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Abstract It has been already noticed that the classical Greenwood formula
may not be an unbiased estimator for the variance of the Kaplan-Meier Prod-
uct Limit estimator (PLE). However, a rigorous proof for such a suggestion has
not been available. In this paper, we investigate some small-sample properties
of the PLE and show that the Greenwood formula strictly underestimates the
variance of the PLE. Besides, some existing estimators for the variance of the
PLE are also discussed.

Keywords Kaplan—-Meier estimator - Greenwood formula - Discrete data -
Survival analysis

1 Introduction

Let T be arandom variable representing failure time of the subject under study.
The inference of T can be characterized either by its survival function or its
cumulative hazard function. In practice, the failure time 7" may not be always
observable due to the presence of censoring. Under the assumption of inde-
pendent censoring, the survival function and the cumulative hazard function of
T can be well estimated by the celebrated Kaplan-Meier (1958) Product Limit
estimator (PLE) and the Nelson (1969) estimator (NE), respectively.

The estimation of the variances of these estimators is critical in the analysis of
the inference of these estimators and in the estimation of median survival time
(see, Brookmeyer and Crowley 1982; Slud et al. 1984; Jennison and Turnbull
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1985). The classical Greenwood formula is commonly employed for estimating
the variance of the PLE.

The Greenwood formula is asymptotically a consistent estimator for the var-
iance of the PLE (see, Fleming and Harrington 1991). However, as suggested
by Jennison and Turnbull (1985), it may underestimate the true variance of the
PLE when sample is small. Some alternative estimators have been advocated,
such as the Peto estimator (PE) proposed by Peto et al. (1977) and a homoge-
netic estimator (HE) proposed by Zhao (1996). Slud et al. (1984) pointed out
that the PE can seriously overestimate the variance of the PLE. Shen (2002)
conducted a simulation showing that the HE can significantly overestimate the
variance of the PLE. Theoretical proofs for these conclusions, however, have
not been available.

Since most clinical studies are expensive and sample size can not be large
enough as desired, therefore, the study for small-sample properties of the PLE
and the NE has some value in theory as well as in practice. In the case that
failure time is continuous, Chen et al. (1982) derived the exact moments of
the PLE and the NE under the assumption of the proportional hazard model.
Phadia and Shao (1999) dropped such assumption and gave out the formulae
for the kth moment of the PLE and the NE in the form of integration. They
also provided an approximation of the variance of the PLE (see, Phadia and
Shao 1999, Corollary 2). However, those formulae are not so readily amenable
to the theoretical study of Greenwood formula and other variance estimators
of the PLE.

In this paper, we investigate the case of small sample censored data with
discrete failure times. We study the biases and variances of the PLE and the
NE without any assumption on the underlying distribution model. Specially, we
prove that the Greenwood formula strictly underestimates the variance of the
PLE, while the PE and HE can either seriously overestimate or underestimate
the variance of the PLE.

The paper is organized as follows. Section 2 sketches the derivation of the
PLE and the NE. Some results on moments and biases of the PLE and the
NE are presented in Sect. 3. Section 4 devotes to the study of the Greenwood
formula and other variance estimators of the PLE. The article closes with a
short discussion in Sect. 5.

2 The PLE and the NE for discrete failure time

Conventionally, the failure time 7 is assumed to be continuous. However, in
some situations, 7" may be genuinely discrete, such as when 7' is a counting vari-
able. Also, in practice, continuous data are frequently modeled as discrete data
(see, e.g. Willett and Singer 1993). Therefore, it is necessary and also instructive
to study discrete censored data.

