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Abstract We consider nonparametric estimation of marginal density functions of
linear processes by using kernel density estimators. We assume that the innovation
processes are i.i.d. and have infinite-variance. We present the asymptotic distributions
of the kernel density estimators with the order of bandwidths fixed as h = cn−1/5,
where n is the sample size. The asymptotic distributions depend on both the coef-
ficients of linear processes and the tail behavior of the innovations. In some cases,
the kernel estimators have the same asymptotic distributions as for i.i.d. observations.
In other cases, the normalized kernel density estimators converge in distribution to
stable distributions. A simulation study is also carried out to examine small sample
properties.

Keywords Linear processes · Kernel density estimator · Domain of attraction ·
Stable distribution · Noncentral limit theorem · Martingale central limit theorem

1 Introduction

Let {Xi }∞i=1 be a linear process defined by

Xi =
∞∑

j=0

b jεi− j , i = 1, 2, . . . , (1)

where {εi }∞i=−∞ is an i.i.d. process, b0 = 1, and b j ∼ c0 j−β , j = 1, 2, . . . , and c0 is
a positive constant. a j ∼ a′

j means that a j/a′
j → 1 as j → ∞. The marginal density
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414 T. Honda

function of {Xi }∞i=1 is denoted by f (x). We will specify the conditions on {εi } and β

later in this section.
In this paper, we estimate the marginal density function f (x) by kernel density

estimators and present the asymptotic properties when ε1 has infinite variance. The
asymptotic distributions depend on both the tail behavior of ε1 and β.

A lot of authors have examined the asymptotic properties of kernel density estimators
of marginal density functions of dependent observations. Most of them considered
density estimation for mixing processes by imposing assumptions on joint density
functions and the order of mixing coefficients until about the early 1990s. See Fan and
Yao (2003) for a review of the results for strongly mixing processes. However, it is
difficult to ensure that the order of mixing coefficients satisfies the assumptions unless
the coefficients b j decay sufficiently fast. See Doukhan (1994) for sufficient condi-
tions for linear processes to be strongly mixing. Therefore attention has been focused
on the asymptotic properties of kernel density estimators for subordinated Gaussian
processes {G(Xi )}, where {Xi } is a stationary Gaussian process, and linear processes,
especially subordinated Gaussian processes and linear processes with long memory
since the late 1980s or the early 1990s. Note that Hall and Hart (1990) pointed out that
the asymptotic properties depend on the degree of long memory when we estimate
the marginal density functions of linear processes with long memory. This is true of
subordinated Gaussian processes with long memory.

As for subordinated Gaussian processes with long memory, there are, for example,
Cheng and Robinson (1991), Csörgő and Mielniczuk (1995), and Ho (1996). See also
the references therein. They examined the asymptotic properties of kernel density
estimators by exploiting Hermite expansions. Ho (1996) proved that kernel density
estimators behave asymptotically in the same way as for i.i.d. observations when the
degree of long memory does not exceed a level, or we can say when the degree of long
memory is weak. He proved it by evaluating the moments.

Hidalgo (1997) studied the asymptotic properties of kernel density estimators for
linear processes by appealing to Appell expansions. Except for Gaussian cases, very
restrictive conditions are necessary to verify the validity of Appell expansions and the
paper does not mention those conditions at all. In Gaussian cases, Appell expansions
coincide with Hermite expansions. See Sect. 6 of Giraitis and Surgailis (1986) and
pp. 328–329 of Surgailis (2004) for the conditions.

Theoretical studies for linear processes with long memory have developed since
the seminal papers, Ho and Hsing (1996, 1997). They applied the martingale decom-
position method to examine the properties of subordinated linear processes with long
memory. See Koul and Surgailis (2002) for both Hermite expansions for Gaussian
cases and the martingale approach for linear processes of Ho and Hsing (1996, 1997).

Recently several authors considered the asymptotic properties of kernel density
estimators for linear processes with short memory or long memory by using the mar-
tingale approach initiated by Ho and Hsing (1996, 1997), for example, Honda (2000),
Wu and Mielniczuk (2002), Bryk and Mielniczuk (2005), and Schick and Wefelmeyer
(2006). See also the references therein. Especially Wu and Mielniczuk (2002) fully
examined the asymptotic properties of kernel density estimators for linear processes.
However, all of them assumed ε1 has finite variance and that the distribution of ε1
satisfies some restrictive assumptions, for example, the existence of the bounded and
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Lipschitz continuous density function. Under those conditions, Wu and Mielniczuk
(2002) proved that kernel density estimators behave asymptotically in the same way
as for i.i.d. observations in the cases of short memory and weak long memory and
that kernel density estimators behave asymptotically in the same way as the sample
means when the degree of long memory exceeds a level. It is well known that stan-
dardized sample means of linear processes with long memory converge in distribution
to the standard normal distribution when ε1 has finite variance. The standardization
is different from that for linear processes with short memory. See Theorem 5.2.3 of
Taniguchi and Kakizawa (2000). Note that Hallin and Tran (1996) considered kernel
density estimation for linear processes with short memory by appealing to truncation
arguments. They assumed that ε1 has finite variance and β > 4.

From a theoretical point of view, the marginal density function of {Xi }, f (x),
exists without finite variance or the bounded density function of ε1. It is strange that
theoretical studies of kernel density estimators are limited to the cases where ε1 has
finite variance and the bounded density function. Besides recently a lot of attention
is paid to heavy tailed time series data. Therefore it is important to investigate the
asymptotic properties of kernel density estimators in the cases where ε1 does not have
finite variance.

We examine kernel density estimators in the cases where ε1 does not have finite
variance by exploiting the results of Hsing (1999), Koul and Surgailis (2001), Surgailis
(2002), and Pipiras and Taqqu (2003). We treat the asymptotic properties in a compre-
hensive way. We briefly mention the results of the above papers later in this section. In
addition, C2 below also allows unbounded or discontinuous density functions of ε1.
When ε1 does not have finite variance, the asymptotic distributions depend on both
the tail behavior of ε1 and β. When the effect of the heavy tail of ε1 and dependence
among observations does not appear, the asymptotic distributions are the same as for
i.i.d. observations. When the effect of the heavy tail of ε1 and dependence among
observations appears, the asymptotic distributions are stable distributions. Hereafter
we shall call the effect that of α and β. In order to see the differences between asymp-
totic properties and small sample properties, we carried out a simulation study and the
result is given in Sect. 3.

We describe the conditions on {εi }. Let G(x) denote the distribution function of ε1.

C1: Suppose that 0 < α < 2. Then limx→−∞ |x |αG(x) = limx→∞ xα(1− G(x)) =
c1 > 0. E{ε1} = 0 when 1 < α < 2.

C2: Letting φ(θ) denote the characteristic function of ε1, we have |φ(θ)| < C(1 +
|θ |)−δ for some positive δ.

C stands for generic positive constants whose values change from place to place and
are independent of the sample size n.

C1 implies

E{|ε1|r } < ∞, 0 < r < α, and E{|ε1|r } = ∞, r ≥ α, (2)

and that the distribution of ε1 belongs to the domain of attraction of a symmetric
α-stable distribution. The characteristic function of theα-stable distribution Sα(σ, η, µ)

has the form of
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{
exp{−σα|θ |α(1 − iηsign(θ) tan(πα/2)) + iµθ}, α �= 1
exp{−σ |θ |(1 + 2iηsign(θ) log |θ |/π) + iµθ}, α = 1

, (3)

where i stands for the imaginary unit. It is called symmetric if η = µ = 0. See
Samorodnitsky and Taqqu (1994) for more details about stable distributions. C2 is
necessary for the existence and regularity conditions of both f (x) and joint density
functions of some random variables. It is because C2 guarantees the desirable proper-
ties of the characteristic functions of those random variables. See P1-3 in Sect. 2.

