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Abstract In this paper, we consider the partial linear model with the covariables
missing at random. A model calibration approach and a weighting approach are devel-
oped to define the estimators of the parametric and nonparametric parts in the partial
linear model, respectively. It is shown that the estimators for the parametric part are
asymptotically normal and the estimators of g(·) converge to g(·) with an optimal con-
vergent rate. Also, a comparison between the proposed estimators and the complete
case estimator is made. A simulation study is conducted to compare the finite sample
behaviors of these estimators based on bias and standard error.

Keywords Model calibration · Weighted estimator · Asymptotic normality

1 Introduction

Suppose that {(Xi , Ti , Yi ), 1 ≤ i ≤ n} is a random sample generated from the follow-
ing partial linear model

Yi = X�
i β + g(Ti ) + εi , i = 1, 2, . . . , n, (1)
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48 Q.-H. Wang

where Yi ’s are i.i.d. scalar response variates, Xi ’s are i.i.d. p-variate random covariate
vectors and Ti ’s are i.i.d. scalar covariates taking values in [0, 1], and where β is a
p×1 column vector of unknown regression parameter, g(·) is an unknown measurable
function on [0, 1] and εi ’s are random statistical errors. It is assumed that the errors
ε′

i s are independent with conditional mean zero given the covariates.
(1) reduces to the linear regression model when g(·) = 0. In many practical sit-

uation, the linear model is not complex enough to capture the underlying relation
between the response variables and its associate covariates. Clearly, the partially lin-
ear models contain at least the linear models as a special case. Even if the model is
linear, but we specify it as partially linear model. The resulting estimators based on
the partially linear model are still consistent. Hence, the partially linear model is a
flexible one and allows one to focus on particular variables that are thought to have
very nonlinear effects. The partial linear model is semiparametric one since it contains
both parametric and nonparametric components. It allows easier interpretation of the
effect of each variable and may be preferred to a completely nonparametric regression
because of the well known “curse of dimensionality”. The partial linear model is a
natural compromise between the linear model and the fully nonparametric model. It
allows only some of the predictors to be modeled linearly, with others being mod-
eled nonparametrically. The implicit asymmetry between the effects of X and T may
be attractive when X consists of dummy or categorical variables, as in Stock (1989,
1991). This specification arises in various sample selection models that are popular in
econometrics, see Ahn and Powell (1993), and Newey et al. (1990).

The partial linear model was introduced by Engle et al. (1986) to study the effect of
weather on electricity demand. Speckman (1988) gave an application of the partially
linear model to a mouthwash experiment. Schmalensee and Stoker (1999) used the
partially linear model to analyze household gasoline consumption in the United States.
Green and Siverman (1994) provided an example of the use of partially linear models,
and compared their results with a classical approach employing blocking. In fact, the
partially linear model has also been applied to many other fields such as biometrics, See
Gray (1994), and has been studied extensively for complete data setting, see Heckman
(1986), Rice (1986), Speckman (1988), Chen (1988), Robinson (1988), Chen and
Shiau (1991), Schick (1996), Hamilton and Truong (1997), Severini and Staniswalis
(1994), Wang and Jing (1999) and Härdle et al. (2000). Various estimators for β and
g(·) were given by using different methods such as the kernel method, the polynomial
method, the penalized spline method, the piecewise constant smooth method, pro-
jection method, the smoothing splines and the trigonometric series approach. These
estimators of β are proved to be asymptotically normal with zero mean and covariance
σ 2�−1 under different conditions, where � = E(X1 − E[X1|T1])(X1 − E[X1|T1])�.
Recently, Wang et al. (2004) developed semiparametric regression analysis approaches
with missing response data.

In practice, covariates may be missing due to various reasons. If the covariate val-
ues are collected by a questionnaire or interview, non-response is a typical source for
missing values. In retrospective studies covariate values are often collected on the
basis of documents like hospital records. Imcompleteness of the documents causes
missing values. In clinical trials, biochemical parameters are often used as covariates.
The measurement of these parameters often requires a certain amount of blood, urine
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Statistical estimation in partial linear model 49

or tissue, which may not be available. More examples where missing data occur can
be found in Vach (1994).

In the presence of missing data, the standard inference procedures cannot be applied
directly. A simple method is to naively exclude subjects with missing covariates, then
perform a regression analysis with the remaining data. This method is known as com-
plete case analysis. However, it is well known that the complete case analysis can be
biased when the data are not missing completely at random (see Little and Rubin 1987)
and generally gives highly inefficient estimates. Thus to increase efficiency and reduce
the bias, it is important to develop methods that incorporate the partially incomplete
data into the analysis.

Missing covariate data problem has been paid considerably attention. Many meth-
ods to handling missing data have been suggested under missing at random (MAR)
assumption. Two recent approaches are likelihood (Ibrahim 1990; Lipsitz and Ibrahim
1996) and weighted estimating equations (Robins et al. 1994; Lipsitz and Zbrabiw
1996; Wang et al. 1998; Lipsitz et al. 1999; Liang et al. 2004). Likelihood meth-
ods assume a joint parametric distribution for covariates and response. The weighted
estimating equation (WEE) approach doesn’t require any distribution assumptions.
Estimation is based on the “complete-cases”, that is, those with no missing data, with
weighting inversely proportional to the probability that the covariates are observed.

In this paper, we suggest a model calibration method and a new weighted method to
develop estimation theory in model (1) when the covariates X may be missing. That is,
we develop estimation approaches for β and g(·) based on the following incomplete
observations

(Yi , Xi , δi , Ti ), i = 1, 2, . . . , n

from model (1), where the Y ′
i s and T ′

i s are observed completely and δi = 0 if Xi is
missing, otherwise δi = 1.

Throughout this paper, we assume that X are missing at random (MAR). The MAR
assumption implies that δ and X are conditionally independent given T and Y . That
is, P(δ = 1|Y, X, T ) = P(δ = 1|Y, T ). MAR is a common assumption for statis-
tical analysis with missing data and is reasonable in many practical situations, see
Little and Rubin (1987, Chap. 1). We define two estimators of β and g(·) by two
different approaches. One of the approaches is first to calibrate model (1), and then
use the kernel method and least square method. Another approach is to combine the
inverse probability weighted estimating approach with kernel method. We compare
the two approaches by simulation in terms of bias and standard error of the estimators.
Asymptotic results for the two estimators of β and g(·) are derived, showing that the
two proposed estimators of β are strongly consistent and weakly consistent with an
optimal convergent rate.

This paper is organized as follows. We define the two estimators of β and g(·) and
give the asymptotic properties in Sects. 2 and 3. In Sect. 4, we make a comparison
between the proposed estimators and the complete case estimator. In Sect. 5, we com-
pare these estimators by simulation. The proof of the main results are presented in the
Appendix.
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2 Model calibration based estimators and asymptotic properties

Let �(y, t) = P(δ = 1|Y = y, T = t). Note that E[δi Xi/�(Yi , Ti )|Xi , Yi , Ti ] = Xi

for i = 1, 2, . . . , n under MAR. This motivates me to define synthetic data Ui =
δi Xi/�(Yi , Ti ) such that (Yi , Ui , Ti ) follow a standard partial linear model for i =
1, . . . , n. Then, the estimation approach for the standard partial linear model can be
applied to estimation of β and g(·) if �(·, ·) is a known function. Under MAR assump-
tion, we have

E
[
Yi − U�

i β − g(Ti )|Xi , Ti

]

= E
{

E
[
Yi − U�

i β − g(Ti )|Xi , Yi , Ti

]
|Xi , Ti

}
= 0, (2)

where Ui = δi Xi�(Yi ,Ti )
. This implies that the incomplete observed data follow the fol-

lowing models

Yi = U�
i β + g(Ti ) + ei , (3)

where ei are i.i.d. random variables with conditional mean zero given covariables
(Xi , Ti ) for i = 1, 2, . . . , n . By Speckman (1988), model (3) is equivalent to

Yi − E[Yi |Ti ] = (Ui − E[Ui |Ti ])�β + ei . (4)

Let g1(t) = E[X |T = t] and g2(t) = E[Y |T = t]. Then, g1(T ) = E[U |T = t].
If �(·, ·), g1(·) and g2(·) were known functions, the least square approach could be
applied to (4) to define the least square estimate (LSE) of β to be

β̃MC = B−1
n An,

where

Bn = 1

n

n∑
i=1

[(Ui − g1(Ti ))(Ui − g1(Ti ))
�]

and

An = 1

n

n∑
i=1

(Ui − g1(Ti ))(Yi − g2(Ti )).

In practice, however, �(·, ·), g1(·) and g2(·) are unknown. Naturally, one can define
estimator of β to be β̃MC with �(·, ·), g1(·) and g2(·) in it replaced by their estimators.
Let K (·) be a bivariate kernel function and hn a bandwidth sequence tending to zero
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Statistical estimation in partial linear model 51

as n → ∞. For simplicity, let Zi = (Yi , Ti ) for i = 1, 2, . . . , n. Then, �(z) can be
estimated by

�n(z) =
∑n

i=1 δi K
(

z−Zi
hn

)

∑n
i=1 K

(
z−Zi

hn

) .

Let ω(·) be a kernel function and bn a bandwidth sequence tending to zero as n → ∞.
Define the weights

Wnj (t) =
ω
(

t−Tj
bn

)

∑n
j=1 ω

(
t−Tj

bn

) .