As usual, for 0 < t < oo, define S(t) = P(T > 1), f(t) = —dS(¢)/d¢, and
A(t) = f(®)/S(¢) as the survival function, the density function, and the hazard
function of T, respectively. For any function g, denote g(t—), g(t+) as the left
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and the right limits of g at . Let H(¢) be the Heaviside function defined as
H(t) = 1 for t > 0 and 0 otherwise. The derivative of H(t), denoted as (), is
the Dirichlet function which gives unit mass at point ¢. Assume 7 is a discrete
random variable taking values at #; with probability a; for j = 1,...,m. Then,
SO =1-2" aiH((t —1)-), f() = 271 a8t — 1) =), A1) = f(O)/S(1) =
S s — ) =)/SW) = I {a/SUIS — =) = S s — 1)),
here A; = a;/S() = P(T = |T > ). The cumulative hazard function
A = fé ADdt = Z]”;l AH((t — tj)—). In terms of %;, S(¢) can also be written
as

i<t

oSG a,]_’"{ o -
S = Hsa, —L[[l 50 ]13 1 S(,)H(“ £)—)

= H{1 - NH((t— 1))

Let C be the censoring time. Under the presence of censoring, the
observable variables are X = min(7,C) and A = I(T < C), where I(-) is the
usual indicator function. Under the assumption that C is independent of T, we
have

P(T = t, C> l‘]')
M=PT =4T>1) =P(T=4|T >14,C>1) = P(X—Zt])

Let (Xi, Ap),i = 1,...,n, be the observed data. Then, a natural estimator for
Aj is A = d;j/n;, where d =>" (T = tj, Ci > t;) is the number of failures
at tj, and nj = > 1| I(X; > tj) is the number at risk at ;. Plugging A into the
expressions of S(¢) and A(¢) yields the classical PLE

R m d;
So=]] | - LH( - z;)—)] , (1)
j=1 &
and the NE
) " d;
A =2 SH(-1)-), (2)
=17
where 0/0 is defined as 0.

Remark 1 The PLE (1) and the NE (2) traditionally are derived by the maxi-
mum likelihood approach. However, as pointed out in Kalbfleisch and Prentice
(1981, p. 12), some investigations are needed to assure the reasonability of such
maximization since it involved many parameters. Comparatively, the derivation
here is simple and of mathematical rigor.
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3 Moments and biases of the PLE and the NE

So far, much study has been done on the asymptotic properties of the PLE and
the NE when sample size is large and 7 is continuous. However, relatively only
a few attempts have been made on the exact small-sample results for the PLE
and the NE even when failure time is continuous. These attempts include Chen
et al. (1982) who derived the exact moments of the PLE under the assump-
tion of proportional hazard model, Gillespie et al. (1992) who investigated the
bias of several modified version of the PLE, Guerts (1985, 1987) who discussed
small-sample performance via computational simulations, and Phadia and Shao
(1999) who derived the formula of exact moments of the PLE and the first two
moments of NE also. To our best knowledge, no study has been conducted
on the properties of the PLE and the NE when sample size is small and 7 is
discrete.

Let#) =0and ;41 = oco,and assume 0 =ty < 1| <t < --+ < Iy. Denote
G(t) = P(C = 1t) and n(f) = P(X > 1). Assume C is continuous and thus
P(C=t)=0forallj=1,...,m. We have

Theorem 1 Denote k; = P(X = 1)) = a;G(t)), hj = Pli1 < X < 1)) =
SUN{Gti—1) — G(t)}. Let S(t) and A(t) be defined as in (1) and (2). Then, the
kth moments of S(t) and A1) are given respectively by

S-S (1,7 () T
= -1 _]z].<z,-+d,-)=n Lhdi...lndm o ) K
and
m+1 k

. n dy \ 14 .0, d;
].:1 e tm m

. ‘n
>(i+dp=n p<i

n . . . .
where is the combinatorial coefficient, n, = n — > ,_ [l —
hdy...Lpdp =P

Z]-<p dj, and the interval I(t;, <t < 00) is understood as I(t > t).

Proof Let 30 I(ti_1 < X; < tj) =1, 2i_1 I(X; = tj) = dj. Then E{I(tj_ <
X; <)} =hjand E{I(X; =t;)} = kj. Thus,

m+1
ES*01= D 141 <1 <) E(S“m)
j=1
m+1 n m L d
- , . Sk 1 i
- Zl(t],l <t > (11 dl...lmdm)s (I)th k;
i=1 > U+dp=n =1
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m+1

n
:Zl(t]-_1<z§tj) > (lldl...lmdm)n(l__) Hh k’
j=1 >jUi+dp=n p<J
Similarly for E[AK ). O

For continuous failure case, it is already proved by martingale theory that
the nonnegative bias of the PLE and the nonpositive bias of the NE converge
to zero exponentially as n — oo (see Fleming and Harrington 1991). The exact
biases for the PLE and the NE in small sample have been derived only for
some typical data models, such as the so-called proportional hazard model in
which G(f) = S(©)“ for some « (see Chen et al. 1982; Phadia and Shao 1999, for
details).