We fix x0 and estimate f (x0) by the kernel density estimator f̂ (x0) defined below.

f̂ (x0) = 1

nh

n∑

i=1

K

(
Xi − x0

h

)
, (4)

where h is a bandwidth and K (u) is a kernel function. We take h = c2n−1/5 for some
positive c2 because of simplicity of presentation and partly because this is the optimal
order when f (x) is twice differentiable at x0 and the effect of α and β does not appear.
A comment on the effect of bandwidths is given in Sect. 2. We assume that K (u) is a
symmetric bounded density function with compact support.

We examine the asymptotic properties of f̂ (x0) − E{ f̂ (x0)} in the following three
cases.

Case 1: 1 < α < 2 and 1/α < β < 1
Case 2: 1 < α < 2 and 1 < β < 2/α

Case 3: 0 < α < 2 and 2/α < β.

When 1 < α < 2, we have by the von Bahr and Esseen inequality that

E{|X1|r } ≤ C
∞∑

j=1

j−βr < ∞

for any r such that βr > 1 and 1 < r < α. Note that X1 has infinite variance. X1 is
well defined in Case 3, too. See the proof of Theorem 2.2 of Pipiras and Taqqu (2003).
Some authors say that {Xi } has long memory in Case 1.

Koul and Surgailis (2001) deals with Case 1 and the weak convergence of empirical
distribution functions is proved. The asymptotics of M-estimators of linear regression
models are also examined there. Surgailis (2002) deals with Case 2. The asymptotic
properties of empirical distribution functions of Xi and partial sums of H(Xi ), where
H(x) is any bounded function, are given there. Hsing (1999) and Pipiras and Taqqu
(2003) examined the asymptotic properties of partial sums of H(Xi ), where H(x)

is any bounded function, in Case 3. Those papers are crucial to our results and those
papers are also based on the martingale decomposition method of Ho and Hsing (1996,
1997). We have to obtain necessary theoretical results to deal with the cases of infinite
variance other than Cases 1–3 above. They are the cases where 0 < α < 1 and
1/α < β < 2/α. The approaches of Koul and Surgailis (2001) and Surgailis (2002)
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crucially depend on the assumption of α > 1. We need another method to deal with
the cases and it is a subject of future research.

Peng and Yao (2004) applied Hsing (1999), Koul and Surgailis (2001), and Surgailis
(2002) to nonparametric estimation of trend functions, i.e., nonparametric regression
with fixed design. There is a close similarity between nonparametric regression with
random design and kernel density estimation. However, nonparametric estimation of
trend functions and kernel density estimation are different problems.

In Case 1, the effect of the heavy tail of ε1 and the dependence among observations,
which we call that of α and β, appears when β < 1/α + 2/5. In Case 2 when
αβ < 5/3. However, we see no effect of α and β in Case 3. We repeat that the
asymptotic distributions are the same as for i.i.d. observations when the effect of α

and β does not appear. In Peng and Yao (2004), the effect of α and β always appears.
The paper is organized as follows. In Sect. 2, we decompose f̂ (x0)−E{ f̂ (x0)} into

two components and give a heuristic argument of the asymptotic asymptotic properties
of f̂ (x0) − E{ f̂ (x0)}. Then the main theorems of this paper are presented. We state
the result of a simulation study in Sect. 3. The main theorems are proved in Sect. 4.
The proofs of technical lemmas are confined to Sect. 5.

2 The asymptotic distributions

We state the main results of this paper in Theorems 1–3. First we give definitions and
notations. Then necessary properties of density functions are described. We present
the asymptotic distributions of kernel density estimators after a heuristic argument.
The proofs of the theorems are deferred to Sect. 4.

Let
d→ and

p→ stand for convergence in distribution and convergence in probability,
respectively. We omit n → ∞ and a.s. for brevity.

We rewrite Xi as
Xi = Xi, j + X̃i, j , (5)

where

Xi, j =
j−1∑

l=0

blεi−l and X̃i, j =
∞∑

l= j

blεi−l .

We denote the distribution functions of Xi, j and X̃i, j by Fj (x) and F̃j (x), respectively.
C2 and Lemma 1 of Giraitis et al. (1996) imply the existence of the density functions
and we denote them by f j (x) and f̃ j (x), respectively.

We state necessary properties of density functions, which can be verified by using
C1 and C2. P1 and P2 are derived by following the proof of Lemmas 1–2 of Giraitis
et al. (1996). P3 is part of Lemma 4.2 of Koul and Surgailis (2001).

There exists a positive integer s1 for which P1, P2, and P3 hold.

P1: fs(x) is twice continuously differentiable and fs(x) and all the derivatives up to
the second order are uniformly bounded for s ≥ s1. Note that we can take s = ∞.

P2: (X1,s1 , Xi,s1+i−1) has the bounded joint density function for any i ≥ 2.
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P3: When 1 < α < 2, 1 < r < α, and rβ > 1, there exists a constant C such that
| f ′(x)− f ′

s (x)| ≤ C |s|1/r−β uniformly in x for any s ≥ s1. Note that C depends
on α, β, and r .

When we use P3 in the proofs of Lemmas 2 and 4, r is specified and satisfies the
conditions in P3.

Before we state Theorems 1–3, we give a heuristic argument of the asymptotics
of f̂ (x0). We need to decompose f̂ (x0) − E{ f̂ (x0)} into two components for the
argument. Let be s2 a large positive integer and put s0 = s1 + s2. We will be more
specific about s2 in the proofs of Theorems 1–3. We write S i for the σ -field generated
by {ε j | j ≤ i}.

f̂ (x0) − E{ f̂ (x0)} = Sa + Sb, (6)

where

Sa = 1

nh

n∑

i=1

[
K

(
Xi − x0

h

)
− E

{
K

(
Xi − x0

h

) ∣∣∣Si−s0

}]

= 1

n

n∑

i=1

[
1

h
K

(
Xi − x0

h

)
−

∫
K (ξ) fs0(x0 + ξh − X̃i,s0)dξ

]
(7)

Sb = 1

nh

n∑

i=1

[
E

{
K

(
Xi − x0

h

) ∣∣∣Si−s0

}
− E

{
K

(
Xi − x0

h

)}]

= 1

n

n∑

i=1

[∫
K (ξ) fs0(x0 + ξh − X̃i,s0)dξ − 1

h
E

{
K

(
Xi − x0

h

)}]
. (8)

The domain of integration is (−∞,∞) when it is omitted. Remember that Xi, j =∑ j−1
l=0 blεi−l and that f j (x) is the density function of Xi, j . Similar expressions can

be found in (3)–(5) of Wu and Mielniczuk (2002). In Wu and Mielniczuk (2002) and
Bryk and Mielniczuk (2005), s0 = 1 and the Lipschitz continuous density function of
ε1 is assumed. They applied the martingale central limit theorem to Sa . A technique
is devised to avoid such assumptions on ε1 in this paper.

The asymptotic properties of Sa are examined in Lemma 1 below. We investigate
the asymptotic properties of Sb in Sect. 4 by using the results of Hsing (1999), Koul
and Surgailis (2001), Surgailis (2002), Pipiras and Taqqu (2003), and Surgailis (2004).
The asymptotic distribution of (6) depends on which of Sa and Sb is stochastically
larger.

We put h = c2n−γ (γ > 0) only in this heuristic argument. In either case, we have

Sa = Op((nh)−1/2) and E{ f̂ (x0)} − f (x0) ∼ h2

2
f ′′(x0)ν, (9)
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where ν = ∫
u2 K (u)du. The asymptotic properties of Sb are independent of h and

depend only on α and β. In addition we have

Sb = Op(n
1/α−β) in Case 1,

Sb = Op(n
−1+1/(αβ)) in Case 2,

Sb = Op(n
−1/2) in Case 3.

