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Abstract We suggest simple and easily verifiable, yet general, conditions under
which multi-parameter stochastic processes converge weakly to a continuous
stochastic process. Connections to, and extensions of, R. Dudley’s results play an
important role in our considerations, and we therefore discuss them in detail.
As an illustration of general results, we consider multi-parameter stochastic
processes that can be decomposed into differences of two coordinate-wise
non-decreasing processes, in which case the aforementioned conditions become
even simpler. To illustrate how the herein developed general approach can be
used in specific situations, we present a detailed analysis of a two-parameter
sequential empirical process.

Keywords Stochastic processes · Random fields · Empirical processes · Weak
convergence · Skorokhod spaces

1 Introduction

There are numerous problems where researchers encounter stochastic pro-
cesses and need to establish their weak convergence. Many textbooks and
monographs consider the topic, and the long list includes (subjectively selected):
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Billingsley (1968), Hall and Heyde (1980), Pollard (1984), Shorack and Wellner
(1986), Csörgő and Horváth (1993), van der Vaart and Wellner (1996), Dudley
(1999), and Korolyuk et al. (2000). Recent developments in the theory and
applications of empirical processes in the context of econometric time series
and, more generally, dependent observations have demonstrated that verifying
standard weak convergence assumptions can be a laborious task, as seen, for
example, from Dehling et al. (2002), Koul (2002), Doukhan et al. (2003), and
references therein.

When considering weak convergence of stochastic processes defined on the
real line and, particularly, on the unit interval [0, 1], Davydov (1996) suggested
a new set of simple, yet general, conditions that have proved to be particularly
useful in applications, especially if processes are discontinuous but converge
to a continuous process. Furthermore, Davydov (1996) presented arguments
showing that there are even simpler conditions if the processes—whose weak
convergence we want to establish—can be decomposed into differences of two
non-decreasing processes. Such processes make up an important class of sto-
chastic processes.

Indeed, in many problems stochastic processes are discontinuous but con-
verge to continuous processes, and it also frequently happens that the initial
(discontinuous or continuous) stochastic processes are differences of two non-
decreasing processes. Without overloading the current discussion with com-
plexities, we note as a convenient example that the uniform empirical process
en(t) := √

n (En(t)− t) is indeed the difference of two non-decreasing processes,
e◦

n(t) := √
n En(t) and e∗

n(t) := √
n t, where En is the empirical distribution

function based on uniformly on [0, 1] distributed random variables U1, . . . , Un.
If a more complex example is desired, then we refer to the Lorenz process that
has been thoroughly investigated by Goldie (1977). For further examples and
references, we refer to the survey paper by Davydov and Zitikis (2004). We
shall next elaborate—in general terms—on applications which suggest exam-
ples of stochastic processes that can be decomposed into differences of two
non-decreasing processes, which is an important subclass of processes, covered
by the main results of the present paper.

We have already noted several references in the area of econometric time
series where classical and sequential empirical processes appear with inde-
pendent and dependent observations. Other examples of stochastic processes
with the aforementioned decomposition property (i.e., difference of two non-
decreasing processes) arise, for example, when estimating (convex) Lorenz
curves, monotonic mean residual life and failure rate functions, other popula-
tion functions of interest in Actuarial, Engineering, Medical, and Social Sci-
ences. Indeed, when estimating monotonic functions, researchers usually aim at
constructing empirical estimators that satisfy same monotonicity properties as
the corresponding population functions. Hence, the appropriately normalized
differences between the estimators and the corresponding population functions
are stochastic processes satisfying the above decomposition property.

There are also many problems where researchers want to establish weak con-
vergence of multi-parameter stochastic processes. One of the simplest examples
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is the sequential (uniform) empirical process

en(t, u) := 1√
n

[nu]∑

i=1

(
1(−∞,t](Ui) − t

)
.

The process can be written as the difference of two coordinate-wise
non-decreasing processes:

e◦
n(t, u) := 1√

n

[nu]∑

i=1

1(−∞,t](Ui) and e∗
n(t, u) := 1√

n
[nu]t.

Results by Davydov (1996) are not applicable in the current situation, because
the domain of definition of the sequential empirical process is two-dimensional.
This and other numerous examples show that it is useful to have the afore-
mentioned Davydov’s (1996) results extended to multi-parameter stochastic
processes. We shall see below that such extensions are far from trivial.

