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Abstract We discuss the admissible parameter space for some state space
models, including the models that underly exponential smoothing methods. We
find that the usual parameter restrictions (requiring all smoothing parameters
to lie between 0 and 1) do not always lead to stable models. We also find
that all seasonal exponential smoothing methods are unstable as the underly-
ing state space models are neither reachable nor observable. This instability
does not affect the forecasts, but does corrupt the state estimates. The problem
can be overcome with a simple normalizing procedure. Finally we show that the
admissible parameter space of a seasonal exponential smoothing model is much
larger than that for a basic structural model, leading to better forecasts from
the exponential smoothing model when there is a rapidly changing seasonal
pattern.
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1 Introduction

Hyndman et al. (2002) proposed a modelling framework based on exponential
smoothing methods. The framework involves 12 different methods, including
the well-known simple exponential smoothing, Holt’s method, and Holt–Win-
ters additive and multiplicative methods. They demonstrated that each method
in their taxonomy of exponential smoothing methods is equivalent to the fore-
casts obtained from a state space model.

For each of these methods, Hyndman et al. (2002) proposed two state space
models with a single source of error following the general approach of Ord
et al. (1997). The state space models enable easy calculation of the likelihood,
and provide facilities to compute prediction intervals for each model. The two
state space formulations correspond to the additive error and the multiplicative
error cases. They give equivalent point forecasts although different prediction
intervals and different likelihoods.

In this paper, we investigate the admissible parameter space for each of the
linear state space models in the Hyndman et al. (2002) framework. We describe
each of the exponential smoothing state space models using a three-letter code,
following Hyndman et al. (2005). The first letter describes the error (in this
paper always additive), the second letter describes the trend (none, additive
or damped) and the third letter describes the seasonal component (none or
additive). For example, AAN refers to a model with additive errors, additive
trend and no seasonality. In this paper, we consider the six linear models: ANN,
AAN, ADN, ANA, AAA and ADA. Model ANN gives forecasts equivalent
to simple exponential smoothing, model AAN underlies Holt’s linear method
and the additive Holt–Winters’ method is obtained by model AAA.

Table 1 shows the equations for the models we consider in this paper. Note
that we use a slightly different parameterization from Hyndman et al. (2002)
for the trend equation—we use β where Hyndman et al. (2002) used αβ. This
change in parameters makes no difference to the models but allows us to have a
bounded admissible parameter space. The usual parameter space has all param-
eters lie between 0 and 1. Because of our reparameterization, this means that
α, γ and φ would lie between 0 and 1, but 0 < β < α.

1.1 State space models

Let Y1, . . . , Yn denote the time series of interest and let
xt = (�t, bt, st, st−1, . . . , st−(m−1))where �t denotes the level, bt denotes the trend
and st denotes the seasonal component, all at time t. Then the models in Table 1
can be written as

Yt = Hxt−1 + εt (1)

xt = Fxt−1 + Gεt (2)

where {εt} is a Gaussian white noise process with mean zero and variance σ 2.
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Table 1 State space
equations for the models
considered in this paper

Point forecasts are given by
µn(h). Here
φj = 1 + φ + · · · + φj−1 =
(1 − φj)/(1 − φ) and
(h − 1)∗ = (h − 1) mod m

Model ANN Model ANA
Yt = �t−1 + εt Yt = �t−1 + st−m + εt
�t = �t−1 + αεt �t = �t−1 + αεt

st = st−m + γ εt
µn(h) = �n µn(h) = �n + sn−m+1+(h−1)∗
Model AAN Model AAA
Yt = �t−1 + bt−1 + εt Yt = �t−1 + bt−1 + st−m + εt
�t = �t−1 + bt−1 + αεt �t = �t−1 + bt−1 + αεt
bt = bt−1 + βεt bt = bt−1 + βεt

st = st−m + γ εt
µn(h) = �n + hbn µn(h) = �n + hbn + sn−m+1+(h−1)∗
Model ADN Model ADA
Yt = �t−1 + bt−1 + εt Yt = �t−1 + bt−1 + st−m + εt
�t = �t−1 + bt−1 + αεt �t = �t−1 + bt−1 + αεt
bt = φbt−1 + βεt bt = φbt−1 + βεt

st = st−m + γ εt
µn(h) = �n + φhbn µn(h) = �n + φhbn + sn−m+1+(h−1)∗

A single source of error model (with εt appearing in both equations) is pref-
erable to a multiple source of error model because it allows the state space
formulation of non-linear as well as linear cases, and allows the state equations
to be expressed in a form which coincides with the error-correction form of the
usual smoothing equations. However, we do not discuss the non-linear models
in this paper.