The stochastic order is exact in all the above expressions. Then (9) and a simple
calculation imply that we cannot improve the rate of convergence of f̂ (x0) by choosing
γ other than 1/5. If there are three parameters, α, β, and γ , things will be notationally
complicated and the paper will be longer. Thus we present the theorems with γ = 1/5.
Note that there is no theoretical difficulty for three parameters, α, β, and γ .

When Sb is stochastically larger than Sa , the effect of α and β appears in the
asymptotic properties of f̂ (x0). Since the asymptotic properties of Sb are independent
of h and depend only on α and β, we have no optimal bandwidth and we can choose
larger bandwidths without affecting the asymptotic properties of f̂ (x0).

When Sa and Sb have the same stochastic order, we can say that the effect of α and
β still appears. However, we have no result on the joint distribution of Sa and Sb and
we do not refer to this case in this paper.

When E{|ε1|2+δ} < ∞ for some positive δ and h = c2n−1/5, the effect of depen-
dence among observations does not appear in the case of β > 9/10 in contrast to Case
2 below.

Here we state the main results of this paper.

Case 1 When β is smaller than 1 ∧ (1/α + 2/5), the effect of α and β appears in the
asymptotic properties. When α is smaller than 5/3, the effect of long memory always
appears.

Theorem 1 Suppose that C1 and C2 hold and that 1 < α < 2 and 1/α < β < 1.
Then we have
1/α − β < −2/5:

√
nh( f̂ (x0) − E{ f̂ (x0)}) d→ N(0, κ f (x0)),

1/α − β > −2/5: nβ−1/α( f̂ (x0) − E{ f̂ (x0)}) d→ − f ′(x0)cA Z,
where κ = ∫

K 2(u)du,

cA = c0

(
2c1

�(2 − α) cos(απ/2)

1 − α

∫ 1

−∞

∫ 1

0
(t − s)−β

+ dtds

)1/α

,

x+ = x ∨ 0, and Z is a random variable whose distribution is Sα(1, 0, 0). The
asymptotic joint distributions of the kernel density estimators at different points are
independent in case of 1/α − β < −2/5 and degenerate in case of 1/α − β > −2/5,
respectively.

Case 2 When 1 < β < 5/(3α), the effect of α and β appears in the asymptotic
properties. When α is larger than 5/3, the effect does not appear.
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Theorem 2 Suppose that C1 and C2 hold and that 1 < α < 2 and 1 < β < 2/α.
Then we have
1/(αβ) < 3/5:

√
nh( f̂ (x0) − E{ f̂ (x0)}) d→ N(0, κ f (x0)),

1/(αβ) > 3/5: n1−1/(αβ)( f̂ (x0) − E{ f̂ (x0)}) d→ (c1cα
0 /(σαββαβ))1/(αβ)(c+

f L+ +
c−

f L−), where L+ and L− are mutually independent random variables whose distri-
butions are Sαβ(1, 1, 0),

c+
f =

∫ ∞

0
( f (x0 − t) − f (x0))t

−1−1/βdt,

c−
f =

∫ ∞

0
( f (x0 + t) − f (x0))t

−1−1/βdt,

σαβ = �(2 − αβ)| cos(παβ/2)|/(αβ − 1).

The asymptotic joint distributions of the kernel density estimators at different points
are independent in case of 1/(αβ) < 3/5 and degenerate in case of 1/(αβ) > 3/5,
respectively.

Case 3 In this case, we see no effect of α and β in the asymptotic properties.

Theorem 3 Suppose that C1 and C2 hold and that 0 < α < 2 and 2/α < β. Then
we have

√
nh( f̂ (x0) − E{ f̂ (x0)}) d→ N(0, κ f (x0)).

The asymptotic joint distributions of the kernel density estimators at different points
are independent.

When the effect of α and β does not appear, we can define the asymptotically
optimal bandwidth in the same way as for i.i.d. observations.

By combining Theorems 1–2, we know the effect of α and β appears in the following
cases.

• 1 < α < 5/3
1/α < β < 1 in Case 1 and 1 < β < 5/(3α) in Case 2

• 5/3 < α < 2
1/α < β < 1/α + 2/5 in Case 1

Then we can only say that larger bandwidths will improve small sample properties and
it may be hard to conduct statistical inference. The same problem happens for linear
processes with finite variance and long memory. However, it is important to know the
statistical properties of such often used estimators as kernel density estimators.

3 Simulation study

We carried out a simulation study to examine the small sample properties. The result is
presented in Tables 1, 2, 3 below. In this simulation study ε1 follows a standard symme-
tric α-stable distribution, Sα(1, 0, 0). We estimate f (x0) by using the Epanechnikov
kernel.
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We took

α = 1.2, 1.5, 1.8, β = 0.9, 1.3, 1.7, 2.1, ∞,

b j =
{

c0( j + 1)−β, 0 ≤ j ≤ 999
0, 1000 ≤ j

.

We mean i.i.d. observations by β = ∞ and c0 is chosen so that X1 also follows
Sα(1, 0, 0). We tried h = 0.2, 0.3, 0.4 to see the effect of bandwidths.

We conducted the simulation study by using R2.3.1 and the fBasics package. The
sample size is 200 and each entry of Tables 1, 2, 3 are based on 2,000 repetitions. In
Tables 1, 2, 3, mean, var, and mse stand for the sample means, the sample variances,
and the sample mean squared errors of the repetitions, respectively. The values of β

are on the left margins of the Tables 1, 2, 3. The true values of f (x0) are as follows:

α = 1.2 : f (0.0) = 0.2994, f (0.75) = 0.2130, f (1.5) = 0.1097.

α = 1.5 : f (0.0) = 0.2874, f (0.75) = 0.2264, f (1.5) = 0.1287.

α = 1.8 : f (0.0) = 0.2831, f (0.75) = 0.2381, f (1.5) = 0.1478.

Theorem 1 tells that the effect of α and β appears in the asymptotic properties in
the cases of (α, β) = (1.2, 0.9), (1.5, 0.9), (1.8, 0.9). Theorem 2 tells that the effect
appears in the asymptotic properties in the case of (α, β) = (1.2, 1.3).

We obtained the following implications from Tables 1, 2, 3.

1. The variance is more serious than the bias in each pair of (α, β). Thus larger
bandwidths will be better.

2. The effect of α and β is seen in the cases of (α, β) = (1.2, 0.9), (1.2, 1.3),
(1.5, 0.9), (1.8, 0.9). This is conformable with Theorems 1, 2. Especially the
effect is remarkable in the case of (α, β) = (1.2, 0.9). Even when the effect is
seen, larger bandwidths seem to perform better contrary to Theorems 1, 2.

3. The effect of α and β rapidly disappears as β becomes larger.

4 Proofs of theorems

We prove Theorems 1–3 in this section. The proofs of all the lemmas are postponed
to Sect. 5.

We begin with Lemma 1 which deals with Sa in (6) and (7). We reproduce Sa here
for reference.