The paper is organized as follows. In Sect. 2 we formulate our main result,
which is Theorem 1, for general multi-parameter stochastic processes. Then we
present an important corollary to the theorem, cf. Corollary 1, covering the
class of stochastic processes that can be decomposed into differences of two
coordinate-wise non-decreasing stochastic processes. As an illustration, at the
end of Sect. 2 we present a detailed analysis of the aforementioned sequential
empirical process. The proofs of Theorem 1 and Corollary 1 are given in Sect. 3.
We conclude the paper with Sect. 4, which contains further notes on results of
the present paper and their relationship to R. Dudley’s contributions.

2 Main results

Let B([0, 1]d; R) be the set of bounded, real-valued, and measurable functions
defined on the d-dimensional cube [0, 1]d. Let C([0, 1]d; R) be the set of all
continuous functions. Furthermore, let D be a subset of B([0, 1]d; R) such that,
first, it contains C([0, 1]d; R) and, second, the supremum norm of every function
in D is determined by the supremum of that function over a countable subset
of [0, 1]d. Furthermore, assume that there is a metric that makes D a com-
plete separable space whose topology is weaker than the topology of uniform
convergence. Examples of the space D with various metrics/topologies that
make it complete and separable can be found in a number of works (cf., e.g.,
Dudley, 1999, and references therein). For comments on weak convergence in
non-separable spaces and how the results of the present paper can be adjusted
to become valid beyond the Skorokhod space D([0, 1]d; R), we refer to Sect. 4.
At this moment we only note that the sequential empirical process en can be
considered as an element of D. Finally, let ωf denote the modulus of continuity
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of function f : [0, 1]d → R, that is,

ωf (an) := sup
‖s−t‖≤an

|f (t) − f (s)| ,

where the norm ‖·‖ can, in principle, be any but we shall find it technically more
convenient to work with ‖u‖ := max1≤i≤d |ui|. Now we are ready to formulate
the main result of the present paper.

Theorem 1 Let ξn, n ≥ 1, be stochastic processes defined on [0, 1]d, taking values
in R, and whose paths are in the space D almost surely. Furthermore, let all the
finite dimensional distributions of ξn converge to the corresponding ones of a
process ξ . Assume that there are constants α ≥ β > d, c ∈ (0, ∞), and an ↓ 0
such that, for all n ≥ 1, we have E(|ξn(0)|α) ≤ c and

E
(|ξn(t) − ξn(s)|α) ≤ c‖t − s‖β whenever ‖t − s‖ ≥ an. (1)

Furthermore, assume that, when n → ∞,

ωξn(an) →P 0. (2)

Then the processes ξn converge weakly to ξ , and the limiting process ξ has con-
tinuous paths almost surely.

A few notes concerning the above theorem follow.

(1) Theorem 1 generalizes a result by Davydov (1996) that was proved in the
case d = 1.

(2) Theorem 1 holds for processes whose paths are in the space B([0, 1]d; R)

equipped with the uniform topology. However, it should be kept in mind
that serious issues might emerge in this context due to the fact that the
space is not separable. This is, indeed, the reason why in the theorem
above we have restricted ourselves to a subset of B([0, 1]d; R) equipped
with a topology that is weaker than the topology of uniform convergence
and makes D a separable complete metric space. We refer to Sect. 4 for
further notes on the subject.

(3) Theorem 1 also holds for processes with values in a complete sepa-
rable metric space, with metric r. In this case, condition (1) becomes
E(r(ξn(t), ξn(s))α) ≤ c‖t − s‖β whenever ‖t − s‖ ≥ an.

We shall now formulate a corollary to Theorem 1 that we find particularly
useful in applications. Let kn := [1/an], and let j := (j1, . . . , jd), where each of
the d coordinates can be any numbers 0, 1, . . . , kn + 1. If a coordinate of the
vector j takes on any of the values l = 0, 1, . . . , kn, then, by definition, the cor-
responding coordinate of the vector t( j) := (tj1 , . . . , tjd) equals lan. If, however,
a coordinate of j takes on the value l = kn + 1, then, by definition, the corre-
sponding coordinate of t( j) equals 1. Given j, let j� denote any d-dimensional
element such that ‖ j� − j‖ = 1 and all the coordinates of j� except only one
coincide with those of j.
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Corollary 1 Let all the assumptions of Theorem 1 be satisfied except (2), which
is now replaced by the following more easily verifiable condition: assume that the
process ξn can be written as the difference of two coordinate-wise non-decreasing
processes ξ◦

