δ,θ1 so that for any n > nε1,δ1,θ1,τC there is a set Dn (with
P(Dn) > 1 − ε

2 ) such that for any ω ∈ Dn

sup
‖β‖≤θ1

∣∣∣∣∣
1

n

n∑

i=1

w
(

F (n)β (|ri (β)|)
)
β

′
Zi

(
ei − X

′
iβ
)

−β ′
E

[
w
(
Fβ(|r1(β)|)

)
Z1

(
ei − X

′
1β
)] ∣∣∣∣∣ <

τC

2
. (68)

But (66) and (68) imply that for any n > nε1,δ1,θ1,τC and any ω ∈ Bn ∩ Dn we have

inf‖β‖>δ1
−1

n
β

′
NEY,Z ,n(β) >

τC

2
. (69)

Of course, P (Bn ∩ Dn) > 1 − ε1. But it means that all solutions of normal equations
(63) are inside the ball of radius δ1 with probability at least 1 − ε1, i.e. in other words,
β̂(IWV,n,w) is weakly consistent. ��

8 Concluding remarks

We have added a small pebble (of mosaic) to equip the Least Weighted Squares by
additional (or alternative, if you want) methods (similarly as the classical (Ordinary)
Least Squares are equipped) to be able to build up the regression model in the situations
when the basic assumptions are broken or when the “main” method is not suitable.
We have discussed the situation when orthogonality condition is broken and hence
the (Ordinary) Least Squares are biased. That is why we have proposed the robusti-
fied version of the classical instrumental variables. The other situation, e.g. discrete
or limited response variable, will require also modifications of the Least Weighted
Variables

The lack of such tools and of course the lack of easy available and reliable imple-
mentations of robust methods hamper a wide (or at least wider than the present)
employment of robust methods. We have at present at hand already a reliable algo-
rithm for the Instrumental Weighted Variables which is based on the same idea as the
algorithm which for the Least Trimmed Squares was tested in Víšek (1996b, 2000a).
The algorithm appeared to be reliable, we have referred about it on COMPSTAT 2006,
Víšek (2006c). A paper with a sufficient number of case studies of its applications is
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under preparation. We can send on the request the code of algorithms (in MATLAB
or MATHEMATICA) for TLS, LWS and IWV to anybody who would like to try to
use it.

There are already available some other results for the Least Weighted Squares, see
Kalina (2004), Mašíček (2004a,b), and Plát (2004a,b) which enlarge possibility of
their applications. Some other results, similar to those established in Víšek (1998b,
2000d, 2002d, 2003a) for other type of robust estimators, are under progress.

So, we hope that the present result can help to improve a bit the situations when
“not using robust methods along with the classical ones we take a risk of obtaining
misleading results of case studies under presence of even a slight contamination”, see
Hampel et al. (1986).

Acknowledgment We would like to express our gratitude to the anonymous referees for carefully reading
the manuscript. In fact, a lot of improvements were made according to their recommendations. They read
carefully even the revised version and advised corrections and/or improvements, especially of (discussion
of) the Monte Carlo study.

Appendix

The appendix collects lemmas proofs of which are either simple “computation” on
several lines or they are chains (sometimes long and boring) of routine statistical steps.
Exception is the proof of Lemma 4 which was already published and the proofs of
next two lemmas (Lemmas 5 and 6) which are “copies” of the proof of Lemma 4.
Proofs (in details) are available from author on request.

Lemma 3 Under Conditions C1 the distribution function Fβ(r) is, uniformly with
respect to r ∈ R, uniformly continuous in β, i.e. for any δ > 0 there is ς ∈ (0, 1) so
that for any pair β(1) and β(2) such that

∥∥β(1) − β(2)
∥∥ < ς we have

sup
r∈R

∣∣Fβ(1) (r)− Fβ(2) (r)
∣∣ ≤ δ.

Proof is just evaluation of supr∈R

∣∣Fβ(1) (r)− Fβ(2) (r)
∣∣ ≤ δ which makes use the fact

that

Fβ(r) = P
(∣∣∣e1 − X

′
1β

∣∣∣ < r
)

=
∫

I {
∣∣∣s − x

′
β

∣∣∣ < r}dFX,e(x, s).