Then g1(t) and g2(t) can be estimated consistently by ĝ1,n(t) =∑n
j=1 Wnj (t)

δ j X j
�n(Z j )

and ĝ2,n(t) = ∑n
j=1 Wnj (t)Y j . Let Uin = δi Xi�n(Zi )

for i = 1, 2, . . . , n. We then can

define the estimator of β, say β̂MC , to be β̃MC with �(·, ·), g1(t) and g2(t) replaced
by �n(·, ·), ĝ1,n(t) and ĝ2,n(t), respectively. That is

β̂MC = B̂−1
n Ân,

where Ân and B̂n are An and Bn , respectively, with Ui , g1(·) and g2(·) replaced by
Uin, ĝ1,n(·) and ĝ2,n(·).

Taking conditional expectation given T in (3), under MAR we have

g(t) = g2(t) − g�
1 (t)β. (5)

This suggests that g(·) can be estimated by

ĝMC (t) = ĝ2,n(t) − ĝ�
1,n(t)β̂MC .

Theorem 1 Under the assumptions listed in Appendix A, we have

√
n(β̂MC − β)

L−→ N (µMC , VMC )

where µMC = −�−1 E
[

1−�(Z)
�(Z)

X X�
]
β and VMC = �−1

MC�MC�−1
MC with

�MC = E[(U − E[U |T ])(U − E[U |T ])�(Y − U�β − g(T ))2]
−E

[
1 − �(Z)

�(Z)
X X�

]
ββ�E

[
1 − �(Z)

�(Z)
X X�

]

+�0ββ��0 E
1 − �(Z)

�(Z)

+2

{(
E

[(
X

�(Z)
− E[X |T ]

)(
Y − X�β

�(Z)
− g(T )

)]
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+E

[
1 − �(Z)

�(Z)
X X�

]
β

)
β��0

}
,

�MC = E[(U − E[U |T ])(U − E[U |T ])�]

and

�0 = E[(X − E[X |T ])(X − E[X |T ])�].

Remark 1
√

n(β̂MC − β) is asymptotically biased. Clearly, the bias µMC closes to 0
when the response probability �(z) closes to 1. When �(z) = 1, the asymptotic bias
is zero.

If β̂∗ is a consistent estimator of β, we can define a bias-corrected estimator as
follows:

β̂∗
MC = β̂MC − 1√

n
µ̂MC

where µ̂MC = − �̂−1
MC
n

∑n
i=1

1−�n(Zi )�n(Zi )
Xi X�

i β̂∗ with

�̂MC = 1

n

n∑
i=1

(Uin − ĝ1,n(Ti ))(Uin − ĝ1,n(Ti ))
�.

Theorem 2 Under assumptions of Theorem 1, if β̂∗ is an n
1
2 -consistent estimator of

β we have

√
n(β̂∗

MC − β)
L−→ N (0, VMC ).

An example is to take β̂∗ in β̂∗
MC to be β̂MC since β̂MC is a consistent estimator of

β from Theorem 1. In Sect. 3, we will define a weighted estimator and then construct
another bias-corrected estimator by taking β̂∗

n in β̂∗
MC to be the weighted one.

The asymptotic variance VMC reduces to V = �−1
0 σ 2 if �(z) = 1. This is just the

asymptotic variance when the data are observed completely. The asymptotic variance
can be estimated consistently by combining the “plug in” method with sample moment
method. An alternative is to use the jackknife method to define the asymptotic variance
estimator.

Let β̂
(−i)
MC be β̂MC based on {Y j , X j , δ j , Tj } j 	=i for i = 1, 2, . . . , n. Let Jni be the

jackknife pseudo-values. That is

Jni = nβ̂MC − (n − 1)β̂
(−i)
MC , i = 1, 2, . . . , n

Then, the jackknife variance estimator can be defined by

V̂MC,J = 1

n

n∑
i=1

(Jni − J̄n)2,
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where J̄n = n−1∑n
i=1 Jni . Under the conditions of Theorem 1, the variance estimator

can be proved to be consistent.

Theorem 3 Under conditions of Theorem 2, if bn = O(n− 1
3 ) and hn = O(n− 1

6 ) we
have

ĝ∗
MC (t) − g(t) = Op(n

− 1
3 ),

where ĝ∗
MC (t) is ĝMC (t) with β̂MC replaced by β̂∗

MC .

3 Weighted estimators and asymptotic properties

In this section, we define an n
1
2 -rate asymptotically normal estimator of β, say β̂W ,

and a consistent estimator of g(·), say ĝW (t), with an optimal convergent rate by
weighting approach. Based on β̂W , we then define a model calibration bias-corrected

estimator β̂∗
MC with n

1
2 -rate asymptotic normality.

Under MAR assumption, we have

β = E−1[(X − E[X |T ])(X − E[X |T ])�]E[(X − E[X |T ])(Y − E[Y |T ])],
E[(X − E[X |T ])(X − E[X |T ])�] = E

[
δ

�(Z)
(X − E[X |T ])(X − E[X |T ])�

]
,

E[(X − E[X |T ])(Y − E[Y |T ])] = E

[
δ

�(Z)
(X − E[X |T ])(Y − E[Y |T ])

]

and

E[X |T ] = E

[
δX

�(Z)
|T
]

.

Combining the “plug in” method with sample moment method, β can be estimated by

β̂W = B̃−1
n Ãn, (6)

where

Ãn = 1

n

n∑
i=1

δi (Xi − ĝ1,n(Ti ))(Yi − ĝ2,n(Ti ))

�n(Zi )

and

B̃n = 1

n

n∑
i=1

δi (Xi − ĝ1,n(Ti ))(Xi − ĝ1,n(Ti ))

�n(Zi )
.
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g(·) can then be estimated by

ĝW (t) = ĝ2,n(t) − ĝ1,n(t)
�β̂W .

from (4).
For simplicity of stating the following theorem, let M(z) = E[(X − E[X |T ])(Y −

X�β − g(T ))|Z = z].
Theorem 4 Under the assumptions of Theorem 1 and (C.M) in Appendix B, we have

√
n(β̂W − β)

L−→ N (0, VW )

where VW = �−1
0 �W �−1

0 with

�W = E

[
(X − E[X |T ])(X − E[X |T ])�(Y − X�β − g(T ))2

�(Z)

]

−E

[
M(Z)M�(Z)(1 − �(Z))

�(Z)

]

It is noted that β̂W has the same asymptotic variance as β̂all defined by (5) in Liang
et al. (2004). But β̂all is complicated for calculation.

Let β̂MW be β̂∗
MC with β̂∗ taken to be β̂W . By Theorem 4, β̂W is an n

1
2 -consistent

estimator of β. This together with Theorem 2 implies that β̂MW is asymptotically nor-
mal with mean 0 and variance VMC . It is noted that the weighted estimation approach
described above mainly uses the information contained in the complete case and use
the addition information from {(Yi , Ti ) : δi = 0} by �n(·) only. A natural question is:
Does β̂MW improve β̂W since β̂MC and hence β̂MW use more additional information
from {(Yi , Ti ) : δi = 0}? Unfortunately, it seems difficult to compare β̂W with β̂MW

in terms of their asymptotic variances, VW and VMC . A simulation comparison will be
made below for their finite sample properties. The simulation results show that β̂MW

has less standard error.

Remark 2 Another alternative is to use the weighted estimation equation suggested
by Robins et al. (1994). However, it can be shown that the estimator based on the
extended estimation equation, say β̂W E E , has the same asymptotic variance as β̂W .
Comparing to β̂W E E , however, some obvious advantages of β̂W are that it is explicitly
defined, easy to compute and does not require any iteration scheme.

It should be noted that the idea of developing the weighted approach here is similar
to that of Horvitz and Thompson (1952), Robins et al. (1994) and Wang et al. (1998).
However, it is innovative to develop the model calibration approach and combine it
with the weighted method.

Remark 3 The asymptotic variance of β̂W can be estimated by “plug in” method and
sample moment method. Also, jackknife method can be used to estimate the asymp-
totic variance as in Sect. 2. If �(z) = 1, the asymptotic variance reduces to that of the
estimator when data are observed completely.
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Theorem 5 Under assumptions of Theorem 4, if bn = O(n− 1
3 ) and hn = O(n− 1

6 )

we have

ĝW (t) − g(t) = Op(n
− 1

3 ).

Remark 4 The convergent rate for ĝW (t) is the same as the optimal convergent rate
obtained by Stone (1980) in the case where data are observed completely. Let ĝMW (t)
be ĝ∗

MC (t) with β̂∗ taken to be β̂W . Then, ĝMW (t) has the same optimal convergent
rate as ĝW (t).

Remark 5 Hong (1999) maked a discussion for the bandwidth selection problem in the
partial linear model with complete observations. In the presence of missing data, the
automatic bandwidth choice developed by Hong (1999) is applicable here by weight-

ing. On the other hand, β̂W and β̂MW are global functionals and hence the n
1
2 -rate

asymptotic normality of the two estimators indicates that a proper choice of hn and
bn specified in conditions (C.hnbn) and (C.hn) depends only on the second order
terms of the mean square error of the estimators. This implies that the selection of the
bandwidth may not be so critical for estimating β.