n and ξ∗
n , and let ξ∗

n be such that

sup
j, j�

∣∣∣ξ∗
n (t(j�)) − ξ∗

n (t( j))
∣∣∣ →P 0 (3)

when n → ∞, where the supremum is taken over all j = (j1, . . . , jd) whose coor-
dinates take on the values 0, 1, . . . , kn. Then the processes ξn converge weakly to
ξ , and the limiting process ξ has continuous paths almost surely.

Corollary 1 generalizes a result by Davydov (1996) that was proved in the
case d = 1.

To illustrate Corollary 1, we consider the earlier defined sequential empirical
process. We have already noted that en(t, u) can be written as the difference of
e◦

n(t, u) and e∗
n(t, u), which are coordinate-wise non-decreasing processes. Writ-

ing t(j�) = (t1, t2) and t( j) = (s1, s2) for notational simplicity, we start verifying
assumption (3) with the bound:

∣∣e∗
n(t1, t2) − e∗

n(s1, s2)
∣∣ ≤ 1√

n

(
n|t1 − s1| + n|t2 − s2| + 1

)
. (4)

The right-hand side of (4) does not exceed c/
√

n since both |t1 − s1| and |t2 − s2|
do not exceed an, which equals 1/n by definition. Next we verify assumption
(1) with α = 6. (Choosing α = 4 is not sufficient since we would have β = 2
whereas β > 2 is needed in the two-parameter case.) We have

E
(
|en(t1, t2) − en(t1, s2)|6

)
= 1

n3 E

⎛

⎜⎝

∣∣∣∣∣∣

[nt2]∑

i=[ns2]+1

(
1(−∞,t1](Ui) − t1

)
∣∣∣∣∣∣

6
⎞

⎟⎠

≤ c|t2 − s2|3 + 1
n3 .

Next, we obtain

E
(
|en(t1, s2) − en(s1, s2)|6

)

= 1
n3 E

⎛

⎝
∣∣∣∣∣

[ns2]∑

i=1

{(
1(−∞,t1](Ui) − t1

) − (
1(−∞,s1](Ui) − s1

)}
∣∣∣∣∣

6⎞

⎠

≤ c|t1 − s1|3 + c
n

|t1 − s1|2 + c
n2 |t1 − s1|.
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The two bounds above and the assumption ‖t − s‖ ≥ an with an = 1/n imply
that the expectation E(|en(t1, t2) − en(s1, s2)|6) does not exceed c‖t − s‖3. This
completes the verification of assumption (1) with α = 6 and β = 3.

There are monographs and numerous articles that investigate (or use) weak
convergence of multi-parameter stochastic processes. So far we have deliber-
ately constrained ourselves to mainly referring to monographs, due to space
consideration. On this occasion we shall also obey this rule and refer to the
monographs by Ivanoff and Merzbach (2000), Khoshnevisan (2002), and to
the list of references therein. We also emphasize that the present article is
not about which assumptions are better to use (or not to use) when verifying
weak convergence. This article is just a mere attempt to present a set of simple
and readily in practice verifiable assumptions that imply weak convergence of
multi-parameter stochastic processes.

3 Proofs of Theorem 1 and Corollary 1

3.1 Idea of the proof

Condition (1) is similar to a well known Kolmogorov’s condition (cf. (5))
that assures relative compactness in the context of continuous stochastic pro-
cesses. Among numerous results generalizing Kolmogorov’s condition to ran-
dom fields, in the monograph by Ibragimov and Has’minskii (1981, Theorem 20,
p. 378) we find the following result (reformulated here in a less general form)
particularly useful in the context of the present paper.

Theorem 2 (Ibragimov and Has’minskii, 1981) Let ηn be continuous stochastic
processes defined on the d-dimensional cube [0, 1]d. Furthermore, let all the finite
dimensional distributions of ηn converge to the corresponding ones of a process
η. Assume that there are constants α ≥ β > d and c ∈ (0, ∞) such that, for all
n ≥ 1, we have E(|ηn(0)|α) ≤ c and

E
(|ηn(t) − ηn(s)|α) ≤ c‖t − s‖β for all s, t ∈ [0, 1]d. (5)

Then the processes ηn converge weakly to η, and the limiting process η has
continuous paths almost surely.