We write µt = Hxt−1 to denote the mean of Yt conditional on xt−1. The
usual point forecasts are obtained as µn(h) = E(Yn+h|xn), so that µt = µt−1(1).
Hyndman et al. (2005) show that the forecast distribution of these models,
defined as the distribution of Yn+h conditional on xn, is normal with mean and
variance given by

µn(h) = E(Yn+h|xn) = HFh−1xn (3)

and vn(h) = Var(Yn+h|xn) = σ 2

⎡
⎣1 +

h−1∑
j=1

(HFj−1G)2

⎤
⎦ . (4)

The coefficient matrices F, G and H can be easily determined from Table 1
and are given below. Here Ik denotes the k × k identity matrix, 0k denotes a
zero vector of length k and 0′

k means transpose of 0k.

ANN: H = F = 1, G = α

ADN: H = [1 1], F =
[

1 1
0 φ

]
and G =

[
α

β

]
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ANA: H = [1 0′
m−1 1], F =

⎡
⎣

1 0′
m−1 0

0 0′
m−1 1

0m−1 Im−1 0m−1

⎤
⎦ and G =

⎡
⎣

α

γ

0m−1

⎤
⎦

ADA: H = [1 1 0′
m−1 1], F =

⎡
⎢⎢⎣

1 1 0′
m−1 0

0 φ 0′
m−1 0

0 0 0′
m−1 1

0m−1 0m−1 Im−1 0m−1

⎤
⎥⎥⎦ and

G =

⎡
⎢⎢⎣

α

β

γ

0m−1

⎤
⎥⎥⎦

The matrices for AAN and AAA are the same as for ADN and ADA respec-
tively, but with φ = 1.

In this paper, we study some of the properties of these models; in particular,
reachability, observability and stability. The parameters are deemed ‘admissible’
if the model is stable. We derive the admissible parameter space for each of the
models. Traditionally, the parameters α, β/α and γ are allowed to lie between 0
and 1. We compare the admissible parameter space with this traditional space.

In Sect. 2, we define various model properties for these state space models.
In Sect. 3, we note that the seasonal models (ANA, AAA and ADA) have some
undesirable properties, and so we introduce some alternative models designed
to overcome these problems. The admissible parameter spaces for these alter-
native seasonal models are discussed in Sect. 4. A competitor model closely
related to AAA is Harvey (1989) basic structural model. In Sect. 5, we compare
the admissible parameter space for the basic structural model with the expo-
nential smoothing models, showing that the exponential smoothing models are
able to cater for a larger range of seasonal patterns than the basic structural
model. Finally, in Sect. 6, we compare the various seasonal models on a real
data set, and Sect. 7 illustrate a Monte Carlo simulation study.

2 Model properties

This section examines the various properties of time-invariant state space mod-
els. The following definitions are given by Hannan and Deistler (1988, p. 44–45):

Definition 1 The model (1) and (2) is said to be observable if

Rank[H′, F ′H′, (F ′)2H′, . . . , (F ′)p−1H′] = p

where p is the length of the state vector xt.

Definition 2 The model (1) and (2) is said to be reachable if

Rank[G, FG, F2G, . . . , Fp−1G] = p

where p is the length of the state vector xt.
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Reachability and observability are desirable properties of a state space model
because they guarantee a minimal state dimension (see Hannan and Deistler,
1988, p. 48), and consequently, that the state elements will be identifiable. It
is easily seen that the non-seasonal models ANN, AAN and ADN are both
reachable and observable, and therefore of minimal dimension.

To motivate the next property, note that we can write the state vector as

xt = Mtx0 +
t−1∑
j=0

MjGYt−j

where M = F − GH. So for initial conditions to be negligible, we need Mt to
converge to zero. Therefore, we require M to have all eigenvalues inside the
unit circle. We call this condition stability (following Hannan and Deistler, 1988,
p. 48).

Definition 3 The model (1) and (2) is said to be stable if all eigenvalues of
M = F − GH lie inside the unit circle.

Snyder et al. (2001) show that this property is equivalent to invertibility of the
underlying ARIMA model. Stability is a desirable property of a time series
model because we want models where the distant past has a negligible effect
on the present state.

State space models that are not stable can still produce stable point forecasts.
Therefore, it is sometimes useful to have a weaker notion of stability which we
shall call forecastability.

Definition 4 Let (λi, vi) denote an eigenvalue-eigenvector pair of M = F −GH.
Then the model (1) and (2) is said to be forecastable if, for all i, either |λi| < 1
or HFjvi = 0 for j = 0, 1, . . . .

Obviously, any model that is stable is also forecastable. The notion of foreca-
stability is motivated by the idea that an unstable model can still produce stable
forecasts provided the eigenvalues which cause the instability have no effect
on the forecasts. This arises because M may have unit eigenvalues where H is
orthogonal to the eigenvectors corresponding to the unit eigenvalues. Under
these conditions, the forecast function is unique and asymptotically independent
of the initial state x0.