Sa = 1

nh

n∑

i=1

[
K

(
Xi − x0

h

)
− E

{
K

(
Xi − x0

h

) ∣∣∣Si−s0

}]

= 1

n

n∑

i=1

[
1

h
K

(
Xi − x0

h

)
−

∫
K (ξ) fs0(x0 + ξh − X̃i,s0)dξ

]
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Table 1 α = 1.2

x0 0.0 0.75 1.5

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

0.9 Mean 0.2872 0.2867 0.2848 0.2204 0.2203 0.2198 0.1160 0.1163 0.1169

Var 0.0325 0.0299 0.0276 0.0280 0.0260 0.0243 0.0143 0.0135 0.0129

Mse 0.0326 0.0300 0.0278 0.0280 0.0261 0.0243 0.0143 0.0136 0.0130

1.3 Mean 0.2984 0.2972 0.2953 0.2224 0.2220 0.2216 0.1132 0.1139 0.1147

Var 0.0092 0.0076 0.0067 0.0083 0.0070 0.0062 0.0039 0.0034 0.0031

Mse 0.0092 0.0077 0.0067 0.0083 0.0070 0.0063 0.0039 0.0034 0.0031

1.7 Mean 0.2987 0.2963 0.2942 0.2219 0.2222 0.2222 0.1157 0.1158 0.1163

Var 0.0057 0.0041 0.0033 0.0044 0.0033 0.0027 0.0022 0.0017 0.0014

Mse 0.0057 0.0041 0.0033 0.0045 0.0034 0.0028 0.0023 0.0017 0.0014

2.1 Mean 0.2990 0.2973 0.2946 0.2218 0.2219 0.2219 0.1138 0.1146 0.1153

Var 0.0048 0.0032 0.0024 0.0034 0.0024 0.0018 0.0018 0.0012 0.0010

Mse 0.0048 0.0032 0.0024 0.0034 0.0024 0.0019 0.0018 0.0013 0.0010

∞ Mean 0.2987 0.2969 0.2946 0.2221 0.2213 0.2210 0.1146 0.1155 0.1161

Var 0.0040 0.0025 0.0018 0.0030 0.0019 0.0013 0.0017 0.0011 0.0008

Mse 0.0040 0.0025 0.0018 0.0031 0.0020 0.0014 0.0017 0.0011 0.0009

Table 2 α = 1.5

x0 0.0 0.75 1.5

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

0.9 Mean 0.2842 0.2827 0.2808 0.2313 0.2307 0.2301 0.1362 0.1370 0.1375

Var 0.0119 0.0103 0.0094 0.0129 0.0115 0.0106 0.0093 0.0086 0.0082

Mse 0.0119 0.0103 0.0094 0.0129 0.0115 0.0106 0.0094 0.0087 0.0082

1.3 Mean 0.2890 0.2876 0.2858 0.2344 0.2339 0.2335 0.1350 0.1362 0.1366

Var 0.0054 0.0038 0.0031 0.0052 0.0039 0.0033 0.0034 0.0028 0.0024

Mse 0.0054 0.0038 0.0031 0.0052 0.0039 0.0033 0.0035 0.0028 0.0025

1.7 Mean 0.2867 0.2860 0.2845 0.2371 0.2364 0.2351 0.1369 0.1370 0.1375

Var 0.0043 0.0029 0.0021 0.0037 0.0025 0.0020 0.0025 0.0017 0.0014

Mse 0.0043 0.0029 0.0021 0.0038 0.0026 0.0021 0.0026 0.0018 0.0014

2.1 Mean 0.2865 0.2857 0.2845 0.2347 0.2341 0.2336 0.1371 0.1370 0.1371

Var 0.0042 0.0027 0.0020 0.0035 0.0023 0.0017 0.0021 0.0014 0.0011

Mse 0.0042 0.0027 0.0020 0.0036 0.0024 0.0018 0.0022 0.0015 0.0011

∞ Mean 0.2867 0.2856 0.2846 0.2335 0.2335 0.2330 0.1373 0.1374 0.1376

Var 0.0038 0.0024 0.0017 0.0031 0.0020 0.0014 0.0021 0.0013 0.0010

Mse 0.0039 0.0024 0.0017 0.0032 0.0020 0.0014 0.0021 0.0014 0.0010
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Table 3 α = 1.8

x0 0.0 0.75 1.5

h 0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

0.9 Mean 0.2799 0.2788 0.2778 0.2391 0.2388 0.2384 0.1514 0.1520 0.1525

Var 0.0064 0.0050 0.0043 0.0073 0.0061 0.0055 0.0067 0.0060 0.0056

Mse 0.0065 0.0051 0.0043 0.0073 0.0061 0.0055 0.0067 0.0060 0.0057

1.3 Mean 0.2836 0.2822 0.2812 0.2408 0.2402 0.2397 0.1517 0.1517 0.1518

Var 0.0043 0.0028 0.0021 0.0043 0.0032 0.0026 0.0032 0.0025 0.0021

Mse 0.0043 0.0028 0.0021 0.0044 0.0032 0.0026 0.0032 0.0025 0.0021

1.7 Mean 0.2830 0.2825 0.2811 0.2415 0.2410 0.2406 0.1527 0.1528 0.1530

Var 0.0041 0.0026 0.0019 0.0033 0.0023 0.0018 0.0024 0.0017 0.0013

Mse 0.0041 0.0026 0.0019 0.0033 0.0023 0.0018 0.0025 0.0017 0.0013

2.1 Mean 0.2833 0.2823 0.2810 0.2415 0.2414 0.2407 0.1508 0.1514 0.1518

Var 0.0039 0.0025 0.0018 0.0035 0.0023 0.0017 0.0022 0.0015 0.0011

Mse 0.0039 0.0025 0.0018 0.0035 0.0023 0.0017 0.0022 0.0015 0.0012

∞ Mean 0.2819 0.2815 0.2810 0.2411 0.2410 0.2404 0.1512 0.1517 0.1523

Var 0.0038 0.0024 0.0017 0.0033 0.0021 0.0014 0.0021 0.0014 0.0010

Mse 0.0038 0.0024 0.0017 0.0033 0.0021 0.0014 0.0021 0.0014 0.0011

Remember s0 = s1 + s2 and that s1 is fixed in P1–3. In the proofs of the theorems,
we take a large s2 and temporarily fix it. Then we let n tend to ∞. Thus we can take
n = ks0 for simplicity of presentation without affecting the asymptotic properties.
Since the summands in Sa do not form martingale differences, we cannot apply the
martingale central limit theorem directly and we need Lemma 1.

We further decompose Sa into four components.

Sa =
k∑

l=1

N1l +
k∑

l=1

N2l +
k∑

l=1

N3l +
k∑

l=1

N4l , (10)

where

N1l = 1

nh

s1+(l−1)s0∑

i=1+(l−1)s0

[
K

(
Xi − x0

h

)

− E

{
K

(
Xi − x0

h

) ∣∣∣S1+(l−1)s0−s1

}]
, (11)

N2l = 1

nh

s1+(l−1)s0∑

i=1+(l−1)s0

[
E

{
K

(
Xi − x0

h

) ∣∣∣S1+(l−1)s0−s1

}

−E

{
K

(
Xi − x0

h

) ∣∣∣Si−s0

}]
, (12)
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N3l = 1

nh

ls0∑

i=s1+1+(l−1)s0

[
K

(
Xi − x0

h

)

−E

{
K

(
Xi − x0

h

) ∣∣∣S1+(l−1)s0

}]
, (13)

N4l = 1

nh

ls0∑

i=s1+1+(l−1)s0

[
E

{
K

(
Xi − x0

h

) ∣∣∣S1+(l−1)s0

}

−E

{
K

(
Xi − x0

h

) ∣∣∣Si−s0

}]
. (14)

N1l and N2l consist of s1 terms, respectively and N3l and N4l consist of s2 terms,
respectively. N1l , N2l , N3l , and N4l areSs1+(l−1)s0 -,S1+(l−1)s0 -,S1+ls0 -, andS1−s2+ls0 -
measurable, respectively. In addition,

E{N1l |Ss1+(l−2)s0} = E{N2l |S1+(l−2)s0}
= E{N3l |S1+(l−1)s0} = E{N4l |S1−s2+(l−1)s0} = 0. (15)

Lemma 1 Suppose that C1 and C2 hold. Then we have

Var

(
k∑

l=1

N2l

)
= O

(
1

n

)
, Var

(
k∑

l=1

N4l

)
= O

(
1

n

)
, (16)

√
nh

k∑

l=1

N1l
d→ N

(
0,

s1

s0
κ f (x0)

)
,

√
nh

k∑

l=1

N3l
d→ N

(
0,

s2

s0
κ f (x0)

)
. (17)

Remark 1 Take an arbitrary positive integer m. Then the proof of Lemma 1 in Sect. 5
and standard arguments imply that

√
nh

∑k
l=1 N3l for x01, . . . , x0m are asymptotically

mutually independent if x0k �= x0l(k �= l).