Since the processes ξn might not, in general, be continuous, Theorem 2 might
not therefore be directly applicable to them. Nevertheless, Theorem 2 suggests
the following route for proving weak convergence. Suppose that we have con-
structed continuous stochastic processes ηn such that they satisfy condition (5)
and uniformly approximate (cf. the next paragraph for detail) the processes ξn
when n → ∞, that is,

‖ξn − ηn‖∞ := sup
t∈[0,1]d

|ξn(t) − ηn(t)| →P 0. (6)
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By Theorem 2 the processes ηn converge weakly in C([0, 1]d; R) to a process η,
and so in view of (6) the processes ξn weakly converge to η in the above defined
space D. This is exactly the result we aim at.

The supremum in (6) should, of course, be a random variable, so that conver-
gence in probability would be well defined. This follows from these facts: the
processes ηn are continuous; the processes ξn are elements of the space D; the
supremums ‖ξn − ηn‖∞ can be calculated as supremums over countable sub-
sets of the cube [0, 1]d; and the latter supremums (over countable subsets) are
random variables. Later in this paper (cf. Sect. 4) we shall discuss the σ -algebra
B0 generated by open balls, and require that the processes ξn be measurable
with respect to the σ -algebra. This will take care of the measurability problems
related to the supremum norm ‖ · ‖∞ of the processes ξn.

3.2 Construction of ηn in d-dimensions

As we have noted above, the main idea of the proof relies on constructing con-
tinuous stochastic processes ηn that well approximate the processes ξn when n
tends to infinity. We start constructing such processes ηn with an operator �n

defined on the set of rectangles � := ∏d
i=1[ui, vi] ⊆ [0, 1]d by the formula

�n(�) := ξn(v1, . . . , vd) −
∑

1≤m≤d

ξn(v1, . . . , vm−1, um, vm+1, . . . , vd)

+
∑

1≤p<q≤d

ξn(v1, . . . , vp−1, up, vp+1, . . . , vq−1, uq, vq+1, . . . , vd)

− · · · + (−1)dξn(u1, . . . , ud).

The quantity �n(�) is a dth-order difference. For example, when d = 1, then
it is the first order difference ξn(v1) − ξn(u1), and when d = 2, it is the differ-
ence between the first order differences ξn(v1, v2) − ξn(u1, v2) and ξn(v1, u2) −
ξn(u1, u2).

The operator �n associates each rectangle R( j) = ∏d
i=1[tji , tji+1] with the ran-

dom variable �n(R( j)). Note that if, for an index set J, the rectangles R( j), j ∈ J,
are such that their union

⋃
j∈J R( j) is also a rectangle, say � = ∏d

i=1[ui, vi], then
the sum

∑
j∈J �n(R( j)) equals �n(�). While this property is obvious in two

dimensions, in the general d-dimensional case it can be verified by induction.
We define processes σn on [0, 1]d, by the formula

σn(s) :=
∑

j

�n(R( j))
1R( j)(s)
λ(R( j))

,

where the summation is taken over all j such that R( j) ⊆ [0, 1]d, and 1R( j)
and λ(R( j)) denote, respectively, the indicator function and the d-dimensional
Lebesgue measure of the rectangle R( j). Using σn, we can now define the
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promised (continuous) stochastic processes ηn on [0, 1]d by

ηn(t) :=
∫

[0,t]
σn(s)ds, (7)

where [0, t] denotes the rectangle
∏d

i=1[0, ti]. Since ηn(0) = 0, the condition
E(|ηn(0)|α) ≤ c of Theorem 2 is obviously satisfied. For every vertex t of every
rectangle R(k) = ∏d

i=1[tki , tki+1], we have that

ηn(t) =
∑

j

�n(R( j))
1

λ(R( j))

∫

[0,t]
1R( j)(s)ds

=
∑

j: R( j)⊆[0,t]
�n(R( j))

= ξn(t), (8)

where the last equality in (8) holds due to the aforementioned addition prop-
erty of the differences �n(R( j)), provided that ξn(t) vanish at every t ∈ [0, 1]d \
(0, 1]d. Indeed, under the latter assumption, the difference �n(�) with � = [0, t]
equals ξn(t). Hence, for some time in our considerations below, we assume that,
for all n,

ξn(t) = 0 for all t ∈ [0, 1]d \ (0, 1]d. (9)

Later we shall remove property (9) and obtain Theorem 1 in its full generality.