If a model is forecastable, the forecast mean and variance given by (3) and (4)
are unaffected by the eigenvalues on or outside the unit circle. The concept of
forecastability was noted by Sweet (1985) and Lawton (1998) for AAA (addi-
tive Holt–Winters) forecasts, although neither author used a stochastic model
as we do here. The phenomenon was also observed by Snyder and Forbes (2003)
in connection with the AAA model. To our knowledge, ours is the first gen-
eral definition of this property. Burridge and Wallis (1998, Theorem 3.1) give
a weaker condition than forecastability which guarantees convergence of the
covariance matrix. Therefore, forecastability also guarantees this convergence.
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Table 2 Stability conditions
for models without
seasonality

ANN: 0 < α < 2

AAN: 0 < α < 2
0 < β < 4 − 2α

ADN: 1 − 1/φ < α < 1 + 1/φ
α(φ − 1) < β < (1 + φ)(2 − α)

0 < φ ≤ 1

−1 0 1
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β
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Fig. 1 Parameter spaces for model ADN. The right hand graph shows the region for model AAN
(when φ = 1). In each case, the light-shaded regions represent the admissible regions; the dark-
shaded regions are the usual regions constructed by restricting each parameter in the conventional
parameterization to lie between 0 and 1

The value of M for each model is given below.

ANN: M = 1 − α ADN: M =
[

1 − α 1 − α

−β φ − β

]

ANA: M =
⎡
⎣

1 − α 0′
m−1 −α

−γ 0′
m−1 1 − γ

0m−1 Im−1 0m−1

⎤
⎦ ADA: M =

⎡
⎢⎢⎣

1 − α 1 − α 0′
m−1 −α

−β φ − β 0′
m−1 −β

−γ −γ 0′
m−1 1 − γ

0m−1 0m−1 Im−1 0m−1

⎤
⎥⎥⎦

Again, for AAN and AAA, the analogous result is obtained from ADN and
ADA by setting φ = 1.

We establish stability and forecastability conditions for each of the linear
models. For the damped models, we assume φ is a fixed damping parameter
between 0 and 1, and we consider the values of the other parameters that would
lead to a stable model.

The stability conditions for models without seasonality (i.e., ANN, AAN and
ADN) are summarized in Table 2. These are given in McClain and Thomas
(1973) for the AAN model; results for the ADN and ANN models are obtained
in a similar way. To visualize these regions, we have plotted them in Fig. 1. The
light-shaded regions represent the stability regions; the dark-shaded regions
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are the usual regions defined by 0 < β < α < 1. Note that the usual parameter
region is entirely within the stability region in each case. Therefore non-sea-
sonal models obtained using the usual constraints are always stable (and always
forecastable).

3 Two seasonal models

Consider the ANA model, for which the rank of (F ′)p−1H′ < p and the rank of
Fp−1G < p. This is because, for the ANA model, (F ′)p−1 = Fp−1 = Ip+1 where
Ip+1 denotes the (p + 1)× (p + 1) identity matrix (see Definition 1 and Defini-
tion 2 of Sect. 2). Therefore, model ANA is neither reachable nor observable.
Further, its characteristic equation for matrix M is f (λ) = (1−λ)P(λ) = 0 where

P(λ) = λm + αλm−1 + αλm−2 + · · · + αλ2 + αλ+ (α + γ − 1). (5)

Thus, M has a unit eigenvalue regardless of the values of the model parameters,
and so the model is always unstable. A similar argument shows that models
AAA and ADA are also neither reachable nor observable and always unstable.
These problems arise because of a redundancy in the model. For example, the
ANA model is given by yt = �t−1 + st−m + εt where the level and seasonal
components are given by

�t = �t−1 + αεt and st = st−m + γ εt.

So both level and seasonal components have long run features due to unit
roots. In other words, both can model the level of the series and the seasonal
component is not constrained to lie anywhere near zero.

In fact, by expanding st = et/(1 − Bm) where et = γ εt and B is the back-
shift operator, it can be seen that st can be decomposed into two processes, a
level displaying a unit root at the zero frequency and a purely seasonal process,
having unit roots at the seasonal frequency:

st = �∗t + s∗
t

where �∗t = �∗t−1 + 1
m et,

S(B)s∗
t = θ(B)et,

S(B) = 1 + B + · · · + Bm−1 representing the seasonal summation operator and

θ(B) = 1
m

[
(m − 1)+ (m − 2)B + · · · + 2Bm−3 + Bm−2

]
.

The long run component �∗t should be part of the level term.



414 R. J. Hyndman et al.

This leads to an alternative model specification where the seasonal equation
for models ANA, AAA and ADA is replaced by

S(B)st = θ(B)γ εt. (6)

The other equations remain the same as the additional level term can be
absorbed into the original level equation by a simple change of parameters.
Noting that θ(B)/S(B) = [1− 1

m S(B)]/(1−Bm), we see that (6) can be written as

st = st−m + γ εt − γ

m

[
εt + εt−1 + · · · + εt−m+1

]
.