��

Lemma 4 Let Conditions C1 hold and fix arbitrary ε > 0. Then there are K < ∞
and nε ∈ N so that for all n > nε

P

({
ω ∈ � : sup

v∈R+
sup
β∈R p

√
n
∣∣∣F (n)β (v)− Fβ(v)

∣∣∣ < K

})
> 1 − ε. (70)
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For the proof of lemma, see Víšek (2006a).
Let us recall that we have denoted for any β ∈ R p by F

β
′ Z X ′

β
(u) the distribution

of the product β
′
Z X

′
β (see (30)) and the corresponding empirical distribution by

F (n)
β

′ Z X ′
β
(u) (see (31)).

Lemma 5 Let Condition C3 hold and fix arbitrary ε > 0. Then there are K < ∞
and nε ∈ N so that for all n > nε

P

({
ω ∈ � : sup

β∈R p
sup
u∈R

√
n
∣∣∣F (n)
β

′ Z X ′
β
(u)− F

β
′ Z X ′

β
(u)
∣∣∣ ≤ K

})
> 1 − ε.

Proof runs along the same lines as the proof of previous lemma. ��
Lemma 6 Let Condition C3 hold and fix arbitrary ε > 0. Then there is Kε < ∞ and
nε ∈ N so that for all n > nε

P

({
ω ∈ � : sup

β(1),β(2)∈R p

√
n

∣∣∣∣∣
1

n

n∑

i=1

I

{[
β(1)

]′
Zi X

′
iβ
(1) <0,

[
β(2)

]′
Zi X

′
iβ
(2)≥0

}

−P

([
β(1)

]′
Z1 X

′
1β
(1) < 0,

[
β(2)

]′
Z1 X

′
1β
(2) ≥ 0

)∣∣∣∣ > Kε

})
> 1 − ε.

Proof runs again along the same lines as the proof of Lemma 4.

Lemma 7 Let Condition C3 hold and fix arbitrary ε > 0 and ζ > 0. Then there is
� > 0 so that

sup
(β(1), β(2))∈T (ζ,�)

P

([
β(1)

]′
Z X

′
β(1) < 0,

[
β(2)

]′
Z X

′
β(2) ≥ 0

)
< ε.

Proof is a chain of routine considerations employing the continuity of the probability
measure.

Lemma 8 Let Conditions C1, C2 and C3 hold. Then for any positive ζ ,

β
′
E

[
w
(
Fβ(|r1(β)|)

)
Z1

(
ei − X

′
1β
)]

is uniformly continuous in β on B = {β ∈ R p : ‖β‖ ≤ ζ }.
Proof utilizes the assumption that the derivative of the weight function is bonded from
below and that the ball B = {β ∈ R p : ‖β‖ ≤ ζ } is compact (for finite ζ ).

Lemma 9 Let Conditions C1, C2 and C3 hold. Then for any positive ζ ,

β
′
E

[
Z1 X

′
1 · I

{
β

′
Z1 X

′
1β < 0

}]
β

is uniformly continuous in β on B = {β ∈ R p : ‖β‖ ≤ ζ }.
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Proof runs along the same lines as the proof of previous lemma.
Let us recall that for any ζ ∈ R+ we have denoted

τζ = − inf‖β‖≤ζ β
′
E

[
Z1 X

′
1 · I {β ′

Z1 X
′
1β < 0}

]
β.

Lemma 10 Let Conditions C1, C2 and C3 be fulfilled. Then for any ε > 0, δ ∈ (0, 1)
and ζ ≥ 1 there is nε,δ,ζ ∈ N so that for any n > nε,δ,ζ we have

P

({
ω ∈ � : inf‖β‖≤ζ

1

n

n∑

i=1

β
′
Zi X

′
iβ · I {β ′

Zi X
′
iβ < 0} > −τζ − δ

})
> 1 − ε.

Proof in this case is long chain of steps utilizing law of large numbers, compactness
of the ball {β ∈ R p : ‖β‖ ≤ ζ } and Cauchy–Schwarz inequality.

Lemma 11 Let Conditions C1 hold. Then for any ε > 0 and δ ∈ (0, 1) there is ζ > 0
and nε,δ ∈ N so that for all n > nε,δ ,

P

({
ω ∈ � : sup

r∈R
sup

‖β(1)−β(2)‖<ζ
∣∣∣F (n)
β(1)
(r)− F (n)

β(2)
(r)
∣∣∣ < δ

})
> 1 − ε. (71)

Proof is a straightforward application of Lemmas 3 and 4.
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