Whereas, in discrete failure time case, we can derive the biases of these esti-
mators without any assumption on the underlying survival distribution model.

For usage later on, we list some identities as a lemma whose proof is elemen-
tary.

Lemma 1 Define 0/0 as O, then the following identities hold:

n ki ki ko k < n X o n
1 — ——— Jxf1y2z8 = —y". (3
Z (lq ky k3)( n— kz) Y x+z(x+y+ 2) +x+zy ®)

Ky ko k30
k1+k2+k3=n
n k X
>, ——xkiyke ks = {4y + 2" -y, 4)
B kikoks)n— ko xX+z
1:k2.k3=0
kq+kp+k3=n
n k1 2
2. 1- —) xhylegls
Tz (lq ko k3) ( n—ky
ky+kp +kz=n
2 2 2
z x+27—z
= X+y+2)+ )"
Gty @ +2)2
xz "2 n 1
Tt k2 n—ky 3
+(x+2)2kzz=o(k2)”_k2y (x+2)" "2, (5)

Theorem 2 For the biases of the PLE and the NE, we have

m+1
EIS®H] - S@) = Zl(tj_l <t<t) Z Ty,
j=2 1<k<j
and
m+1
E[A®D] - A(W) = — Z 11 <t < a7l
j=2
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where 7 = P(X < 1), and aji are some nonnegative constants depending on
{hp, k[np <Jjk

Proof As before, denote ng =n — 3, lp — >, xdp, ik =n— 2,y lp —
Zpgk dy. Letoj =1 — prj(kp + hp). Form = 1, clearly if [} < n, S@) =
1—H((t—1)-), At) = H((t — 1)—), and, if l; = n, S(1) = 1, A(r) = 0. Thus,

ES®] - S0 =1t > t)E{U(h =n)) =1t > )y,
EIA®] — A = —I(t > t)E{(} = n)}) = —1(t > 17"
Now, consider m > 2. Fort; <t < tp, by (3) in Lemma 1,
ES01= > " RUA P
 \[1,d1,m nm )1l
l,dyn

o1 k1
= +
ki +aq ki +aq

h? =S + a1fc1”.

While for #, < t < 13, again by (3) in Lemma 1,

. n dq A2\, 1y dy by dy i
E[S(H] = 1——= 11— =2 )R kST h2 kel
[S®] z(hd]lzdzﬁz)( n1)( nz) 175 Ny Ry dy

n di\. 14 ny A\, b, d 7
= 1__ hlkl 1__ h2k2 2
Z(hdﬁh)( n1) K2 (12612712)( ”2) 252 %

I1.d, b dy i

n A1\, 1,4 o2 5 ka &
= 1- 5L ) g hy+hky o)™ K
llzdll(lldlfll)( ”1) L [k2+062( 2tkata) +kz+a2 2]

o o 1 = k> hy _, ki ~n}
k2+a2[k1+a1 ki1 +aq 1i| k2+a2|:k1+h2 2 ki + hy 1
=S80 + 0[217%{1 + 06227?52.

Applying the same arguments to the interval ;_; < < 1;, we have,

o n di Lo dy\ 7
NOIEDY (11 d o ,ljdjﬁ,) kH<] (1 - a) I1 (h;kpp) o

P<i
n dy I, d
= Z(h dy - ’ﬁjl)g(l_ a)pnq(hppkpp)

nj-1 AT
x Z (l-d-ﬁ-)(l - ,T)hjk]' %
ljadjjlj ] ]
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o) , ki n

hj + k; )" h,’
X[k;+ ) +k/+aﬂ}
P<j pr=i

= S() + Z .