In other words the seasonal term is calculated as in the original models, but
then adjusted by subtracting the average of the last m shocks. The effect of
this adjustment is equivalent to the normalized updating proposal of Roberts
(1982) in which the seasonal terms st, . . . , st−m+1 are adjusted every time period
to ensure they sum to zero. Models using the seasonal component (6) will be
referred to as “normalized” versions of ANA, AAA and ADA.

4 Stability of seasonal models

4.1 Standard models

As noted in the previous section, M has a unit eigenvalue in each of the sea-
sonal models ANA, AAA and ADA. In fact, the characteristic equation of M
for model ADA is f (λ) = (1 − λ)P(λ) = 0 where

P(λ) = λm+1 + (α + β − φ)λm + (α + β − αφ)λm−1 + · · · + (α + β − αφ)λ2

+ (α + β − αφ + γ − 1)λ+ φ(1 − α − γ ). (7)

However, it is easy to see that the eigenvector associated with λ = 1 is
orthogonal to f h = HFh−1. For example, with ADA the eigenvector is v1 =
[−1, 0, 1, . . . , 1]′ and f h = [1,φh, k1,h, . . . , km,h] where ki,h = 1 if i + h = 1 (mod
m) and ki,h = 0 otherwise. Thus f ′

hv1 = 0. Therefore, the models can still be
forecastable, even though they are not stable. No other eigenvectors are orthog-
onal to f h. Forecastability requires the roots of P(λ) to lie inside the unit circle.
The conditions for forecastability are derived in the Appendix and summarized
in Table 3.

The inequalities involving only α and γ provide necessary conditions for
forecastability that are easily implemented. The final condition (giving a range
for β) is more complicated to use in practice than finding the numerical roots of
(7). Therefore, we suggest that in practice the conditions on α and γ be checked
first, and if satisfied, then the roots of (7) be calculated and tested.
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Table 3 Forecastability conditions for models ANA and ADA

ANA: max(−mα, 0) < γ < 2 − α and −2
m−1 < α < 2 − γ

ADA: 0 < φ ≤ 1
max(1 − 1/φ − α, 0) < γ < 1 + 1/φ − α

1 − 1/φ − γ (1 − m + φ + φm)/(2φm) < α < (B + C)/(4φ)
−(1 − φ)(γ /m + α) < β < D + (φ − 1)α

where

B = φ(4 − 3γ )+ γ (1 − φ)/m

C =
√

B2 − 8
[
φ2(1 − γ )2 + 2(φ − 1)(1 − γ )− 1

] + 8γ 2(1 − φ)/m

D = minθ
{
(φ − φα + 1)(1 − cos θ)− γ

[
(1+φ)(1−cos θ−cos mθ)+cos(m−1)θ+φ cos(m+1)θ

2(1−cos mθ)

]}

and θ is a solution to

φα−φ+1
γ + (φ−1)(1+cos θ−cos mθ)+cos(m−1)θ−φ cos(m+1)θ

2(1+cos θ)(1−cos mθ) = 0.

Conditions for AAA can be obtained from ADA by setting φ = 1

To visualize these regions, we have plotted them in Figs. 2 and 3. The light-
shaded regions represent the forecastability regions; the dark-shaded regions
are the usual regions where each parameter (in the Hyndman et al. (2002)
parameterization) lies in [0,1].

The forecastable region for α and γ is illustrated in Fig. 2. The upper limit of
γ is obtained when the upper limit of α equals the lower limit of α. For φ = 1
this simplifies to γ < 2m/(m − 1) as given by Archibald (1991), but for smaller
values of φ the upper limit of γ is slightly smaller than this.

The right hand column of Fig. 2 shows that the usual parameter region of
an ANA model is entirely within the forecastability region. Therefore ANA
models obtained using the usual constraints are always forecastable.

The forecastable region for α and β is depicted in Fig. 3 for m = 4. From
Fig. 3, it can be seen that the usual parameter region and the forecastabili-
ty region intersect for model ADA but neither is contained within the other.
Therefore, models obtained using the usual constraints may not be forecastable.
This problem is greatest when the seasonal smoothing parameter γ is large.

Note that Sweet (1985) and Lawton (1998) in discussing this problem used
a different parameterization where they required γ /(1 − α) < 1. Under this
parameterization, the model is always forecastable for m ≤ 4 when the param-
eters lie in [0, 1]. However, under our parameterization, the model may not be
forecastable, even when m ≤ 4.

4.2 Normalized models

Archibald (1984, 1990) discussed the stable region for the normalized version
of AAA and Archibald (1991) provides some preliminary steps towards the
stable region for the normalized version of ADA.