4 Comparisons with complete case estimation approach

As pointed out before, one simple way to avoid the problem of missing data is to
analyze only those subjects who are completely observed. This method is known as
complete case analysis. In what follows, we use a complete case analysis to define the
estimators.

Let ωc(·) be a kernel function and γn a bandwidth sequence tending to zero as
n → ∞, and define the weights

Wnj,c(t) =
ωc

(
t−Tj
γn

)

∑n
j=1 δ jωc

(
t−Tj
γn

) .

Let g∗
1n(t) = ∑n

j=1 Wnj,c(t)δ j X j and g∗
2n(t) = ∑n

j=1 Wnj,c(t)δ j Y j . The estimator
of β is then defined by

β̂C =
[

n∑
i=1

δi {(Xi − g∗
1n(Ti ))(Xi − g∗

1n(Ti ))
�}
]−1

×
n∑

i=1

δi {(Xi − g∗
1n(Ti ))(Yi − g∗

2n(Ti ))}

based on the observed triples (Xi , Ti , Yi ) for i ∈ {i : δi = 1}.
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Under some mild conditions, β̂C can be proved to be asymptotically normal with
mean

µC = �−1
C E[�(Z)(X − g∗

1(T ))(Y − g∗
2(T ) − (X − g∗

1(T ))�β)]

and variance VC = �−1
C �C�−1

C , where g∗
1(t) = E[δX |T =t]

E[δ|T =t] , g∗
2(t) = E[Y |T =t]

E[δ|T =t] and

�C = E[�(Z)(X − g∗
1(T ))(X − g∗

1(T ))�(Y − g∗
2(T ) − (X − g∗

1(T ))�β)2]

and

�C = E[�(Z)(X − g∗
1(T ))(X − g∗

1(T ))�].

Clearly, the asymptotic variance of β̂W is less than that of β̂C when �(z) is a con-
stant. When �(z) is not a constant, it is hard to prove that β̂W has less asymptotic
variance than β̂C although it is believed to be true. In this case, however, β̂C is an
asymptotically biased estimator, and hence β̂C is not of practical interest. This implies
that it might not so critical to compare its asymptotic variance with that of β̂W in such
a case.

It is seen that the complete case analysis defines an asymptotic biased estimator
with larger asymptotic variance than β̂W at least for the case where �(z) is a constant.
When �(z) is a constant or �(z) = P(δ = 1|Y, T ) = P(δ = 1|T ), the asymptotic
bias µC is zero.

5 Some simulation results

To illustrate the use of the proposed estimators and to compare their finite sample
performance with the complete case analysis approach, we carried out a number of
simulation study to calculate the bias and standard error of the estimators.

For each of n i.i.d. observations, a normally distributed covariate, X ∼ N (1, 1), a
uniform distributed covariate, T ∼ U [0, 1], and a response variate Y from the partially
linear model Y = Xβ + 3.5(exp(−(4T − 1).2) + exp(−(4T − 3).2)) − 1.5 + ε with
β = 1 and ε ∼ N (0, 1). The kernel function K (·) was taken to be K (z) = K1(y)K2(t)
with K1(y) = 15

16 (1 − y2)2 if |y| ≤ 1, 0 otherwise and K2(t) = − 15
8 t2 + 9

8 if |t | ≤ 1,

0 otherwise. hn was taken to be n− 1
5 . ω(u) = ωc(u) = − 15

8 u2 + 9
8 if |u| ≤ 1, 0

otherwise. bn and γn were taken to be 3
2 n− 1

3 .
We generated 2000 Monte Carlo samples of size n = 30, 60 and 120 under the

following three cases, respectively

Case 1: �1(y, t) = P(δ = 1|Y = y, T = t) = 1
1+exp{− ln(9)−0.1(y− 16

15 )−0.2(t−0.5)} ;
Case 2: �2(y, t) = P(δ = 1|Y = y, T = t) = 1

1+exp{− ln(3)−0.2(y− 16
15 )−0.1(t−0.5)} ;

Case 3: �3(y, t)= P(δ = 1|Y = y, T = t) = 1
1+exp{− ln(3/2)−0.2(y− 16

15 )−0.2(t−0.5)} .
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Table 1 Biases of β̂W , β̂MC ,
β̂MW and β̂C under different
missing functions �(x) and
different sample sizes n

P(x) n β̂W β̂MW β̂MC β̂C

30 −0.0096 0.0147 −0.1625 −0.0145

�1(x) 60 −0.0026 0.0123 −0.1558 −0.0114

120 0.0008 0.0107 −0.1502 0.0123

200 −0.0005 0.0061 −0.1523 −0.0135

30 −0.0128 0.0467 −0.3124 −0.0197

�2(x) 60 −0.0054 0.0284 0.3100 −0.0234

120 −0.0025 0.0160 −0.3087 −0.0167

200 −0.0038 0.0092 0.3096 −0.0179

30 −0.0171 0.0760 −0.4757 −0.0269

�3(x) 60 −0.0068 −0.0459 −0.4731 −0.0180

120 −0.0023 0.0296 −0.4694 −0.0181

200 −0.0077 0.0151 −0.4696 −0.0185

Table 2 Standard errors of β̂W ,
β̂MC , β̂MW and β̂C under
different missing functions �(x)

and different sample sizes n

P(x) n β̂W β̂MW β̂MC β̂C

30 0.2297 0.2124 0.1918 0.2432

�1(x) 60 0.1587 0.1515 0.1281 0.1625

120 0.1016 0.0983 0.0896 0.1074

200 0.0761 0.0738 0.0686 0.0800

30 0.2413 0.2230 0.2072 0.2685

�2(x) 60 0.1592 0.1453 0.1412 0.1706

120 0.1079 0.0992 0.0946 0.1165

200 0.0845 0.0753 0.0702 0.0888

30 0.2724 0.2282 0.2264 0.3221

�3(x) 60 0.1816 0.1544 0.1509 0.2026

120 0.1217 0.1024 0.0976 0.1334

200 0.0924 0.0826 0.0738 0.1002

The average missing rates for the above three cases are approximately 0.10, 0.25
and 0.40 respectively. From the 2000 simulated values of β̂W , β̂MC , β̂MW and β̂C ,
we calculated the biases, standard errors and jackknife variance estimators of the four
estimators. These simulation results are reported in Tables 1, 2 and 3.

From Tables1, 2 and 3, we have the following observations:
(1) Biases of both β̂W and β̂MW decrease and are close to zero as sample size

increases for every fixed missing rate. It seems that biases of β̂C and β̂MC do not
decrease and are not close to zero as sample size increases. This verifies the theoret-
ical results obtained in Sect. 2 and Sect. 4 and implies that it may not be of practical
interest to consider β̂C and β̂MC in practice. Next, we compare β̂W and β̂MW only.

(2) β̂W has less bias than β̂MW . But, it has larger standard error and Jackknife
variance estimate.
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Table 3 Jackknife variance
estimators of β̂W , β̂MC , β̂MW
and β̂C under different missing
functions �(x) and different
sample sizes n

P(x) n β̂W β̂MW β̂MC β̂C

30 0.0523 0.0446 0.0364 0.0585

�1(x) 60 0.0248 0.0223 0.0160 0.0256

120 0.0101 0.0092 0.0075 0.0109

200 0.0054 0.0050 0.0042 0.0078

30 0.0576 0.0492 0.0425 0.0714

�2(x) 60 0.0245 0.0205 0.0193 0.0282

120 0.0112 0.0093 0.0085 0.0129

200 0.0066 0.0053 0.0046 0.0073

30 0.0717 0.0516 0.0508 0.1027

�3(x) 60 0.0320 0.0231 0.0211 0.0398

120 0.0141 0.0100 0.0090 0.0169

200 0.0079 0.0063 0.0050 0.0093
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Fig. 1 Curve for ĝW (t), ĝMC , ĝMW , ĝC (t) and the true curve g(t) under missing rate �1(x) for sample
size of n = 60, 120 and 200. Dotted curve is ĝW (t), plus curve is ĝMC (t), dash-dotted curve is ĝMW (t),
dashed curve is ĝC (t) and solid curve is the true curve g(t)

Also, we calculated the simulated curves of ĝW (t), ĝMC (t), ĝMW (t) and ĝC (t) from
the 2000 simulated values of them under the three different missing rates for sample
size n = 60, 120 and 200 and compared them to the true curve. See Fig. 1.
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From Fig. 1, we see that the curves ĝW (t), ĝMW (t) and ĝMC (t) capture the pattern
of the true curve g(t), and the curves of ĝW (t) and ĝMW (t) are closer to the true curve.
ĝMC (t) depends missing rate heavily. ĝMC (t) is close to the true curve as the missing
rate decreases. It seems that ĝC (t) performs poorly.
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Appendix A: Proofs of Theorems 1 and 2

(C.g): g(·), g1r (·) and g2(·) satisfy Lipschitz condition of order 1, i.e., |g(t1) −
g(t2)| ≤ c|t1 − t2| for some constant c > 0.

(C.ω): There exist constants M1 > 0, M2 > 0 and ρ > 0 such that

M1 I [|u| ≤ ρ] ≤ ω(u) ≤ M2 I [|u| ≤ ρ].

(C.f). The density of Z , say f (z), has bounded partial derivatives up to order
k(> 2) almost surely.