We go on to the proofs of Theorems 1–3. We investigate the asymptotic properties of
Sb in (8) for Cases 1–3 in Propositions 1–3, respectively. Then by combining Lemma 1
and Propositions 1–3, we derive the asymptotic distributions of f̂ (x0) − E{ f̂ (x0)}.
Case 1 The proof of Proposition 1 below is based on the arguments in Koul and
Surgailis (2001). Especially the proof of Lemma 2 is a modified and simplified
argument of those of Koul and Surgailis (2001).

Proposition 1 Suppose that C1 and C2 hold and that 1 < α < 2 and 1/α < β < 1.
Then we have

nβ−1/α Sb
d→ − f ′(x0)cA Z .

Remark 2 The proof of Proposition 1 after that of Theorem 1 implies that Z in
Proposition 1 comes from the sample mean of X1, . . . , Xn . Therefore two nβ−1/α Sb

for any pair of (x01, x02) are asymptotically degenerate.
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We prove Theorem 1.

Proof of Theorem 1 First let 1/α − β + 2/5 be smaller than 0. Then Proposition 1
implies that

√
nhSb = op(1). By taking a sufficiently large s2 in Lemma 1, we

can make s2/s0 and s1/s0 arbitrarily close to 1 and 0, respectively. These yield the
convergence in distribution of

√
nh( f̂ (x0) − E{ f̂ (x0)}) d→ N(0, κ f (x0)).

Next let 1/α −β +2/5 be larger than 0. By Lemma 1, we have nβ−1/α Sa = op(1).
Thus the convergence in distribution of the latter case follows from Proposition 1.
Hence the proof of the theorem is complete.

Proof of Proposition 1 We adopt the notations of Koul and Surgailis (2001) and prove
the proposition by following the arguments there.

Provided that

nβ−1/α

⎛

⎝Sb + 1

n

∫
K (ξ) f ′(x0 + ξh)dξ

n−s0∑

j=−∞

n∑

i=1∨( j+s0)

bi− jε j

⎞

⎠ = op(1), (18)

Proposition 1 follows from (1.9) of Koul and Surgailis (2001),

nβ−1/α−1
n∑

i=1

∞∑

j=s0

b jεi− j
d→ cA Z .

We will establish (18). As in Koul and Surgailis (2001), we represent Sb as

Sb = 1

nh

n∑

i=1

∞∑

j=s0

(E{Ki |Si− j } − E{Ki |Si− j−1})

= 1

nh

n−s0∑

j=−∞

n∑

i=1∨( j+s0)

(E{Ki |S j } − E{Ki |S j−1}). (19)

Then left-hand side of (18) is rewritten as

∫
K (ξ)

⎡

⎣nβ−1/α−1
n−s0∑

j=−∞

n∑

i=1∨( j+s0)

Ui,i− j (ξ)

⎤

⎦ dξ, (20)

where

Ui, j (ξ) = f j (x0 + ξh − b jεi− j − X̃i, j+1)

−
∫

f j (x0 + ξh − b j u − X̃i, j+1)dG(u) + f ′(x0 + ξh)b jεi− j . (21)

123



426 T. Honda

We define Rn(ξ) by

Rn(ξ) = nβ−1/α−1
n−s0∑

j=−∞

n∑

i=1∨( j+s0)

Ui,i− j (ξ), (22)

then by Jensen’s inequality, we obtain for any r ≥ 1,

E

{∣∣∣∣
∫

K (ξ)Rn(ξ)dξ

∣∣∣∣
r}

≤
∫

K (ξ)E{|Rn(ξ)|r }dξ. (23)

We evaluate E{|Rn(ξ)|r } in Lemma 2 below.

Lemma 2 For any positive M and r such that 1 < r = α/(1 + η) and 0 < η <

(αβ − 1)/2, we have

lim
n→∞ sup

|ξ |<M
E{|Rn(ξ)|r } = 0.

(18) follows from (20), (22), (23), and Lemma 2. Hence the proof of the proposition
is complete.

Case 2 Theorem 2 follows from Lemma 1 and Proposition 2 below. The proof of
Proposition 2 below is based on the arguments in Surgailis (2002). We adopt the
notations of Surgailis (2002). Especially the proof of Lemma 4 is a modified and
simplified argument of those in Surgailis (2002). We applied the argument on pp.
336–337 of Surgailis (2004), the proof of (3.6) there, to the proof of Lemma 3.

Proposition 2 Suppose that C1 and C2 hold and that 1 < α < 2 and 1 < β < 2/α.
Then we have

n1−1/(αβ)Sb
d→

(
c1cα

0

σαββαβ

)1/(αβ)

(c+
f L+ + c−

f L−).

Remark 3 The proof of Lemma 3.1 of Surgailis (2002) implies that L+ and L− come
from

n−1/(αβ)
∑n

i=1((εi ∨ 0)1/β − E{(εi ∨ 0)1/β}) and

n−1/(αβ)
∑n

i=1(|εi ∧ 0|1/β − E{|εi ∧ 0|1/β}),

respectively. As in Theorem 2.1 of Surgailis (2002), L+ and L− are common to every
x0. It also follows from the proof of Lemma 3.1 of Surgailis (2002) that the result of
Proposition 2 does not depend on s0.

The proof of Proposition 2 is given after Theorem 2 is proved.
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Proof of Theorem 2 First let 1/(αβ) be smaller than 3/5. Then Proposition 2 implies
that

√
nhSb = op(1). By taking a sufficiently large s2 in Lemma 1, we can make

s2/s0 and s1/s0 arbitrarily close to 1 and 0, respectively. These yield the convergence
in distribution of

√
nh( f̂ (x0) − E{ f̂ (x0)}) d→ N(0, κ f (x0)).

Next let 1/(αβ) be larger than 3/5. By Lemma 1, we have n1−1/(αβ)Sa = op(1).
Thus the convergence in distribution of the latter case follows from Proposition 2.
Hence the proof of the theorem is complete.

Proof of Proposition 2 We begin the proof with several definitions.

Hn,∞(t) =
∫

K (ξ)( f (x0 + ξh − t) − f (x0 + ξh))dξ,

Tn =
n∑

i=1

∞∑

j=s0

(Hn,∞(b jεi ) − E{Hn,∞(b jεi )}),

Tn =
n∑

i=1

∞∑

j=s0

(Hn,∞(b jεi− j ) − E{Hn,∞(b jεi− j )}).

We prove the following two lemmas in Sect. 5.

Lemma 3

Tn − Tn = op(n
1/(αβ)).

Lemma 4

nSb − Tn = op(n
1/(αβ)).

We consider Tn since Lemmas 3, 4 imply that nSb = Tn + op(n1/(αβ)). By the
Taylor series expansion,

Hn,∞(b jεi ) = f (x0 − b jεi ) − f (x0)

+ h2
∫

K (ξ)

(∫ ξ

0
(ξ − η)( f ′′(x0 + ηh − b jεi )− f ′′(x0 + ηh))dη

)
dξ

= f (x0 − b jεi ) − f (x0) + h2 H̄n,∞(b jεi ), (24)

where H̄n,∞(u) is clearly defined.
H̄n,∞(u) is a continuously differentiable bounded function and the derivative is

also bounded. In addition,

lim
n→∞ H̄n,∞(u) = 1

2

∫
ξ2 K (ξ)dξ( f ′′(x0 − u) − f ′′(x0)).