Psj

The last equality comes from the fact prj ap/(kp +ap) = S(t), which can
be easily verified since k, + ap = P(X > 1) = P(T > 1,)P(C > tp), while
ap = P(X > t,) = P(T > t,)P(C > tp). The continuity assumption of C yields
“p/(kp +op) = S([p+1)/S([p)-

Now we turn to E[A(1)]. Fort; <t < 12, by (4) in Lemma 1, we have

A _ n\dyph g di ﬂl _ ki ki gn
E[A(l)] - ! dz' (11 ,dq nl) ny hl k = kito ki+ay hl'
1,411

Similarly,

n d; by dy 7

“ W

Z(lldl ,ljd,-fz,-)n,-II PP
3 Il Ip, d 3 o
— thP 7 ]
(l1d1 l 17— 1)p<] ( )”1 45

Lhdy--- lj 1dj_1flj_1

th”kd”[ {(h + kj + o)1 hf“”

p<i
5 K s
ki+aj  kji+aqj J

Clearly, kp / (k) +oep) = ap/S(tp) = kp and therefore, for 4j <1 < tj44, E[A®D)] —
kp
A = zp<] kp+ap +a,, zp<] =
Corollary 1 We have
0 < EIS()] - S®) < {1 = SOH1 — 7)), (6)
and

— AM{1 — ()" < E[A®)] — A®) < 0. (7)
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Proof Fort;_1 <t < t],E[S(t)]—S(t) = Zk<] ajrty . Letting all 7, = 1fork <,
it implies that P(X > ;) = 0, or equivalently, P(C > t;) = 0. Therefore, all
failure times are censored and hence S (©) = 1 and so, E[S‘ ®O1-8S@® =1-S@) =
stj k. Thus, E[S(0)]—-S(t) = ZkS]- Ty < {1—S(t)}ﬁj” ={1-SOH1—=®)}".
That is (6). Again for t;_; < ¢ < t;, from Theorem 2, we have A(f) — E[A()] =
Zkﬁ Aty < (Zkfj Ak)ﬁ = AM{1 — 7 (@®)}", (7) is thus proved. O

4 The variance of the PLE and its estimators

The formula for the variance of the PLE emerges as a consequence of Theorem 1
and Theorem 2. If we neglect the terms that diminish exponentially, we have

var[S()] = E[8%(1)] — S*(¢)
m+1

n
= I(t;_ <t
E (G <t=8) 2, (11d1...1mdm)

Zj<l'+d‘)=n

xH(l——) Hh R0

k<j

The asymptotic variance of the PLE for continuous failure time given in Fleming
and Harrington (1991) is

avar[S()] = $2(1) / Szds(s) (8)

G’

which was first derived by Breslow and Crowley (1974).
The formula (8) does not readily lend it to the case where failure time is dis-
crete. Since, even when there is no censoring, according to (8) for j_; <t < t;,

—dS(s)

avar[S()] = S2(1) / OG0

1 3§ 1 _ .
= -8 )Z 5 (t T # S = S@).

Incidentally, the discrete version of (8) is

avar[S(n)] = () D WH((z )—)
2 S( ]) S( /+1) N
=80y I wSmy =),

and thus a corresponding estimator would be So(t) = S'Z(I) Z]"; 1(d; /n]Z)H (t—
t]')—).
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A classical estimator for Var[S ()] is the Greenwood formula, defined as

d;
Se =8 Z ﬁH«t 6)=). ©)

Compared with 200, f]G(t) would be preferable, since in the case of no cen-
soring, () = n~18®){1 — S(1)}, while Zo(1) < n~18®){1 — S@)}.

As suggested by Jennison and Turnbull (1985), the Greenwood formula may
underestimate the true variance of the PLE.

In the following theorem, we prove this conclusion mathematically when
failure time is discrete. Since a continuous variable can be regarded as a limit
of discrete ones, the conclusion should also hold for continuous failure time.

Theorem 3 Let S(¢) be the PLE defined as in (1) and $6(0) be the Greenwood
formula defined as in (9). Then, for any sample size n, we have, var[S(t)] —
E[2c®] = 0.