(C.ε): supx,t E[ε4|X = x, T = t] < ∞.
(C.X): supt E[‖X‖4|T = t] < ∞, where ‖ · ‖ defines the Euclidean distance.
(C.T): The density of T , say r(t), exists and satisfies

0 < inf t∈[0,1] r(t) ≤ sup
t∈[0,1]

r(t) < ∞.

(C.bn): nb2
n → ∞ and nb4

n → 0.
(C.�): (i) �(z) has bounded partial derivatives up to order k(> 2) almost

surely.
(ii) inf z �(z) > 0.

(C.K): (i) The kernel function K is a bounded kernel function with
bounded support.

(ii) K (·) is a kernel of order k(> 2).
(C.hn): nh4

n → ∞, nhnb2
n → ∞ and nh2k+1

n → 0 for k > 2.
(C.hnbn): bn

hn
−→ 0 and hk

n/bn → 0.

Remark 6 Conditions (C.g), (C.ω), (C.f) and (C.T) are standard conditions, which are
commonly used in literature. See, e.g., Härdle et al. (2000), Speckman (1988) and
Heckman (1986). Condition (C.�) is used in literature on missing data analysis. See,
e.g., Lipsitz et al. (1999) and Qi et al. (2005). Condition (C.K) is used in the inves-
tigation on some nonparametric kernel estimators. See, e.g., Prakasa Rao (1981) and
Qi et al. (2005). An example for conditions (C.bn), (C.hn) and (C.hnbn) to be satisfied

are hn = n− 1
6 and bn = n− 1

3 .
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Proof of Theorem 1. Clearly

β̂MC − β = B̂−1
n Ĉn, (7)

where

Ĉn = 1

n

n∑
i=1

[
(Ui,n − ĝ1,n(Ti ))(Yi − ĝ2,n(Ti ) − (Ui,n − ĝ1,n(Ti ))

�β
]
,

with Ui,n = δi Xi�n(Zi )
for i = 1, 2, . . . , n. Next, we prove

√
nĈn = 1√

n

n∑
i=1

(Ui − g1(Ti ))[Yi − g2(Ti ) − (Ui − g1(Ti ))
�β]

+(� − E

[
1 − �(Z)

�(Z)
X X�

]
β)

1√
n

n∑
j=1

δ j − �(Z j )

�(Z j )
+ op(1). (8)

and

B̂n − Bn
p−→ 0 and Bn

p−→ �. (9)

Let g̃1,n(t) =∑n
j=1 Wnj (t)U j . Then

√
nĈn = Mn + Rn + Sn + Tn, (10)

where

Mn = 1√
n

n∑
i=1

(Ui − g1(Ti ))[Yi − g2(Ti ) − (Ui − g1(Ti ))
�β],

Rn = 1√
n

n∑
i=1

(g1(Ti ) − g̃1,n(Ti ))[Yi − g2(Ti ) − (Ui − g1(Ti )
�β)],

Sn = 1√
n

n∑
i=1

(Ui − g̃1,n(Ti )){(g2(Ti ) − ĝ2,n(Ti ))

−[(Ui,n − ĝ1,n(Ti ))
�β − (Ui − g1(Ti ))

�β]

and

Tn = 1√
n

n∑
i=1

[(Ui,n − ĝ1,n(Ti )) − (Ui − g̃1,n(Ti ))]

×[Yi − ĝ2,n(Ti ) − (Ui,n − ĝ1,n(Ti ))
�β].
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It is clear

Rn = 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(g1(Ti ) − g1(Tj ))(Yi − U�
i β − g(Ti ))

− 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])(Yi − U�
i β − g(Ti ))

:= Rn1 + Rn2. (11)

Let ζni,s =
n∑

j=1
Wnj (Ti )(g1s(Ti )− g1s(Tj ))(Yi −U�

i β − g(Ti )), s = 1, 2, . . . , p. Let

Rn1,s be the r th component of Rn1. From (2), it follows that

E[ζnk,sζnl,s] = E{E[ζnk,sζnl,s |T1, T2, . . . , Tn, Xk, Xl ]} = 0. (12)

for k 	= l. This together with (C.g), (C.ω), (C.T ) and (C.ε) proves

E R2
n1,s = 1

n

n∑
i=1

Eζ 2
ni,s

≤
n∑

i=1

n∑
j=1

E{W 2
nj (Ti )(g1s(Ti ) − g1s(Tj ))

2 E[e2
i |Ti ]}

≤ cb2
n

n∑
i=1

n∑
j=1

E{W 2
nj (Ti )

(
Ti − Tj

bn

)2

E[e2
i |Ti ]}

≤ cb2
n

n∑
i=1

n∑
j=1

EW 2
nj (Ti )≤c(n2b2

n)(n2bn)−1 −→0, s =1, 2, . . . , p. (13)

by using Cr -inequality in the first inequality and using Lemma A.1 of Wang (1999)
in the last inequality, where c is some constant. Next, c may be different constant in
different place.

For Rn2, we have

Rn2 = − 1√
n

∑
i 	= j

Wnj (Ti )(U j − E[U j |Tj ])(Yi − U�
i β − g(Ti ))

− 1√
n

n∑
i=1

Wni (Ti )(Ui − E[Ui |Ti ])(Yi − U�
i β − g(Ti ))

:= Rn2,1 + Rn2,2. (14)
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By (C.ε), (C.X), (C.�), (C.ω) and (C.T), we have

E‖Rn2,1‖2 = 1

n

∑
i 	= j

E‖Wnj (Ti )(U j − E[U j |Tj ])(Yi − X�
i β − g(Ti ))‖2

= 1

n

∑
i 	= j

E{W 2
nj (Ti )E[‖U j

−E[U j |Tj ]‖2|Tj ]E[(Yi − X�
i β − g(Ti ))

2|Ti ]}
≤ C

n

∑
i 	= j

EW 2
nj (Ti ) ≤ c(nbn)−1. (15)

By (C.X) and (C.�) and (C.ε), similar to (15) we have

E R2
n2,2 =

n∑
i=1

E[W 2
ni (Ti )‖Ui − E[Ui |Ti ]‖2(Yi − U�

i β − g(Ti ))
2]

≤
n∑

i=1

E{W 2
ni (Ti ) supt E

1
2 [‖Ui‖4|T = t] supt E

1
2 [Y 4|T = t]}

≤ C(nbn)−1 −→ 0. (16)

By (14), (15) and (16), it follows that Rn2 = op(1). This together with (11) and (13)
proves

Rn = op(1). (17)

For Sn , we have

Sn = Sn,1 + Sn,2 + Sn,3, (18)

where

Sn,1 = 1√
n

n∑
i=1

(Ui − E[Ui |Ti ]){(g2(Ti ) − ĝ2,n(Ti ))

−[(Ui,n − ĝ1,n(Ti ))
�β − (Ui − g1(Ti ))

�β]},

Sn,2 = 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(g1(Ti ) − g1(Tj )){g2(Ti ) − ĝ2,n(Ti )

−[(Ui,n − ĝ1,n(Ti ))
�β − (Ui − g1(Ti ))

�β]}
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and

Sn,3 = − 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ]){g2(Ti ) − ĝ2,n(Ti )

−[(Ui,n − ĝ1,n(Ti ))
�β − (Ui − g1(Ti ))

�β]}.

Clearly

Sn,1 = 1√
n

n∑
i=1

(Ui − E[Ui |Ti ])
n∑

j=1

Wnj (Ti )(g2(Ti ) − g2(Tj ))

+ 1√
n

n∑
i=1

(Ui − E[Ui |Ti ])
n∑

j=1

Wnj (Ti )(g2(Tj ) − Y j )

− 1√
n

n∑
i=1

(Ui − E[Ui |Ti ])(Ui,n − Ui )
�β

+ 1√
n

n∑
i=1

(Ui − E[Ui |Ti ])(ĝ1,n(Ti ) − g1(Ti ))
�β

:= Sn1,1 + Sn1,2 + Sn1,3 + Sn1,4. (19)

Note that Sn1,1 is Rn1 with Yi − X�
i β − g(Ti ) and g1(·) replaced by Ui − E[Ui |Ti ]

and g2(·) replaced, respectively, and hence has expression similar to Rn1. This implies
that arguments similar to (13) can be used to prove

Sn1,1 = op(1). (20)

Clearly

Sn1,2 = 1√
n

∑
i 	= j

Wnj (Ti )(Ui − E[Ui |Ti ])(g2(Tj ) − Y j )

+ 1√
n

n∑
i=1

Wni (Ti )(Ui − E[Ui |Ti ])(g2(Ti ) − Yi )

:= S[1]
n1,2 + S[2]

n1,2.