123



428 T. Honda

By applying the arguments in Lemma 3.1 of Surgailis (2002) to H̄n,∞(u), we can
show that for any r < αβ,

E

⎧
⎨

⎩

∣∣∣∣∣∣

∞∑

j=s0

H̄n,∞(b jεi )

∣∣∣∣∣∣

r⎫⎬

⎭ < Cr ,

where Cr depends on r . This means that h2 H̄n,∞(b jεi ) in (24) is negligible in n−1/(αβ)

Tn and the result of Proposition 2 follows from Lemma 3.1 of Surgailis (2002). Hence
the proof of Proposition 2 is complete.

Case 3 The proof of Proposition 3 below is a modified and simplified argument of
part of the arguments in Hsing (1999) and Pipiras and Taqqu (2003). We adopt the
notations of the papers. Since Sb = Op(n−1/2) from Proposition 3 below and we
can treat Sa in the same way as in Theorems 1, 2, it is easy to prove the result of
Theorem 3. We omit the proof of Theorem 3.

Proposition 3 Suppose that C1 and C2 hold and that 0 < α < 2 and 2/α < β. Then
we have

n1/2Sb = Op(1).

Proof What we have to prove is

nE{S2
b } = O(1). (25)

Let ε be a random variable which is distributed as ε1 and independent of {ε j }∞j=−∞.
Then we have

P(|b jεi − b jε| ≥ 1) ≤ C |b j |α and E{|b jεi − b jε|2 I (|b jεi − b jε| < 1)} ≤ C |b j |α.

(26)
See (3.35) and (3.36) of Pipiras and Taqqu (2003) about (26).

Sb is written as

Sb = 1

n

n∑

i=1

Hn(X̃i,s0), (27)

where

Hn(ζ ) =
∫

K (ξ)( fs0(x0 + ξh − ζ ) − E{ f (x0 + ξh − X1)})dξ.

As in the proofs of Propositions 1, 2, we define Ui, j (ξ). In Case 3, it is defined by

Ui, j (ξ) = f j (x0 + ξh − b jεi− j − X̃i, j+1)

−E{ f j (x0 + ξh − b jεi− j − X̃i, j+1)|Si− j−1}
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=
∫

( f j (x0 + ξh − b jεi− j − X̃i, j+1)

− f j (x0 + ξh − b jε − X̃i, j+1))dG(ε). (28)

As in the proofs of Propositions 1, 2, Ui, j (ξ) is Si− j -measurable and we have

E{Ui, j (ξ)|Si− j−1} = 0.

In addition, Hn(X̃i,s0) is written as

Hn(X̃i,s0) =
∫

K (ξ)

∞∑

j=s0

Ui, j (ξ)dξ. (29)

By (27) and (29), we have

nSb =
n∑

i=1

Hn(X̃i,s0) =
∫

K (ξ)

n∑

i=1

∞∑

j=s0

Ui, j (ξ)dξ. (30)

The properties of Ui, j (ξ), (30), Jensen’s inequality, and the Cauchy–Schwarz
inequality imply that

E{(nSb)
2} ≤

∫
K (ξ)

n∑

i=1

∞∑

j=s0

∞∑

j ′=s0

(E{U 2
i, j (ξ)})1/2(E{U 2

i ′, j ′(ξ)})1/2dξ, (31)

where i ′ = i − j + j ′.
Provided that for any positive M ,

sup
|ξ |≤M

E{U 2
i, j (ξ)} ≤ C |b j |α, (32)

(25) follows from (31).
The integrand in (28) is bounded by C(1 ∧ (|(εi− j − ε)b j |)). Therefore by (26),

we get

E{U 2
i, j (ξ)} ≤ C(E{|(εi− j − ε)b j |2 I (|(εi− j − ε)b j | < 1)} + P(|(εi− j − ε)b j | ≥ 1))

≤ C |b j |α.

Hence (32) is established and the proof of the proposition is complete.

5 Proofs of technical lemmas

In this section we prove technical lemmas. The proofs of Lemmas 2 and 4 are modified
and simplified arguments of those in Koul and Surgailis (2001) and Surgailis (2002),
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respectively. We applied the argument on pp. 336–337 of Surgailis (2004), the proof
of (3.6) there, to the proof of Lemma 3.

Proof of Lemma 1 We write Ki for K ((Xi − x0)/h) in the proof for notational sim-
plicity.

Note that for any s ≥ s1,

1

h
E{Ki |Si−s} =

∫
K (ξ) fs(x0 + ξh − X̃i,s)dξ (33)

and that the above expression is a bounded continuous function of X̃i,s . Hence (16)
follows from (15) by appealing to the properties of martingale differences. In fact,

Var

(
k∑

i=1

N2l

)
=

k∑

i=1

E{N 2
2l} and E{N 2

2l} ≤ CK ,s1 s2
1

n2 ,

where CK ,s1 depends on (33). Note that s2 is tentatively fixed for N4l .
We prove the latter of (17) by using (15) and applying the martingale central limit

(e.g. Theorem 9.5.2 of Chow and Teicher (1988)). The former can be treated in the
same way and the proof is omitted.

Since |√nhN3l | ≤ C/
√

nh, we have only to show that

nh
k∑

l=1

E{N 2
3l |S1+(l−1)s0}

p→ s2

s0
κ f (x0). (34)

(15) and P2 imply that

nh
k∑

l=1

E{N 2
3l |S1+(l−1)s0}

=
k∑

l=1

ls0∑

i=s1+1+(l−1)s0

1

nh
E{K 2

i |S1+(l−1)s0}

+ 2
k∑

l=1

ls0∑

i1=s1+1+(l−1)s0

ls0∑

i2=i1+1

1

nh
E

{
Ki1 Ki2 |S1+(l−1)s0

}

−
k∑

l=1

ls0∑

i1=s1+1+(l−1)s0

ls0∑

i2=s1+1+(l−1)s0

1

nh
E

{
Ki1 |S1+(l−1)s0

}

×E
{

Ki2 |S1+(l−1)s0

}

=
k∑

l=1

ls0∑

i=s1+1+(l−1)s0

1

nh
E{K 2

i |S1+(l−1)s0} + Op(h). (35)
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By P1 and the ergodic thereom, we obtain

k∑

l=1

ls0∑

i=s1+1+(l−1)s0

1

nh
E{K 2

i |S1+(l−1)s0}

= 1

n

k∑

l=1

ls0∑

i=s1+1+(l−1)s0

∫
K 2(ξ) fi−1−(l−1)s0(x0 − X̃i,i−1−(l−1)s0)dξ + Op(h)

p→ s2

s0
κ f (x0) (36)

since E{ fs(x0 − X̃i,i−s)} = f (x0). (34) follows from (35) and (36).

Proof of Lemma 2 We adopt the notations of Koul and Surgailis (2001), for example,
U (k)

i, j , M (k)
i, j , D(k)

i, j , χ
(k)
i, j , and W (k)

i, j . Note that we can do without (2.1) there. We fix
a positive γ such that (1/r − 1/α)/β < γ < ((α − r)/r) ∧ (1 − 1/(rβ)). Then
r(1 + γ ) < α.

{M j,n(ξ)} defined in (37) form a martingale difference sequence with respect to
{S j }.

M j,n(ξ) =
∑

i=1∨( j+s0)

Ui,i− j (ξ). (37)

Then by the von Bahr and Esseen inequality, we have

E{|Rn(ξ)|r } ≤ 2
n−s0∑

j=−∞
E{|M j,n(ξ)|r }. (38)

To evaluate E{|M j,n(ξ)|r }, we decompose Ui, j (ξ) into three components, U (1)
i, j , U (2)

i, j ,

and U (3)
i, j . Hereafter we suppress the dependence on ξ for notational convenience.