To write the normalized model in state space form, we need to use a differ-
ent state vector given by xt = (�t, bt, s1,t, . . . , sm−1,t)

′. Here, si,t denotes the



416 R. J. Hyndman et al.

−1 0 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

α

γ
φ = 0.5,   m = 12

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

α

γ

φ = 0.9,   m = 12

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

α

γ

φ = 1,   m = 12
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

α

γ

φ = 0.5,   m = 4 

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

α

γ
φ = 0.9,   m = 4 

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

α

γ

φ = 1,   m = 4

1 2 −1 0 31 2 −1 0 31 2

−1 0 31 2 −1 0 31 2 −1 0 31 2
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estimate of the seasonal factor for the ith month ahead made at time t. Note
that sm,t ≡ s0,t = 1 − s1,t − · · · − sm−1,t. Following (Roberts, 1982, Sect. 3), the
seasonal updating is defined as follows.

s0,t = s1,t−1 + γ (1 − 1
m )et

si,t = si+1,t−1 − γ
m et.

The level and trend equations are updated as with the standard model. Then
H = [1, 1, 1, 0′

m−2],

F =

⎡
⎢⎢⎣

1 1 0 0′
m−2

0 φ 0 0′
m−2

0m−2 0m−2 0m−2 Im−2
0 0 −1 −1′

m−2

⎤
⎥⎥⎦ , G =

⎡
⎣

α

β

−(γ /m)1m−1

⎤
⎦

and

M =

⎡
⎢⎢⎣

1 − α 1 − α −α 0′
m−2−β φ − β −β 0′
m−2

(γ /m)1m−2 (γ /m)1m−2 (γ /m)1m−2 Im−2
γ /m γ /m γ /m − 1 −1′

m−2

⎤
⎥⎥⎦ ,

where 1k denotes a k-vector of ones. The characteristic equation for M is
given by

f (λ) =
m+1∑
i=0

θiλ
m+1−i (8)

where θ0 = 1

θ1 = α + β − γ /m − φ

θi = α(1 − φ)+ β − (1 − φ)γ /m, i = 2, . . . , m − 1

θm = α(1 − φ)+ β + γ [1 − (1 − φ)/m] − 1

and θm+1 = φ[1 − γ (1 − 1/m)− α].

Note that this is equivalent to (7) if we reparamaterize the model, replacing
α in (7) by α − γ /m. Therefore the forecastability conditions for the standard
ADA model are the same as the stability conditions for the normalized ADA
model, apart from this minor reparameterization.

5 Comparison with the basic structural model

An alternative seasonal model is Harvey’s (1989) basic structural model (BSM),
which is similar to the normalized AAA model except θ(B) is dropped in (6) and
it uses multiple disturbance terms that are independent of each other. That is,
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Yt = �t + st + εt

�t = �t−1 + bt−1 + ηt

bt = bt−1 + ζt

S(B)st =
m−1∑
j=0

st−j = ωt

where ηt, ζt and ωt are mutually uncorrelated white-noise disturbances with
zero mean and variances σ 2

η , σ 2
ζ and σ 2

ω, respectively.
The disturbances of the BSM can be combined to give a model with a

single disturbance, known as the “reduced form” which is equivalent to an
ARIMA(0, 1, m + 1)(0, 1, 0)m model with some parameter constraints (Harvey,
1989, p.69). Stability of the reduced form requires a positive value of the sea-
sonal disturbance variance, σ 2

ω, irrespective of the values of σ 2
η and σ 2

ζ .
Note that the normalized AAA model can also be written as an ARIMA

(0, 1, m + 1)(0, 1, 0)m model with some parameter constraints (Roberts, 1982),
and the characteristic equation (8) shows that the ADA model is also of this
form. So we can compare the BSM with the ADA and AAA models by writing
all models in reduced ARIMA form.

Figure 4 shows some projections of the parameter spaces of the two model
classes onto the two-dimensional space spanned by the ARIMA parameters θ1
and θm. Each graph of the AAA model is for different values of the parameter
γ . For this model, γ = (1 − θ1 + θm − θm+1)/2. To enable comparisons with the
BSM, we have computed the same quantity for the BSM. In both models, high
values of γ correspond to a rapidly changing seasonal pattern. In the BSM, this
corresponds to a large value of σ 2

ω relative to σ 2
ε . In Fig. 4, the dark shaded

region corresponds to the admissible parameter space of the BSM and the light
shaded region corresponds to the admissible parameter space for the exponen-
tial smoothing model. Note that, the BSM parameter space is very small for
large γ which will make it too restrictive for use with some data sets.
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Fig. 4 Admissible parameter space of BSM (dark shaded region) and for the normalized AAA
(light shaded region)
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6 Examples

We apply the normalized AAA model and the BSM model to some real data to
demonstrate the differences between the models in application. The data used
are Australian electricity production data (taken from Makridakis et al., 1998),
sales of Australian wine (fortified wine and sparkling bulk), Australian and
Turkish data on construction permits issued, Germany data on sales of interme-
diate goods, and sales and retail trade of car registration data from the UK and
Ireland. The sales of Australian wine data are taken from Australian Bureau
of Statistics web site (http://www.abs.gov.au (ABS Cat. No. 8504.0)), and the
remaining data sets (AUS.ODCNPI03.ML, TUR.ODCNPI02.ML, DEU.SLM-
NIG01.IXOB, IRL.SLRTCR01.ML, GBR.SLRTCR03.ML) are taken from DX
database (Australia). The Australian electricity production (AEP) data along
with the Turkish construction permits (TCP) data are shown in Fig. 5. Note that
all series have changing seasonal patterns over time. Thus it is expected that γ
will be relatively high in each case.