Again note that

E[Wnj (Ti )(Ui − E[Ui |Ti ])(g2(Tj ) − Y j )]
= E{E[Wnj (Ti )(Ui − E[Ui |Ti ])(g2(Tj ) − Y j )|Ti , Tj ]} = 0
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for i 	= j , and S[1]
n1,2 has expression similar to Rn2,1. Hence, similar arguments used

in the proof of (15) can be used to prove S[1]
n1,2 = op(1). By (4) and (16), we have

S[2]
n1,2 = − 1√

n

n∑
i=1

Wni (Ti )(Ui − E[Ui |Ti ])(Ui − E[Ui |Ti ])�β + Rn,22

= − 1√
n

n∑
i=1

Wni (Ti )(Ui − E[Ui |Ti ])(Ui − E[Ui |Ti ])�β + op(1),

where Rn,22 is defined in (14). Hence

Sn1,2 = − 1√
n

n∑
i=1

Wni (Ti )(Ui − E[Ui |Ti ])(Ui − E[Ui |Ti ])�β + op(1). (21)

Recalling the definition of �n(·, ·), we have

Sn1,3 = 1√
n

n∑
i=1

(Ui − E[Ui |Ti ])
1

nh2
n

∑n
j=1(δ j − �(Z j ))K

(
Zi −Z j

hn

)

�2(Zi ) fZ (Zi )
δi X�

i β

+ 1√
n

n∑
i=1

(Ui − E[Ui |Ti ])
1

nh2
n

∑n
j=1(�(Z j ) − �(Zi ))K

(
Zi −Z j

hn

)

�2(Zi ) fZ (Zi )

×δi X�
i β + op(1)

:= S[1]
n1,3 + S[2]

n1,3 + op(1) (22)

Note that δi Xi�(Zi )
= Ui for i = 1, 2, . . . , n, we get

S[1]
n1,3 = �β

1

n
3
2 h2

n

n∑
j=1

(δ j − �(Z j ))

n∑
i=1

K
(

Zi −Z j
hn

)

�(Zi ) fZ (Zi )

+ 1

n
3
2 h2

n

n∑
i=1

n∑
j=1

{[(Ui − E[Ui |Ti ])(Ui − E[Ui |Ti ])�β]

−E[(U − E[U |T ])(U − E[U |T ])�β]}

×(δ j − �(Z j ))
K
(

Zi −Z j
hn

)

�(Zi ) fZ (Zi )

+ 1

n
3
2 h2

n

n∑
i=1

n∑
j=1

[(Ui − E[Ui |Ti ])E�[Ui |Ti ]β](δ j − �(Z j ))
K
(

Zi −Z j
hn

)

�(Zi ) fZ (Zi )

:= In1 + In2 + In3. (23)

123



Statistical estimation in partial linear model 65

By (C.K), (C.�), (C.f), (C.X) and (C.hn), using arguments similar to Wang and Rao
(2002) it can be shown

In1 = �β
1√
nhn

n∑
j=1

(δ j − �(Z j ))

∫ K
(

z−Z j
hn

)

�(z)
dz + op(1)

= �β
1√
n

n∑
j=1

δ j − �(Z j )

�(Z j )
+ op(1), (24)

In2 = op(1), In3 = op(1) and S[2]
n1,3 = op(1). This together with (22)–(24) proves

that

Sn1,3 = �β
1√
n

n∑
j=1

δ j − �(Z j )

�(Z j )
+ op(1). (25)

For Sn1,4, we have

Sn1,4 = 1√
n

n∑
i=1

(Ui − E[Ui |Ti ])
⎡
⎣

n∑
j=1

Wnj (Ti )

(
δ j X j

�n(Z j )
− δ j X j

�(Z j )

)�
β

⎤
⎦

+ 1√
n

n∑
i=1

(Ui − E[Ui |Ti ])
n∑

j=1

Wnj (Ti )

(
δ j X j

�(Z j )
− g1(Tj )

)�
β

+ 1√
n

n∑
i=1

(Ui − E[Ui |Ti ])
n∑

j=1

Wnj (Ti )(g1(Tj ) − g1(Ti ))
�β

:= S[1]
n1,4 + S[2]

n1,4 + S[3]
n1,4. (26)

It can be proved

S[1]
n1,4 = − 1√

n

n∑
j=1

(
n∑

i=1

Wnj (Ti )(Ui − E[Ui |Ti ])
)

× U�
j β

�(Z j )
(�n(Z j ) − �(Z j )) + op(1). (27)

Clearly, the main term in (27) can be bounded by

supz |�n(z) − �(z)|Qn, (28)

where

Qn = 1√
n

n∑
j=1

∥∥∥∥∥
n∑

i=1

Wnj (Ti )(Ui − E[Ui |Ti ])
U�

j β

�(Z j )

∥∥∥∥∥ . (29)
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By (C.�) and (C.X), we have

E Q2
n ≤

n∑
j=1

E‖ U�
j β

�(Z j )

n∑
i=1

Wnj (Ti )(Ui − E[Ui |Ti ])‖2

≤ C
n∑

j=1

⎡
⎣

n∑
i=1,i 	= j

EW 2
nj (Ti )(Ui − E[Ui |Ti ])2

⎤
⎦

+C
n∑

j=1

E

[
W 2

nj (Tj )‖(U j − E[U j |Tj ])
U�

j β

�(Z j )
‖2

]

≤ Cb−1
n + C(nbn)−1. (30)

This proves Qn = O(b
− 1

2
n ). Hence, by (27), (28) and the fact

supz |�n(z) − �(z)| = Op((nh2
n)

− 1
2 ) + Op(h

k
n), (31)

we have

S[1]
n1,4 = op(1). (32)

as nh2
nbn → ∞ and h2k

n /bn → 0, which are implied by (C.hnbn).
It is easy too see that

S[2]
n1,4 = 1√

n

∑
i 	= j

Wnj (Ti )(Ui − E[Ui |Ti ])(U j − E[U j |Tj ])�β

+ 1√
n

n∑
i=1

Wni (Ti )(Ui − E[Ui |Ti ])(Ui − E[Ui |Ti ])�β (33)

Using similar arguments to (15), it can be proved that the first term at the left hand side
of the above equality is op(1). Similar to (20), we have S[3]

n1,4 = op(1). This together
with (26), (32), (33) and (21) proves

Sn1,4 + Sn1,2 = op(1). (34)

By (19), (20), (21), (25) and (34), it follows

Sn,1 = �β
1√
n

n∑
j=1

δ j − �(Z j )

�(Z j )
+ op(1). (35)
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For Sn,2, we have

Sn,2 = 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(g1(Ti ) − g1(Tj ))

n∑
j=1

Wnj (Ti )(g2(Ti ) − g2(Tj ))

+ 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(g1(Ti ) − g1(Tj ))

n∑
j=1

Wnj (Ti )(g2(Tj ) − Y j )

− 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(g1(Ti ) − g1(Tj ))(Uin − Ui )
�β

+ 1√
n

n∑
i=1

n∑
j=1

n∑
k=1

Wnj (Ti )Wnk(Ti )(g1(Ti ) − g1(Tj ))(Ukn − Uk)
�β

+ 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(g1(Ti ) − g1(Tj ))

n∑
k=1

Wnk(Ti )(Uk − g1(Tk))
�β

+ 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(g1(Ti ) − g1(Tj ))

n∑
k=1

Wnk(Ti )(g1(Tk) − g1(Ti ))
�β

:= Sn,21 + Sn,22 + Sn,23 + Sn,24 + Sn,25 + Sn,26. (36)

By (C.g), (C.ω) and (C.bn), we get

|Sn,21| ≤ Cb2
n√
n

n∑
i=1

n∑
j=1

Wnj (Ti )

∣∣∣∣
Ti − Tj

bn

∣∣∣∣
n∑

j=1

Wnj (Ti )
|Ti − Tj |

bn

≤ C
√

nb2
n −→ 0. (37)

It is noted that Sn,26 is Sn,21 with g2(·) replaced by g�
1 (·)β. Hence, similar arguments

to (37) can be used to prove

Sn,26 ≤ C
√

nb2
n −→ 0. (38)

By (C.g) and (C.ω), we have

|Sn,22| ≤ Cbn√
n

⎛
⎝

n∑
i=1

n∑
j=1

Wnj (Ti )
∣∣Ti − Tj

bn

∣∣
⎞
⎠ |

n∑
j=1

Wnj (Ti )(g2(Tj ) − Y j )|

≤ Cbn√
n

n∑
i=1

∣∣∣∣∣∣
n∑

j=1

Wnj (Ti )(g2(Tj ) − Y j )

∣∣∣∣∣∣
.
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Hence, by (C.ω) and (C.ε) we get

E |Sn,22|2 ≤ Cb2
n

n
n

n∑
i=1

E

⎡
⎣

n∑
j=1

Wnj (Ti )(g2(Tj ) − Y j )

⎤
⎦

2

≤ Cb2
n

n∑
i=1

n∑
j=1

EW 2
nj (Ti )(g2(Tj ) − Y j )

2 ≤ Cbn −→ 0.

This proves

Sn,22
p−→ 0. (39)

Similarly, we have

Sn,25
p−→ 0. (40)

It is noted that

Sn,23 = 1√
n

n∑
i=1

n∑
j=1

(g1(Ti ) − g1(Tj ))
δi X�

i β

�2(Zi )
(�n(Zi ) − �(Zi )) + op(1). (41)

By (C.g), (C.�), (C.ω), (C.hnbn) and (31), it follows that the main term in (41) is
bounded by

bn supz |�n(z) − �(z)| 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )

∣∣∣Ti − Tj

bn

∣∣∣|X�
i β|

= Op(
bn

hn
) + Op(

√
nbnhn) = op(1). (42)

(41) and (42) together prove Sn,23 = op(1). Similarly, we have Sn,24 = op(1). This
together with (36), (37), (38), (39) and (40) proves

Sn2 = op(1). (43)
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For Sn,3, we have

Sn,3 = − 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])(g2(Ti ) − ĝ2,n(Ti ))

+ 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])(Ui,n − Ui )

− 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])(ĝ1,n(Ti ) − g1(Ti ))
�β

:= Sn,31 + Sn,32 + Sn,33. (44)

Observe that

Sn,31 = − 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])
n∑

j=1

Wnj (Ti )(g2(Ti ) − g2(Tj ))

+ 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])
n∑

j=1

Wnj (Ti )(Y j − g2(Tj ))

:= S[1]
n,31 + S[2]

n,31. (45)

By (C.g), (C.ω), (C.X) and (C.�), we have

∣∣∣∣∣∣
n∑

j=1

Wnj (Ti )(g2(Ti ) − g2(Tj ))

∣∣∣∣∣∣
≤ Cbn

n∑
j=1

Wnj (Ti )

∣∣∣∣
Ti − Tj

bn

∣∣∣∣ ≤ Cbn (46)

and

E[ 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])]2

≤ C
n∑

i=1

n∑
j=1

E{W 2
nj (Ti )E[U 2

j |Tj ]} ≤ Cb−1
n .