Proof We first check the interval #; < ¢ < t. By the identity (5) in Lemma 1,
we have

@ n di\" 1 ,d n
B or= Z (11,d1,ﬁ1)(1 n]) ke

I1,dy,iq
_ a% N (k1 4+ ap)? — ozlz .
(k1 + a1)? (ki +ap)? 1

k
e 2 (W vt

n
n\ 1
k=1

Denote I‘ﬁll)(x,y) >t (k™ xkyn=k and I‘ﬁlz)(x,y) = >, (Z)k‘zxk
y"~k_ Neglecting the terms that converge to zero exponentially, we obtain

var[S(] = ay (1 — apTP (kg + oy, ) = ay (1 — a)T P (), 1 — 7 (1)}
For the mean of the Greenwood formula on #; < t < tp, we have

A n d1 d1 I, d 7
Fre0l= z (ll7d1,ﬁ1) (1_5) 'llﬂlhl]klla’f]

I1,dy,i1
n TR I
n
= Z ( ~)[_2__§]h11k1]0‘1]
hody,m/) | n7 n

l,dy
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11 ni =
h
n hl ny ~2,dy N
-y i
D) ()t
] 1/ ny Ay 1
o
mr(l)(kl +ai,h) — mr( )(ky + ay, )
k1o
“Trarp H e
kier @
=mrn (k1 + a1, k1) — ﬁr‘ (k1 + a1, hy)

=a;(1 —a)(TP — TPV (1), 1 — 7 (1y)).
Thus,onty <t <,
var[S(t)] — E[£6(0)] = a(1 — a)TP (w (1), 1 — 7 (t1)) > 0.

On the interval r, <t < 13,

R n dq A\ 1, d by dy T
EIS2(H1 = 1—-—— 1--—= hlklhzk2 2
(8201 Z(hd]lzdzftz)( m) ( nz) |y ke
2 ~
n A\ 1.4 iy AN n
— hlkl 1 h2k2 2
Z (11 dy 711) ( n ) (12 dr ﬁz) ( nz)

2 2
=>( " TR P B S
L di my nq 1 (ko + C¥2)2 1
n (ko 4+ a2)? — a%hﬁl n koo Z ( )h 5 (k2 + 012)”2 ]

(ko +a)? 2 (ka+ap)?
Ol% [ a% (k1 4+ ap)? — 0{1 .

= +

(k2 +02)2 | (k1 + a1)? (ki + a2 1
ki

+(kl_1'_—1)21—‘,(,1)(k1 +a1»h1)]

(k2 + a2)? — a3 h2 (k + hy)? — K2

(k2 + a2) (k1 + h2) (k1 + hy)
kih

+(klj_—22)2r‘,(,l)(k1 + hy, hl)]

2

koo n di 1 4,4 I 7

—_— 1— =) —h'k'h?(k .
+(k2+a2)zz(lldllzfl2)( n1) i 11 2 (k2 +a2)
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While for the mean of Greenwood formula on #; < t < t3, we have

. n di\? d\*
Frel = Z (11 dihd ﬁz) (1 B Z) (1 - n_z)

dq ) Lod 7
X hlk.’ ob?
(”1(?11 —dy) nz(nz —dy) H i 72

=1L+ I

where

h:ZXmm;ﬁ)@‘%)@‘%)Zﬁhzﬁwww””
=2 (11 @ fl1) (1 :i) i
) Z (12 Zzlnz) (1 - Z_i) lzkgzagz
=2 (11 @ fn) (1 Zi) i

X[ a? (ky + a2)? — o i
(ky + a2)? o (kp +a2)? 2

kz()[z fll 1 I
- - = _h2 k ny
+(k2+a2)22(12 ny 2 (k2 o)
=111 + I1p + L13.

With the same arguments as in the calculation of E[Sg(M]ont; <t <, we
obtain,

I % Kiew v r@y g 4 e )
= — o N
U7 o+ a0)? (kg 42t T RN
(ko + )2 — a2 kih
1= 272 AT = TP (ky + ha )

(ky +a2)? (ki +hy)

2

(kza2) ( )( d1) d; Iy dy 1
1 —_ ) hlk 'h2 ko + an)™.
B (kz—i-otz)zz hdybny ny) ni(ng —dypny ! (ot )