For each logged data series, we hold out the last four years of data and fit
the normalized AAA and basic structural models to the rest of the data using
maximum likelihood estimation. The estimates are constrained to give a stable
model, and are given in Table 4. Note that the parameter estimates of σ 2

ζ for
the BSM are very small. This is a result of the small admissible parameter space
for this model.

To compare the performance of the models, we have plotted forecasts from
AEP and TCP in Fig. 6. The actual values in the forecast period are also shown.
The normalized AAA model gives reasonable forecasts, while those from the
BSM have not reacting sufficiently to recent changes in the seasonal pattern
seen in the data. This is a direct result of the small estimated parameters, which
occur because of the restrictive admissible parameter spaces. Similar perfor-
mance of forecasts were obtained in other data sets. For all data sets we have
calculated the root mean squared error (RMSE) over the forecast period for
each model. These measures of accuracy are given in Table 5. While these are
only examples, and so general conclusions may not be drawn, the evidence is
consistent with Fig. 4 in suggesting that the small parameter space of the BSM
can harm forecast accuracy, especially when seasonal patterns are changing.

7 Results from Monte Carlo simulation

We have also done a simulation study in order to gain further insight into the
findings of the previous section. First, we simulated data from the AAA model
by keeping all parameters and the initial state vector constant. Than we fitted
the normalized AAA and the BSM to the simulated data. Second, we simulated
data from the BSM and repeated the model fitting. To ensure realistic models,
we use estimates of the model applied to real data as an initial state vector to
start the simulations.
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Fig. 5 Top panel Australian electricity production, January 1956–August 1995. Bottom panel Con-
struction permits issued for buildings in Turkey, January 1960–March 2005

Table 4 Maximum likelihood estimates of the parameters for each seasonal model applied to each
seasonal data

AAA BSM (σ 2 × 10−4)

α β γ σ 2
ε σ 2

η σ 2
ζ σ 2

ω γ

AEP 0.2705 0.0047 0.4872 1.28 0.71 0.0 0.57 0.3578
Sparkling bulk 0.2752 0.0025 0.5158 143.97 75.83 0.0 7.55 0.1329
Fortified wine 0.0508 0.0030 0.7258 51.42 0.06 0.0 5.92 0.2458
Aus C.P. 0.5198 0.0016 0.2538 33.86 24.58 0.0 0.06 0.0430
Turkey C.P. 0.3219 0.0081 0.3490 133.20 59.17 0.0 42.62 0.3256
Germany 0.3092 0.0016 0.3089 10.43 2.03 0.0 0.27 0.1228
Ireland 0.2203 0.0003 0.4852 164.94 47.40 0.0 32.06 0.3030
UK 0.0.1963 0.0003 0.7809 37.88 18.86 0.0 89.23 0.5738

Last column shows the value of γ computed for the BSM

We simulated 1,000 monthly series of size 500 each from both models.
For the model AAA, we use α = 0.27, β = 0.005, γ = 0.49. The initial
level �0 = 7, initial trend b0 = 0.007, and initial seasonal estimates are
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Fig. 6 Top panel Historical data and forecasts from Australian electricity production data, fore-
casts are based on models fitted to the data up to August 1991. Bottom panel Historical data and
forecasts from construction permits issued for buildings in Turkey, forecasts are based on models
fitted to the data up to March 2001

Table 5 Root mean squared error for each seasonal model

AEP Sparkling bulk Fortified wine Aus CP Turkey CP Germany Ireland UK

AAA 0.3246 1.4653 0.1644 0.9502 0.2474 0.3063 1.2431 0.2690
BSM 0.5520 1.7442 0.1825 0.9922 1.8062 0.3940 1.6595 0.2926

s−11 = −0.0947, s−10 = −0.1045, s−9 = −0.0179, s−8 = −0.0473, s−7 = 0.0679,
s−6 = 0.0614, s−5 = 0.1309, s−4 = 0.0988, s−3 = 0.0097, s−2 = 0.01, s−1 =
−0.0304, s0 = −0.0839. For the BSM, we useση = 0.00843,σε = 0.01133,σζ = 0,
σω = 0.00755, initial level (�0)= 7.5, initial trend (b0)= 0.0052 and initial sea-
sonal estimates are s−11 = −0.04074, s−10 = −0.092847, s−9 = −0.01227, s−8 =
−0.054205, s−7 = 0.043273, s−6 = 0.045063, s−5 = 0.11442, s−4 = 0.10393,
s−3 = 0.0014834, s−2 = −0.011222, s−1 = −0.04927, s0 = −0.047618.