U (1)
i, j = f j (x0 + ξh − b jεi− j − X̃i, j+1)

−
∫

f j (x0 + ξh − b j u − X̃i, j+1)dG(u)+ f ′
j (x0 + ξh − X̃i, j+1)b jεi− j (39)

U (2)
i, j = b jεi− j ( f ′(x0 + ξh) − f ′(x0 + ξh − X̃i, j+1)) (40)

U (3)
i, j = b jεi− j ( f ′(x0 + ξh − X̃i, j+1) − f ′

j (x0 + ξh − X̃i, j+1)). (41)

Then

M j,n =
3∑

k=1

M (k)
j,n, where M (k)

j,n =
n∑

i=1∨( j+s0)

U (k)
i,i− j .
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Provided that

E{|M j,n(ξ)|r } ≤ C

⎛

⎝
n∑

i=1∨( j+s0)

(i − j)−β(1+γ )

⎞

⎠
r

, (42)

(38), (42) and some calculation as on p. 321 of Koul and Surgailis (2001) imply the
result of Lemma 2. We will establish (42).

We give some definitions before we consider M (1)
j,n and U (1)

i, j .

χ
(1)
i, j = I (|b jv| ≤ 1, |b jεi− j | ≤ 1),

χ
(2)
i, j = I (|b jv| > 1, |b jεi− j | ≤ 1),

χ
(3)
i, j = I (|b jεi− j | > 1).

By using them, we have

E{|M (1)
j,n|r } ≤ C

3∑

k=1

D(k)
j,n, (43)

where

D(k)
j,n = E

⎧
⎨

⎩

∣∣∣∣∣∣

n∑

i=1∨( j+s0)

χ
(k)
i,i− jU

(1)
i,i− j

∣∣∣∣∣∣

r⎫⎬

⎭ .

We show that all of D(k)
j,n are bounded by C(

∑n
i=1∨( j+s0))

(i − j)−β(1+γ ))r . We deal

with D(1)
j,n and D(3)

j,n . D(2)
j,n can be treated in the same way as D(3)

j,n .

We can represent U (1)
i, j as

U (1)
i, j = W (1)

i, j − W (2)
i, j , (44)

where

W (1)
i, j =

∫ (∫ −b j εi− j

−b j u
f ′

j (x0 + v + ξh − X̃i, j+1)dv

)
dG(u),

W (2)
i, j =

∫ (∫ −b j εi− j

−b j u
f ′

j (x0 + ξh − X̃i, j+1)dv

)
dG(u).

Since

| f ′
j (x0 + v + ξh − X̃i, j+1) − f ′

j (x0 + ξh − X̃i, j+1)| ≤ C |v|γ for |v| ≤ 1,

we have

|U (1)
i, j χ

(1)
i, j | ≤ C

∫ (∫ −b j εi− j

−b j u
|v|γ dv

)
dG(u) ≤ C |b j |1+γ (1 + |εi− j |1+γ ). (45)
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By (44), (45) and Minkowski’s inequality, we get

D(1)
j,n ≤ C

⎛

⎝
n∑

i=1∨( j+s0)

|bi− j |1+γ (E{1 + |ε j |r(1+γ )})1/r

⎞

⎠
r

≤ C

⎛

⎝
n∑

i=1∨( j+s0)

(i − j)−β(1+γ )

⎞

⎠
r

. (46)

Next we deal with D(3)
j,n . By exploiting (44), we have

D(3)
j,n ≤ C

2∑

l=1

2∑

k=1

E

⎧
⎨

⎩

∣∣∣∣∣∣

n∑

i=1∨( j+s0)

W (l,k)
i,i− j I (|bi− jε j | > 1)

∣∣∣∣∣∣

r⎫⎬

⎭ , (47)

where

W (1,1)
i, j =

∫ (∫ −b j εi− j

−b j u
f ′

j (x0 + v + ξh − X̃i, j+1)dv

)

×I (|b jεi− j | > 1)I (|εi− j | > |u|)dG(u),

W (1,2)
i, j =

∫ (∫ −b j εi− j

−b j u
f ′

j (x0 + v + ξh − X̃i, j+1)dv

)

×I (|b jεi− j | > 1)I (|εi− j | ≤ |u|)dG(u),

W (2,1)
i, j =

∫ (∫ −b j εi− j

−b j u
f ′

j (x0 + ξh − X̃i, j+1)dv

)

×I (|b jεi− j | > 1)I (|εi− j | > |u|)dG(u),

W (2,2)
i, j =

∫ (∫ −b j εi− j

−b j u
f ′

j (x0 + ξh − X̃i, j+1)dv

)

×I (|b jεi− j | > 1)I (|εi− j | ≤ |u|)dG(u).

Noticing that

|W (1,1)
i, j | = C |b jεi− j |1+γ I (|b jεi− j | > 1),

|W (1,2)
i, j | = C

∫
|b j u|1+γ I (|b jεi− j | > 1)dG(u) ≤ C |b j |1+γ ,

|W (2,1)
i, j | = C |b jεi− j |1+γ I (|b jεi− j | > 1),

|W (2,2)
i, j | = C

∫
|b j u|1+γ I (|b jεi− j | > 1)dG(u) ≤ C |b j |1+γ ,
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we get

D(3)
j,n ≤ C

⎛

⎝
n∑

i=1∨( j+s0)

|bi− j |1+γ

⎞

⎠
r

≤ C

⎛

⎝
n∑

i=1∨( j+s0)

(i − j)−β(1+γ )

⎞

⎠
r

(48)

Combining (43), (46), and (48), we have

E{|M (1)
j,n|r } ≤ C

⎛

⎝
n∑

i=1∨( j+s0)

(i − j)−β(1+γ )

⎞

⎠
r

. (49)

We deal with M (2)
j,n .

E{|M (2)
j,n|r }

≤ E{|ε j |r }E
⎧
⎨

⎩

∣∣∣∣∣∣

n∑

i=1∨( j+s0)

bi− j ( f ′(x0 + ξh) − f ′(x0 + ξh − X̃i,i− j+1))

∣∣∣∣∣∣

r⎫⎬

⎭

≤ CE

⎧
⎨

⎩

⎛

⎝
n∑

i=1∨( j+s0)

|bi− j X̃i,i− j+1|
⎞

⎠
r⎫⎬

⎭

≤ C

⎧
⎨

⎩

n∑

i=1∨( j+s0)

|bi− j |(E{|X̃i,i− j+1|r })1/r

⎫
⎬

⎭

r

≤ C

⎛

⎝
n∑

i=1∨( j+s0)

(i − j)−2β+1/r

⎞

⎠
r

≤ C

⎛

⎝
n∑

i=1∨( j+s0)

(i − j)−β(1+γ )

⎞

⎠
r

. (50)

See the definition of r and γ about the last line of (50).
Finally, by using P3, we have

E{|M (3)
j,n|r } ≤ C

⎛

⎝
n∑

i=1∨( j+s0)

(i − j)−β(i − j)−β+1/r

⎞

⎠
r

≤ C

⎛

⎝
n∑

i=1∨( j+s0)

(i − j)−β(1+γ )

⎞

⎠
r

. (51)

Hence (42) is proved for every k and the proof of the lemma is complete.
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Proof of Lemma 3 We prove Lemma 3 by using the results given in Surgailis (2002,
2004). Especially the proof of (3.6) of the latter. However, we do not deal with the
uniformity and we can do without (2.3) of Surgailis (2002) in the proofs of Lemmas 3,
4 here.