This proves

1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ]) = Op(b
− 1

2
n ). (47)

(46) and (47) together prove

S[1]
n,31 = Op(b

1
2
n ). (48)

123



70 Q.-H. Wang

By Schwartz inequality, we have

E‖S[2]
n,31‖ ≤ 1√

n

n∑
i=1

E
1
2

∥∥∥∥∥∥
n∑

j=1

Wnj (Ti )(U j − E[U j |Tj ]
∥∥∥∥∥∥

2

×E
1
2

⎛
⎝

n∑
j=1

Wnj (Ti )(Y j − E[Y j |Tj ]
⎞
⎠

2

≤ 1√
n

n∑
i=1

⎛
⎝

n∑
j=1

E[W 2
nj (Ti )E[‖U j‖2|Tj ]]

⎞
⎠

1
2

×
⎛
⎝

n∑
j=1

E[W 2
nj (Ti )E[‖U j‖2|Tj ]

⎞
⎠

1
2

≤ Cn− 1
2 b−1

n −→ 0 (49)

by (C.bn). (45), (48) and (49) together prove

Sn,31
p−→ 0. (50)

Similar to (32), we can prove

Sn,32
p−→ 0. (51)

For Sn,33, we have

Sn,33 = − 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])

×
⎡
⎣

n∑
j=1

Wnj (Ti )

(
δ j X j

�n(Z j )
− δ j X j

�(Z j )

)�
β

⎤
⎦

− 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])

×
⎡
⎣

n∑
j=1

Wnj (Ti )

(
δ j X j

�(Z j )
− g1(Tj )

)�
β

⎤
⎦

− 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])(g1(Tj ) − g1(Ti ))
�β

:= S[1]
n,33 + S[2]

n,33 + S[3]
n,33 (52)
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It is noted that

‖S[1]
n,33‖ ≤

∥∥∥∥∥∥
1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U j − E[U j |Tj ])

×
⎛
⎝

n∑
j=1

Wnj (Ti )δ j X�
j β

�(Z j ) − �n(Z j )

�2(Z j )

⎞
⎠
∥∥∥∥∥∥

+ op(1)

≤ C√
n

⎛
⎝

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

Wnj (Ti )(U j − E[U j |Tj ])
∥∥∥∥∥∥

⎞
⎠
⎛
⎝

n∑
j=1

Wnj (Ti )‖X j‖
⎞
⎠

× supz |�n(z) − �(z)| + op(1). (53)

By (C.X), (C.�), (C.ω) and (C.r), we have

E

⎧⎨
⎩

1√
n

⎛
⎝

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

Wnj (Ti )(U j − E[U j |Tj ])
∥∥∥∥∥∥

⎞
⎠
⎛
⎝

n∑
j=1

Wnj (Ti )‖X j‖
⎞
⎠
⎫⎬
⎭

≤ C√
n

n∑
i=1

E
1
2

∥∥∥∥∥∥
n∑

j=1

Wnj (Ti )(U j − E[U j |Tj ])
∥∥∥∥∥∥

2

E
1
2

∥∥∥∥∥∥
n∑

j=1

Wnj (Ti )X j

∥∥∥∥∥∥

2

≤ C√
n

n∑
i=1

⎛
⎝

n∑
j=1

EW 2
nj (Ti )

⎞
⎠

1
2
⎛
⎝

n∑
j=1

W 2
nj (Ti )

⎞
⎠

1
2

≤ Cb−1
n

This together with (31) proves

‖S[1]
n,33‖ = op(1). (54)

Similar to (48) and (49), we have

S[2]
n,33 = op(1) and S[3]

n,33 = op(1). (55)

This together with (52), (54) and (55) proves

Sn,33 = op(1). (56)

(44), (50), (51) and (57) together prove

Sn,3 = op(1). (57)
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By (18), (35), (43) and (57), we get

Sn = �β
1√
n

n∑
j=1

δ j − �(Z j )

�(Z j )
+ op(1). (58)

It can be proved that

Tn = 1√
n

n∑
i=1

(Uin − Ui )[Yi − ĝ2,n(Ti ) − (Uin − ĝ1,n(Ti ))
�β]

− 1√
n

n∑
i=1

n∑
j=1

Wnj (Ti )(U jn − U j )(Yi − ĝ2,n(Ti ) − (Ui,n − ĝ1,n(Ti ))
�β]

= Tn1 + Tn2. (59)

For Tn1, we have

Tn1 = 1√
n

n∑
i=1

(Uin − Ui )(Yi − g2(Ti ) − (Ui − g1(Ti ))
�β)

+ 1√
n

n∑
i=1

(Uin − Ui )(g2(Ti ) − ĝ2,n(Ti ))

− 1√
n

n∑
i=1

(Uin − Ui )(Uin − Ui )
�β

+ 1√
n

n∑
i=1

(Uin − Ui )(ĝ1,n(Ti ) − g1(Ti ))
�β

= Tn1,1 + Tn1,2 + Tn1,3 + Tn1,4. (60)

Similar to (25), it can be proved

Tn1,1 = −E

[
1 − �(Z)

�(Z)
X X�

]
β

1√
n

n∑
j=1

δ j − �(Z j )

�(Z j )
+ op(1). (61)

For Tn1,2, we have

Tn1,2 = 1√
n

n∑
i=1

δi Xi (�(Zi ) − �n(Zi ))

�2(Zi )

n∑
j=1

Wnj (Ti )(g2(Ti ) − g2(Tj ))

+ 1√
n

n∑
i=1

δi Xi (�(Zi ) − �n(Zi ))

�2(Zi )

n∑
j=1

Wnj (Ti )(g2(Tj ) − Y j )

= T [1]
n1,2 + T [2]

n1,2. (62)
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By (31) and (C.hnbn), we have

‖T [1]
n1,2‖ ≤ C

√
nbn supz |�n(z) − �(z)|1

n

n∑
i=1

‖Xi‖

= Op(
bn

hn
) + Op(

√
nbnhk

n) = op(1). (63)

For T [2]
n1,2, we have

‖T [2]
n1,2‖ ≤ supz |�n(z) − �(z)| 1√

n

n∑
i=1

‖Xi‖|
n∑

j=1

Wnj (Ti )(g2(Tj ) − Y j )|. (64)

By (C.X) and (c.ε), we have

E

⎡
⎣ 1√

n

n∑
i=1

‖Xi‖
n∑

j=1

Wnj (Ti )(g2(Tj ) − Y j )

⎤
⎦

2

≤ c
n∑

i=1

E

⎧⎪⎨
⎪⎩

‖Xi‖2

⎛
⎝

n∑
j=1, j 	=i

Wnj (Ti )(g2(Tj ) − Y j )

⎞
⎠

2
⎫⎪⎬
⎪⎭

+c
n∑

i=1

E[‖Xi‖2W 2
ni (Ti )]

≤ c
n∑

i=1

n∑
j=1, j 	=i

E{W 2
nj (Ti )E[Y 2

j |Tj ]} + C
n∑

i=1

E{W 2
ni (Ti )E[‖Xi‖2|T = t]}

= O(b−1
n ) + O((nbn)−1). (65)

This proves

1√
n

n∑
i=1

‖Xi‖
n∑

j=1

Wnj (Ti )(g2(Tj ) − Tj ) = Op(b
− 1

2
n ).

This together with (62), (63), (64) and (31) proves

‖Tn1,2‖ = op(1). (66)

by (C.hnbn) and (C.bn). Similarly, it can be proved

Tn1,4 = op(1). (67)
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By (31), standard but tedious arguments can be used to prove

Tn1,3 = op(1) and Tn2 = op(1). (68)

(59), (60), (61), (62), (63), (66), (67) and (68) together prove

Tn = −E

[
1 − �(Z)

�(Z)
X X�

]
β

1√
n

n∑
j=1

δ j − �(Z j )

�(Z j )
+ op(1). (69)

By (10), (17), (58) and (69), (8) is then proved.
By the fact

supt

∣∣∣∣∣∣
n∑

j=1

Wnj (t)
δ j X j

�(Z j )
− E

[
δX

�(Z)

∣∣∣T = t

]∣∣∣∣∣∣
= Op((nbn)−

1
2 ) + Op(bn),

and (31), it can be prove that

supt |g1(t) − ĝ1,n(t)|

≤ supt

∣∣∣∣∣∣
n∑

j=1

Wnj (t)
δ j X j

�(Z j )
− E

[
δX

�(Z)
|T = t

]∣∣∣∣∣∣

+ supt

∣∣∣∣∣∣
n∑

j=1

Wnj (t)
δ j X j (�(Z j ) − �n(Z j ))

�(Z j )�n(Z j )

∣∣∣∣∣∣

≤ supt

∣∣∣∣∣∣
n∑

j=1

Wnj (t)
δ j X j

�(Z j )
− E

[
δX

�(Z)

∣∣∣T = t

]∣∣∣∣∣∣

+ supz |�n(z) − �(z)

∣∣∣∣∣∣
n∑

j=1

Wnj (t)
‖δ j X j‖

�(Z j )�n(Z j )

∣∣∣∣∣∣
= Op((nbn)−

1
2 ) + Op(bn) + Op((nh2

n)−
1
2 ) + Op(h

k
n). (70)

(31) and (70) together prove (9).