To compare the performance of the models through simulation, we have pro-
vided the forecast accuracy measure, root mean squared error (RMSE), over
the forecast period for each simulated model. For the simulated data from the
model AAA, RMSE = 5.7310 for the normalized AAA model and RMSE =
6.3859 for the BSM. While for the simulated data from BSM, RMSE = 0.2269
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for the normalized AAA model and RMSE = 0.2576 for the BSM. These fig-
ures confirm the results of the previous section and are consistent with our
finding that the larger parameter space of the AAA model allows greater fore-
cast accuracy. Surprisingly, the AAA model performs (slightly) better then the
BSM, even when the BSM is the true data generating process. This shows that
the AAA is able to closely mimic the BSM for forecasting purposes.

8 Conclusions

With the non-seasonal exponential smoothing models, our results are clear—
the models are stable using the usual constraints. In fact, it is possible to allow
parameters to take values in a larger space, and still retain a stable model. The
stability region is identical to that for the equivalent invertible ARIMA model.
This is in contrast to the stability region for the analogous structural models of
Harvey (1989) which require a reduced parameter space.

With the seasonal exponential smoothing methods, the situation is more
complicated. The most striking results derived here show that the usual Holt–
Winters’ equations are fundamentally flawed, being unstable for any values of
the model parameters. The problem arises because of the unit root in the sea-
sonal component, which occurs because the seasonal states are not constrained.
However, we have shown that the model can be made “forecastable”, so that
the forecast distributions are unaffected by the instability.

The normalized model (introduced by Roberts, 1982) circumvents this prob-
lem by requiring the seasonal states to sum to zero. Thus, stability in a seasonal
model can be achieved via the simple step of removing the inherent redundancy
in the seasonal terms.

The BSM achieves a similar result by requiring the seasonal states to have
mean zero. But the resulting parameter space is much smaller than for the nor-
malized model, and our examples and simulations show that this can lead to
poorer forecasts.
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Appendix: Proof of results in Table 3

The Schur Method may be used to determine whether any zero of a polynomial
lies within the unit circle.

Definition Let f (z) = a0 + a1z + a2z2 + · · · + anzn be a polynomial of degree
n with real coefficients. Then the Schur Transformation of f (z) is

T[f (z)] = a0f (z)− anznf (z−1).



Parameter space for exponential smoothing 423

We shall denote multiple transformations using a superscript notation:
Tj[f (z)] = T[Tj−1f (z)].

The following lemma is a corollary of Theorem 8.4 of Ralston (1965).

Lemma 1 (Schur Method) Let f (z) = a0+a1z+a2z2+· · ·+anzn be a polynomial
of degree n with real coefficients where a0 �= 0 and define

g(z) = a0zn + a1zn−1 + · · · + an−1z + an.

Then all roots of f (z) have modulus less than 1 if and only if

Tj[g(0)] > 0 for j = 1, 2, . . . , k

where k ≤ n, Tk[g(0)] = 0 and Tk−1[g(z)] is constant.

The characteristic equation of model ADA is f (λ) = (1 − λ)P(λ) = 0 where
P(λ) is given by (7). Our approach will be to consider λ with moduli 1, and
then determine what values of the smoothing parameters lead to a solution to
the characteristic equation. This gives us the boundary of the region: when the
parameters are inside all these bounds the moduli of all roots are less than 1
and the model is forecastable. For a few λ values we can examine the equation
P(λ) = 0 and easily obtain a boundary. For general λ, we will have to examine
‖P(λ)‖ = 0 which involves a lot of algebraic manipulation, for which we only
present an outline.

Now P(1) = m(α + β − αφ) + γ (1 − φ). So P(λ) has a unit root if and only
if (α + β − αφ) = γ (φ − 1)/m. Setting P(1) = 0, we get what turn out to be the
lower limit on β for fixed α and γ . Therefore to ensure the roots are within the
unit circle we require

β > −(1 − φ)(α + γ /m). (9)

Another simple bound is obtained by noting that if λ �= 1 then P(λ) can be
written as

P(λ) = (λm − 1)(1 + αφ − φ)+ (α + β − αφ)λ(1 − λm)

1 − λ
+ γ (λ− φ)

If we consider any λ that is a solution to λm = 1 and P(λ) = 0 (other than λ = 1)
we have γ (λ− φ) = 0 which gives γ = 0. So a lower bound is

γ > 0. (10)

Now setting (α + β − αφ) = γ (φ − 1)/m in P(λ), and dividing the resultant
equation by (λ− 1), we get

f ∗(λ) = P(λ)
λ− 1

= λm + (b + c)λm−1 + (2b + c)λm−2 + · · · + [(m − 1)b + c]λ
−φ(1 − α − γ )
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where b = α + β − αφ and c = φ(α − 1)+ 1. Then applying Lemma 1 to f ∗(λ)
we get the additional following conditions for forecastability:

1 − 1/φ < α + γ < 1 + 1/φ and B − C < 4φα < B + C (11)

where C =
√

B2 − 8
[
φ2(1 − γ )2 − 2(1 − φ)(1 − γ )− 1

] + 8γ 2(1 − φ)/m

and B = φ(4 − 3γ )+ γ (1 − φ)/m.