We write Vn for the difference of Tn and Tn and represent Vn as

Vn = Tn − Tn = −
n∑

k=1

An(k) +
∞∑

k=1

Bn(k), (52)

where

An(k) =
∞∑

j=k

(Hn,∞(b jεn+1−k) − E{Hn,∞(b jεn+1−k)}),

Bn(k) =
k+n−1∑

j=k

(Hn,∞(b jε1−k) − E{Hn,∞(b jε1−k)}).

We choose a positive numbers r such that 1 < rβ, 0 < 1 + r(1 −β) < r/(αβ) and
1 < r < α. It is not difficult to check the existence of r . Then by the von Bahr and
Esseen inequality, we obtain

E{|Vn|r } ≤ 2

(
n∑

k=1

E{|An(k)|r } +
∞∑

k=1

E{|Bn(k)|r }
)

. (53)

Provided that
n∑

k=1

E{|An(k)|r } = o(nr/(αβ)) and
∞∑

k=1

E{|Bn(k)|r } = o
(

nr/(αβ)
)

, (54)

the result of the lemma follows from (53). We will prove (54).
First we deal with An(k). Since

Hn,∞(0) = 0, |Hn,∞(x)| ≤ C, and |H ′
n,∞(x)| ≤ C,

we have
|Hn,∞(b jεn+1−k)| ≤ C(1 ∧ (|εn+1−k | j−β)). (55)

By exploiting (55), we obtain

E[|Hn,∞(b jε1) − E{Hn,∞(b jε1)}|r ]} ≤ C j−βr . (56)

As in the argument on p. 337 of Surgailis (2004), we have

n∑

k=1

E{|An(k)|r } ≤ C
n∑

k=1

⎛

⎝
∞∑

j=k

j−β

⎞

⎠
r

≤ Cn1+r(1−β) = o
(

nr/(αβ)
)

.

Hence the former of (54) is established.
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Next we consider Bn(k). (56) and the argument for An(k) imply that

∞∑

k=1

E{|Bn(k)|r } ≤ Cn1+r(1−β)

∫ ∞

0
{u1−β − (1 + u)1−β}r du = o

(
nr/(αβ)

)
.

The latter of (54) is also established. Hence the proof is complete.

Proof of Lemma 4 We adopt the notations of Surgailis (2002), for example, U (k)
i, j ,

M (k)
n, j , and Vnj . We choose two positive numbers, λ and r , such that

1 ∨ 2

2β − 1 + 1/(αβ)
< r < α and

αβ − r

αβ(2βr − 1 − r)
< λ < 1 ∧ 2 − αβ

αβ(3 − 2βr)
.

The existence of λ and r is proved in Surgailis (2002). [a] stands for the largest integer
which is less than or equal to a.

We represent nSb − Tn as

nSb − Tn = V1n + V2n, (57)

where

V1n =
n∑

i=1

[nλ]∑

j=s0

∫
K (ξ)Ui, j (ξ)dξ,

V2n =
n∑

i=1

∞∑

j=[nλ]+1

∫
K (ξ)Ui, j (ξ)dξ,

Ui, j (ξ) = f j (x0 + ξh − b jεi− j − X̃i, j+1) − f j+1(x0 + ξh − X̃i, j+1)

− f (x0 + ξh − b jεi− j ) + E{ f (x0 + ξh − b jεi− j )}.
If

E{|Vn1|2} = o(n2/(αβ)) and E{|Vn2|r } = o
(

nr/(αβ)
)

, (58)

the result of the lemma follows from (57). We will establish (58).
As in the proof of Lemma 2, we rewrite Vn1 and Vn2 as

Vn1 =
∫

K (ξ)

⎛

⎝
n−s0∑

j=1−[nλ]
M (1)

n, j (ξ)

⎞

⎠ dξ and

Vn2 =
∫

K (ξ)

⎛

⎝
n−1−[nλ]∑

j=−∞
M (2)

n, j (ξ)

⎞

⎠ dξ, (59)

where

M (1)
n, j (ξ) =

n∑

i=1∨( j+s0)

Ui,i− j (ξ)I (i − j ≤ [nλ])
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and

M (2)
n, j (ξ) =

n∑

i=1∨( j+s0)

Ui,i− j (ξ)I (i − j > [nλ]).

{M (l)
n, j (ξ)} form martingale difference sequences with respect to {S j }.
(58) follows from (59), Jensen’s inequality and the von Bahr and Esseen inequality

if we have shown that for any positive M , uniformly on {|ξ | ≤ M},
n−s0∑

j=1−[nλ]

⎛

⎝
n∑

i=1∨( j+s0)

(E{U 2
i,i− j (ξ)I (i − j ≤ [nλ])})1/2

⎞

⎠
2

= o
(

n2/(αβ)
)

, (60)

n−1−[nλ]∑

j=−∞

⎛

⎝
n∑

i=1∨( j+s0)

(E{|Ui,i− j (ξ)|r I (i − j > [nλ])})1/r

⎞

⎠
r

= o
(

nr/(αβ)
)

. (61)

Provided that on {|ξ | ≤ M},
E{|Ui, j (ξ)|r } ≤ C j1−2rβ, j ≥ s0, (62)

some calculation as on pp. 270–271 of Surgailis (2002) implies (60) and (61). In the
calculation we use the fact that

E{|Ui, j (ξ)|2} ≤ CE{|Ui, j (ξ)|r }
since |Ui, j (ξ)| is uniformly bounded in i , j , and ξ .

We will establish (62). Hereafter we suppress the dependence on ξ .
We decompose Ui, j into three components.

Ui, j = U (1)
i, j + U (2)

i, j + U (3)
i, j , (63)

where

U (1)
i, j = f j (x0 + ξh − b jεi− j − X̃i, j+1) − f j+1(x0 + ξh − X̃i, j+1)

− f j (x0 + ξh − b jεi− j ) + E{ f j (x0 + ξh − b jεi− j )},
U (2)

i, j = f j (x0 + ξh − b jεi− j )

− f j (x0 + ξh) − f (x0 + ξh − b jεi− j ) + f (x0 + ξh),

U (3)
i, j = −E{U (2)

i, j }.

First we evaluate U (1)
i, j , which is written as

U (1)
i, j =

∫ (∫ −b j εi− j

−b j u
( f ′

j (x0 + ξh + z − X̃i, j+1) − f ′
j (x0 + ξh + z))dz

)
dG(u).
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Since
∣∣∣∣∣

∫ −b j εi− j

−b j u
( f ′

j (x0 + ξh + z − X̃i, j+1) − f ′
j (x0 + ξh + z))dz

∣∣∣∣∣

≤ C(|b j u| + |b jεi− j |)|X̃i, j+1|,

we have
E{|U (1)

i, j |r } ≤ C j1−2βr . (64)

Next we deal with U (2)
i, j , which is also written as

U (2)
i, j =

∫ −b j εi− j

0
( f ′

j (x0 + ξh + z) − f ′(x0 + ξh + z))dz.

Using P3 and the above expression, we obtain

|U (2)
i, j | ≤ C |b jεi− j | j1/r−β. (65)

(65) implies that
E{|U (2)

i, j |r } ≤ C j1−2βr . (66)

Finally, by Jensen’s inequality, we obtain

|U (3)
i, j |r ≤ C j1−2βr . (67)

(62) follows from (64), (66), and (67). Hence the proof of the lemma is complete.

Acknowledgments The author appreciates helpful comments of the associate editor and the referee very
much.

References

Bryk, A., Mielniczuk, J. (2005). Asymptotic properties of density estimates for linear processes: application
of projection method. Journal of Nonparametric Statistics, 17, 121–133.

Cheng, B., Robinson, P. M. (1991). Density estimation in strongly dependent non-linear time series.
Statistica Sinica, 1, 335–359.

Chow, Y. S., Teicher, H. (1988). Probability theory (2nd ed). New York: Springer.
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