Note that � − E
[

1−�(Z)
�(Z)

X X�
]
β = �0 and

E[(U − g1(T ))(Y − g2(T ) − (U − g1(T ))�β] = −E

[
1 − �(Z)

�(Z)
X X�

]
β.

The central limit theorem can be applied to (8) and (9) to prove Theorem 1 by some
simple calculations. �
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Proof of Theorem 2. Theorem 2 is a direct result of Theorem 1 by noting

√
n(µ̂MC − µMC ) = op(1).

�
Proof of Theorem 3. Observe

ĝn(t) − g(t) = ĝ2n(t) − g2(t) − (ĝ1n(t) − g1(t))
�

β − (ĝ1n(t) − g1(t))
�(β̂∗ − β) − g�

1 (t)(β̂∗ − β).

By (70) and the following fact

supt |̂g2,n(t) − g2(t)| = Op((nbn)−
1
2 ) + Op(bn) (71)

and the assumption that β̂∗ − β = Op(n− 1
2 ), we get

ĝ∗
MC (t) − g(t) = Op((nbn)−

1
2 ) + Op(bn) + Op((nh2

n)
− 1

2 ) + Op(h
k
n) + Op(n

− 1
2 ).

Theorem 2 is then proved if bn = n− 1
3 and hn = n− 1

6 . �

Appendix B: Proofs of Theorems 4 and 5

(C.M(z)): M(z) has bounded partial derivatives up to order k(> 2) almost surely.

Proof of Theorem 4. Clearly

√
n(β̃n − β) = √

nB̃−1
n [ Ãn − B̃nβ)] (72)

and

√
n( Ãn − B̃nβ)

= 1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�n(Zi )
(Yi − g2(Ti ) − (Xi − g1(Ti ))

�β)

+ 1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�n(Zi )
(g2(Ti ) − ĝ2,n(Ti ))

+ 1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�n(Zi )
(ĝ1,n(Ti ) − g1(Ti ))

�β

+ 1√
n

n∑
i=1

δi (g1(Ti ) − ĝ1,n(Ti ))

�n(Zi )
(Yi − ĝ2,n(Ti ) − (Xi − ĝ1,n(Ti ))

�β)

:= En + Fn + Gn + Hn . (73)
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Observe that

En = 1√
n

n∑
i=1

δi (Xi − g1(Ti ))εi

�(Zi )
+ 1

n

n∑
i=1

δi (Xi − g1(Ti ))(�(Zi ) − �n(Zi ))εi

�2(Zi )

+ 1√
n

n∑
i=1

δi (Xi − g1(Ti )(�(Zi ) − �n(Zi ))
2εi

�̂n(Zi )�2(Zi )

:= En,1 + En,2 + En,3. (74)

For En,2, we have

En,2 = − 1√
n

n∑
i=1

δi (Xi − g1(Ti ))εi

�2(Zi ) fZ (Zi )

1

nh2
n

n∑
j=1

(δ j − �(Z j ))K

(
Zi − Z j

hn

)

− 1√
n

n∑
i=1

δi (Xi − g1(Ti ))εi

�2(Zi ) fZ (Zi )

1

nh2
n

n∑
j=1

(�(Z j )−�(Zi ))K

(
Zi − Z j

hn

)
+op(1)

:= En,21 + En,22 + op(1). (75)

Clearly

En,21 = − 1√
n

n∑
i=1

M(Zi )

�(Zi ) fZ (Zi )

1

nh2
n

n∑
j=1

(δ j − �(Z j ))K

(
Zi − Z j

hn

)

− 1√
n

n∑
i=1

{
δi (Xi − g1(Ti ))εi

�2(Zi ) fZ (Zi )
− E

[
δi (Xi − g1(Ti ))εi

�2(Zi ) fZ (Zi )

∣∣∣Zi

]}

× 1

nh2
n

n∑
j=1

(δ j − �(Z j ))K

(
Zi − Z j

hn

)

:= E [1]
n,21 + E [2]

n,21 (76)

By (C.K)ii, (C.�) and (C.M), similar to (24) we have

E [1]
n2,1 = − 1√

n

n∑
j=1

(δ j − �(Z j ))
M(Z j )

�(Z j )
+ op(1). (77)

For E [2]
n,21, we have

E [2]
n,21 = − 1

n
3
2 h2

n

∑
i 	= j

{(δi (Xi − g1(Ti ))εi

�2(Zi ) fZ (Zi )
− E

[
δi (Xi − g1(Ti ))εi

�2(Zi ) fZ (Zi )

∣∣∣Zi

])

(δ j − �(Z j ))K

(
Zi − Z j

hn

)}
+ op(1). (78)
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Let Mn be the first term of (78). Then

E M2
n = 1

n3h4
n

∑
i 	= j

E
{

E[‖Xi − g1(Ti )‖2ε2
i |Zi ]

K 2
(

Zi −Z j
hn

)

�3(Zi ) f 2
Z (Zi )

(�(Z j ) − �2(Z j ))
}

≤ c

n2h2
n

n∑
i=1

E
{

E[‖Xi − g1(Ti )‖2ε2
i |Zi ]

×
∫
(�(Zi − hnu) − �2(Zi − hnu))K 2(u) fZ (Zi − hnu) du

�3(Zi ) f 2
Z (Zi )

}

≤ c

n2h2
n

n∑
i=1

E[‖Xi − g1(Ti )‖2ε2
i

1 − �(Zi )

�2(Zi ) f (Zi )
]
∫

K 2(u) du

≤ c(nh2
n)−1 −→ 0. (79)

This together with (78) proves

E [2]
n,21 = op(1). (80)

By (C.X), (C.ε), (C.�)ii, (C.f), we have

En,22 = − 1√
n

n∑
i=1

δi (Xi − g1(Ti ))εi

�2(Zi ) fZ (Zi )∫
(�(Zi − hnu) − �(Zi ))K (u) f (Zi − hnu) du + op(1)

≤ c
√

nhk
n + op(1). (81)

as nh2k
n → 0.

By (75), (76), (77), (80) and (81), we get

En2 = 1√
n

n∑
j=1

(�(Z j ) − δ j )
M(Z j )

�(Z j )
+ op(1). (82)

where M(z) is as defined in Sect. 3.
For En3, we have

En3 ≤ √
n supz |�(z) − �̂n(z)|2

{1

n

n∑
i=1

|δi (Xi − g1(Ti ))εi |
�̂n(Zi )

I [�̂n(Zi ) ≥ 1

2
�(Zi )]

+1

n

n∑
i=1

∣∣∣∣
δi (Xi − g1(Ti ))εi

�̂n(Zi )

∣∣∣∣ I [�̂n(Zi ) <
1

2
�(Zi )]

}
(83)
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Clearly

1

n

n∑
i=1

∣∣∣∣
δi (Xi − g1(Ti ))εi

�̂n(Zi )

∣∣∣∣ I [�̂n(Zi ) ≥ 1

2
�(Zi )] ≤ 2

n

n∑
i=1

∣∣∣∣
δi (Xi − g1(Ti ))εi

�(Zi )

∣∣∣∣
= Op(1). (84)

For any ε > 0, we have

P

(
1

n

n∑
i=1

∣∣∣∣
δi (Xi − g1(Ti ))εi

�̂n(Zi )

∣∣∣∣ I [�̂n(Zi ) <
1

2
�(Zi )] > ε

)

≤ P

(
n⋃

i=1

{|�̂n(Zi ) − �(Zi )| >
1

2
inf z �(z)}

)

= P

(
supz |�̂n(z) − �(z)| >

1

2
inf z �(z)

)
−→ 0. (85)

by (C.�). (83), (84) and (85) together with (29) prove

En3 = Op(n
− 1

2 h−2
n ) + Op(

√
nh2k

n ) = op(1). (86)

as nh4
n → ∞ and nh4k

n → 0, which are implied by (C.hn). (74), (82) and (86) together
prove

En = 1√
n

n∑
i=1

[
δi (Xi − g1(Ti ))εi

�(Zi )
+ (�(Zi ) − δi )

M(Zi )

�(Zi )

]
+ op(1). (87)

For Fn , we have

Fn = 1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�(Zi )

n∑
j=1

Wnj (Ti )(g2(Ti ) − g2(Tj ))

+ 1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�(Zi )

n∑
j=1

Wnj (Ti )(g2(Tj ) − Y j )

+ 1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�̂n(Zi )�(Zi )
(�(Zi ) − �n(Zi ))(g2(Ti ) − ĝ2,n(Ti ))

:= Fn1 + Fn2 + Fn3. (88)

Under MAR, we have

E

[
δ(X − g1(T )

�(Z)

∣∣∣T
]
= E

{
E

[
δ(X − g1(T ))

�(Z)
|Y, X, T

]
|T
}

= E[(X − g1(T ))|T ]=0.
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Let ξk = δk (Xk−g1(Tk ))
�(Zk)

and ζnk =
n∑

j=1

Wnj (Tk)(g2(Tk) − g2(Tj )). Then,

E[ξkξlζnkζnj ] = E{E[E(ξk |Yk, Tk, Xk)|Tk]E[E(ξl |Yl , Tl , Xl)|Tl ]ζnkζnl} = 0.