The upper bound on β is much more difficult to obtain, and we give only an
outline of the procedure here. A more detailed version can be obtained from
the authors. Using the polar coordinate system, we define λ = cos θ + i sin θ so
that we can write

P(λ) = a + (b + γ − 1) cos θ + b cos 2θ + b cos 3θ + · · · + b cos(m − 1)θ

+ (b + αφ − φ) cos mθ + cos(m + 1)θ + i
[
(b + γ − 1) sin θ + b sin 2θ

+ · · · + b sin(m − 1)θ + (b + αφ − φ) sin mθ + sin(m + 1)θ
]

where a = φ(1 − α − γ ) and b = α + β − αφ. Then

|P(cos θ + i sin θ)|2
= 2

[
1 + φ2 − 2φ cos θ + φ cos(m − 1)θ − φ2 cos mθ − cos mθ

+φ cos(m + 1)θ
]

+ 2φ2α2(1 − cos mθ)+ b2(1 − cos mθ)/(1 − cos θ)

+ γ 2(1 + φ2 − 2φ cos θ)+ 2b
[
γ
{
(1 − φ)(cos θ + · · · + cos(m − 1)θ)

−φ cos mθ + 1
} − {

φ(1 − α)+ 1
}
(1 − cos mθ)

]

+ 2γ
[
2φ cos θ + (1 + φ2)(cos mθ − 1)− φ cos(m − 1)θ − φ cos(m + 1)θ

]

− 2φαγ
[

cos θ − cos(m − 1)θ − φ(1 − cos mθ)
]

+ 2φα
[

− 2φ + 2 cos θ − cos(m − 1)θ + 2φ cos mθ − cos(m + 1)θ
]
. (12)

Since the above function is positive by definition and quadratic in α, b, and
γ , we have to determine the minimum value of b for which (12) is equal to
zero. Differentiating (12) with respect to b and setting the result to zero gives
the upper bound on b for fixed α and γ : b < D where D = [φ(1 − α)+ 1](1 −
cos θ)− γψ(θ ,φ) and

ψ(θ ,φ) = (1 + φ)(1 − cos θ − cos mθ)+ cos(m − 1)θ + φ cos(m + 1)θ
2(1 − cos mθ)

.
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Equivalently

β < D − α(1 − φ). (13)

In expression (13), only θ is unknown while α, γ and φ are fixed. Now we have
to find the value of θ , for which b is minimum. We substitute (13) in (12) and
simplify using the trigonometric identity

1 + cos θ + cos 2θ + · · · + cos(n − 1)θ = (cos nθ − 1)(cos θ − 1)+ sin θ sin nθ

(cos θ − 1)2 + sin2 θ

to obtain

|P(cos θ + i sin θ)|2
= 2

[
1+φ2 − 2φ cos θ + φ cos(m − 1)θ − φ2 cos mθ − cos mθ + φ cos(m + 1)θ

]

+ 2φ2α2(1 − cos mθ)− (1 − cos mθ)
(1 − cos θ)

[{
φ(1 − α)+ 1

}
(1 − cos θ)− γA(θ ,φ)

]2

+ 2γ
[
2φ cos θ + (1 + φ2)(cos mθ − 1)− φ cos(m − 1)θ − φ cos(m + 1)θ

]

− 2φαγ
[

cos θ − cos(m − 1)θ − φ(1 − cos mθ)
]

+ γ 2(1 + φ2 − 2φ cos θ)

+ 2φα
[
2 cos θ − 2φ − cos(m − 1)θ + 2φ cos mθ − cos(m + 1)θ

]
. (14)

Then partially differentiating (14) with respect to α and equating the result to
zero gives

φα − φ + 1
γ

+ (φ − 1)(1 + cos θ − cos mθ)+ cos(m − 1)θ − φ cos(m + 1)θ
2(1 + cos θ)(1 − cos mθ)

=0

(15)

Then θ will be a solution to (15). We solve this equation numerically for given
α, γ and φ. We consider only θ ∈ (0,π) as outside this range gives identical
results.

Combining results (9), (10), (11) and (13) gives the required parameter space
for model ADA. Forecastability conditions for AAA are obtained by setting
φ = 1. Forecastability conditions for ANA are obtained from (10) and (11) by
setting φ = 1.
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