For I, we have

n dr\’ dr\° dp I dy b d
I = . 1—— 1—-=) —— lklhzkz nz
? Z(h dy lzdznz)( nl) ( nz) nz(nz—dz)
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n dl) Iy, d ( n )( dz) dp boydy 7
= - 1—— hlk 1 5 1— —hzk 202
Z (11 dq nl)( ny ! Z bdyny ny) mma—ds) 2 =
_ n di\ "y k2 o) Lo
=X ) () AR g ke

koo d L\, b d
1- — — — )k R (K ",
(k2+a2)2z(11d112n2)( n1) (nz %) i et )

Therefore, fort, <t < t3,

var[S()] — E[S6(0)]
> Ol% k1a1
(k2 + a2)? (k1 + o )2
(k2 +02)? —a3  kihy

(ky +a2)? (k1 + h2)?

2
koan dl I dy gl
— ) {AR K R (K n,
(k2+a2)2z<lld112n2)( nl) { } 1Ky hy (ko + @2)

P (ky + a1, hy)

T2 (ky + ha, hy)

Since
1 1 1 d 1 1 d 1
A:__[___2+—1_]:_2_—1_
ny  \na ony omm—d)na)  ny m(n —dp)n

1(1 1 1) 1(1 1 1)
= —| — — +— = — __~_+_ >O’
m\n, n—d m m\n, n n

SO, Var[S(t)] — E[26(®]>0holdsonn <t < 13.

Notice that if we fix (/1,d;) and replace n by ny = n — [} — dy, then, the
expression Var[s "] — E[fl(;(z)] on (, 13] is similar to that on (¢, #2]. With this
idea, we can complete the proof by mathematical induction. Assume that we
have proved Var[S’(t)] — E[Z6(H] > 0 holds on i <t < tjr1. On the inter-
val tjy1 < t < tj;2, for each pair of (/,dy), freeze it temporarily, regard the
sample size now as n — l; — dq, and ¢; as t;_l, (i =1,...,j+2), then, by the
same arguments as on interval (4, ;1] and the mathematical induction assump-
tion, we have the corresponding Var[S’(t)] — E[Zg(0] > 0. Defreezing (I1,d1)
and taking expectation on all possible pairs of (/1,d;) leads to the inequality
var[S()] — E[E6()] = 0on tjy <t < tjso. O

Now, we investigate the Peto estimator (PE) proposed by Peto et al. (1977)
and the homogenetic estimator (HE) proposed by Zhao (1996) Spemﬁcally, on
the interval ; < t < t;;1, the PE can be written as Sp(t) = S(t) {1- S(t)}/n],
while the HE as £(1) = S2(0){1 — S(t)}/(n] —d)). Slud et al. (1984) proved that
limy,s 00 126G (1) < limy_ o nEp(f), and pointed out that the PE can seriously
overestimate the variance of the PLE. Shen (2002) conducted a simulation to
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Small-sample studies on right censored data 439

show that the HE can overestimate the variance of the PLE too. It is not so
clear whether these two estimators always overestimate the variance of the
PLE. Here we show by simple arguments that both PE and HE can either
overestimate or underestimate the variance of the PLE.

Just check with the intervalt; <t <#.0Ont; <t <, we have

/\2 o 2 ~
$oL-S80) _ dlgll = $60).

Tht) =
0 ny —di n

Hence, HE, as the Greenwood formula, can underestimate the variance of the
PLE. Since HE is always larger than PE, PE thus can also underestimate the
variance of the PLE. On the other hand, in the case of no censoring,

S0 =80} _ n Soi -Sm)
nj — d]' n]-+1 n ’

St =

Since nj/nj;1 > 1, so the HE will overestimate its estimand when there is no
censoring. Conclusively, both of these estimators can either overestimate or
underestimate the variance of the PLE.

5 Discussion

Whereas much is known about the asymptotic properties for the PLE and the
NE when failure time is continuous and sample size is large, relatively little is
explored for the corresponding results when failure time is discrete and sample
size is small. As revealed in this paper, the estimation of the variances of the
PLE and the NE with small sample size is not so straightforward. Although
several estimators for the variance of the PLE have been proposed, none of
them is consistent in general. Therefore, additional information may be needed
in choosing a desirable variance estimator in applications.
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