This together with assumptions (C.�), (C.X), (C.K), (C.g) and (C.bn) proves

E‖Fn1‖2 ≤ Cnb2
n(n2bn)−1 ≤ cbn −→ 0.

by similar arguments to (13). This proves

Fn1 = op(1). (89)

By arguments similar to (13), (14), (15) and (16), it can be proved

Fn2 = op(1). (90)

Similar to (86), we have

Fn3 = op(1) (91)

by (31) and (71) as nh2
nbn → ∞,

h2k
n

bn
→ 0 and bn

hn
→ 0, which are implied by

(C.hnbn) and (C.hn). This together with (88), (89), (89) and (91) proves

Fn = op(1). (92)

For Gn , we have

Gn = 1√
n

δi (Xi − g1(Ti ))

�(Zi )
(g1(Ti ) − ĝ1,n(Ti ))

�β + op(1)

= 1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�(Zi )

n∑
j=1

Wnj (Ti )(g1(Ti ) − g1(Tj ))
�β

+ 1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�(Zi )

n∑
j=1

Wnj (Ti )(g1(Tj ) − δ j X j

�(Z j )
)�β

+ 1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�(Zi )

n∑
j=1

Wnj (Ti )

(
δ j X j

�(Z j )
− δ j X j

�n(Z j )

)�
β + op(1)

= G[1]
n,1 + G[2]

n,1 + G[3]
n,1 + op(1). (93)

Similar to the proofs of (13), (14), (15) and (16), we have

G[1]
n,1 = op(1) and G[2]

n,2 = op(1). (94)
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For G[3]
n,1, using some arguments similar to (83) and (84) we have

‖G[3]
n,1‖ = ‖

n∑
j=1

{ n∑
i=1

Wnj (Ti )
δi (Xi − g1(Ti ))

�(Zi )

} δ j X�
j β

�(Z j )�n(Z j )
(�n(Z j ) − �(Z j ))‖

≤ supz |�n(z) − �(z)|‖
n∑

i=1

Wnj (Ti )
δi (Xi − g1(Ti ))

�(Zi )

δ j X�
j β

�(Z j )�n(Z j )

×I [�n(Z j ) ≥ 1

2
�(Z j )]‖ + op(1) (95)

By (C.X), (C.�), (C.ω), we have

E

∥∥∥∥∥∥
n∑

j=1

∣∣∣∣∣
1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�(Zi )
Wnj (Ti )

∣∣∣∣∣ X�
j β

∥∥∥∥∥∥

2

≤ n
n∑

j=1

E

⎡
⎣
∥∥∥∥∥

1√
n

n∑
i=1

δi (Xi − g1(Ti ))

�(Zi )
Wnj (Ti )

∥∥∥∥∥
2

(X�
j β)2

⎤
⎦

≤
n∑

j=1

E

⎡
⎣

n∑
i=1,i 	= j

E[‖Xi‖2|Ti ]W 2
nj (Ti )(X�

j β)2

⎤
⎦

+
n∑

j=1

E

[
δ j‖X j − g1(Tj )‖2

�2(Z j )
W 2

nj (Tj )(X�
j β)2

]

≤ cn2 EW 2
nj (Ti ) ≤ cb−1

n . (96)

This proves

{
n∑

i=1

Wnj (Ti )
δi (Xi − g1(Ti ))

�(Zi )

}
δ j X�

j β

�(Z j )�n(Z j )
I

[
�n(Z j ) ≥ 1

2
�(Z j )

]
=op(b

− 1
2

n ).

This together with (31) and (95) proves

G[3]
n,1 = op(1) (97)

by (C.hn) and (C.hnbn). By (93), (94) and (97), we have

Gn = op(1). (98)
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For Hn , we have

Hn = 1√
n

n∑
i=1

δi (g1(Ti ) − ĝ1,n(Ti ))εi

�(Zi )

+ 1√
n

n∑
i=1

δi (g1(Ti ) − ĝ1,n(Ti ))(�(Zi ) − �n(Zi ))εi

�n(Zi )�(Zi )

+ 1√
n

n∑
i=1

δi (g1(Ti ) − ĝ1,n(Ti ))

�n(Zi )
(g2(Ti ) − ĝ2,n(Ti ))

+ 1√
n

n∑
i=1

δi (g1(Ti ) − ĝ1,n(Ti ))

�n(Zi )
(ĝ1,n(Ti ) − g1(Ti ))

�β

:= Hn1 + Hn2 + Hn3 + Hn4. (99)

For Hn1, we have

Hn1 = 1√
n

n∑
i=1

δiεi

�(Zi )

n∑
j=1

Wnj (Ti )(g1(Ti ) − g1(Tj ))

+ 1√
n

n∑
i=1

δiεi

�(Zi )

n∑
j=1

Wnj (Ti )

(
g1(Ti ) − δ j X j

�(Z j )

)

+ 1√
n

n∑
i=1

δiεi

�(Zi )

n∑
j=1

Wnj (Ti )

(
δ j X j

�(Z j )
− δ j X j

�n(Z j )

)

:= Hn1,1 + Hn1,2 + Hn1,3. (100)

Similar to (89) and (89), we have

Hn1,1 = op(1) Hn1,2 = op(1). (101)

For Hn1,3, we have

Hn1,3 = 1√
n

n∑
i=1

δiεi

�(Zi )

n∑
j=1

Wnj (Ti )
U j

�(Z j )
(�n(Z j ) − �(Z j )) + op(1)

= 1√
n

n∑
j=1

(
n∑

i=1

δiεi

�(Zi )
Wnj (Ti )

)
U j

�(Z j )
(�n(Z j ) − �(Z j )) + op(1).

(102)

Clearly, the main term in the above formula can be bounded by

supz |�n(z) − �(z)|Qn, (103)

123



82 Q.-H. Wang

where

Qn = 1√
n

n∑
j=1

∥∥∥∥∥
n∑

i=1

δiεi

�(Zi )
Wnj (Ti )

U j

�(Z j )

∥∥∥∥∥

By (C.�) and (C.X), we have

E‖Qn‖ ≤ 1√
n

n∑
j=1

⎡
⎣E

1
2 ‖ δ j X j

�(Z j )
‖2 E

1
2

(
n∑

i=1

Wnj (Ti )
δiεi

�(Zi )

)2
⎤
⎦

≤ c√
n

n∑
j=1

(
n∑

i=1

EW 2
nj (Ti )

δiε
2
i

�2(Zi )

) 1
2

≤ cb
− 1

2
n .

This proves

Qn = op(b
− 1

2
n ). (104)

(31), (102), (103) and (104) together prove

Hn1,3 = op(1) (105)

as nh2
nbn → ∞ and h2k

n
bn

→ 0, which is implied by (C.hnbn).
(100), (101) and (105) together prove

Hn1 = op(1). (106)

Using arguments similar to (83) and (84), by (31) and (70), we get

|Hn2| ≤ √
n supt |̂g1,n(t) − g1(t)| supz |�n(z) − �(z)|

(
2

n

n∑
i=1

δi |εi |
�2(Zi )

+ op(1)

)

= Op(n
− 1

2 b
− 1

2
n h−1

n ) + Op(
bn

hn
) + Op

⎛
⎝ hk

n

b
1
2
n

⎞
⎠+ Op(

√
nhk

nbn)

+Op(n
1
2 h2

n) + Op(
√

nh2k
n ). (107)

as nh4
n → ∞, nh2

nbn → ∞, nh4k
n → 0, nh2k

n b2
n → 0,

h2k
n

bn
→ 0, bn

hn
→ 0, which are

implied by (C.hn) and (C.hnbn).
Similarly, we have

Hn3 = op(1) and Hn4 = op(1). (108)
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(99), (106), (107) and (108) together prove

Hn = op(1). (109)

By (73), (87), (92), (98) and (109), we get

√
n( Ãn − B̃nβ) = 1√

n

n∑
i=1

[
δi (Xi − g1(Ti ))εi

�(Zi )
+ (�(Zi ) − δi )

M(Zi )

�(Zi )

]
+ op(1).

(110)

Central limit theorem can be used to prove

√
n( Ãn − B̃nβ)

L−→ N (0,�W ), (111)

where

�W = E

[
(X − E[X |T ])(X − E[X |T ])�(Y − X�β − g(T ))2

�(Z)

]

−E

[
M(z)M�(Z)(1 − �(Z))

�(Z)

]

By (31), (70) and (71), it can be proved

B̃n
p−→ �W . (112)

(111) and (112) together prove Theorem 4. �
Proof of Theorem 5. The proof is similar to that of Theorem 5. �
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