3.3 Verification of (6) assuming (9)

Using the equality ξn(t( j)) = ηn(t( j)) established in (8), we obtain the bound

sup
t∈[0,1]d

|ξn(t) − ηn(t)| = sup
j

sup
t∈R( j)

|ξn(t) − ηn(t)|

≤ sup
j

sup
t∈R( j)

∣∣ξn(t) − ξn(t( j))
∣∣

+ sup
j

sup
t∈R( j)

∣∣ηn(t( j)) − ηn(t)
∣∣ . (10)

The first supremum on the right-hand side of (10) does not exceed cωξn(an),
which converges to 0 by assumption (2). We shall now show that the same
statement is true for the second supremum on the right-hand side of (10).

For any t ∈ R( j), we write

ηn(t) − ηn(t( j)) =
∫

[0,t]\[0,t( j)]
σn(s)ds. (11)
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Next, we express the set [0, t] \ [0, t( j)] as the union of rectangles. For this,
we first write [0, t( j)] as the product

∏d
i=1 Ti with Ti := [0, tji], and then write

[0, t] as the product
∏d

i=1(Ti ∪ �i) with �i := [tji , ti]. Note that the product∏d
i=1(Ti ∪�i) equals

⋃
S∈Fd

(
∏

i∈S Ti ×∏
j/∈S �i) with Fd denoting the collection

of all the subsets of {1, 2, . . . , d}. Hence, we have the equality

[0, t] \ [0, t( j)] =
⋃

S∈F∗
d

Rt(S), (12)

where Rt(S) := ∏
i∈S Ti × ∏

j/∈S �i and F∗
d is the collection Fd without the larg-

est set {1, 2, . . . , d}. Using representation (12) on the right-hand side of (11), we
obtain the equalities

ηn(t) − ηn(t( j)) =
∑

S∈F∗
d

∫

Rt(S)

σn(s)ds

=
∑

S∈F∗
d

∑

l

�n(R(l))
λ(Rt(S) ∩ R(l))

λ(R(l))

=
∑

S∈F∗
d

∑

l: Rt(S)∩R(l) �=∅
�n(R(l))

λ(Rt(S) ∩ R(l))
λ(R(l))

. (13)

For any fixed S ∈ F∗
d , the ratios on the right-hand side of (13) are same for all

indices l such that Rt(S)∩R(l) �= ∅, and we therefore denote the ratios by ct(S),
which is independent of l. Hence, from (13) we obtain the equality

ηn(t) − ηn(t( j)) =
∑

S∈F∗
d

ct(S)
∑

l: Rt(S)∩R(l) �=∅
�n(R(l)). (14)

Using assumption (9) and the addition property of the operator �n, we rewrite
the sum

∑
l:Rt(S)∩R(l) �=∅ �n(R(l)) in the form of a sum

∑
(ξn(u)−ξn(v)), where the

summation is taken over neighbouring vertices u and v of a rectangle in
the (d − 1)-dimensional space whose edges have lengths not exceeding an.
The number of the summands in

∑
(ξn(u) − ξn(v)) does not exceed a constant

that depends only on the dimension d. Hence, we estimate the absolute value
of the sum

∑
(ξn(u)−ξn(v)) by cωξn(an), where the constant c depends only on d.

The quantities ct(S) do not exceed 1, as it follows from their definition. Hence,
the left-hand side of (14) does not exceed cωξn(an), which implies that the
second supremum on the right-hand side of (10) does not exceed cωξn(an). This
finishes the proof of statement (6) under assumption (9).
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3.4 Proof that ωξn(an) →P 0 under the assumptions of Corollary 1

The statement ωξn(an) →P 0 follows from


ξn(an) := sup
j

sup
t∈R( j)

|ξn(t) − ξn(t( j))| →P 0. (15)

To prove statement (15), we proceed as follows. Since ξn can be expressed as
the difference of the two coordinate-wise non-decreasing processes ξ◦

n and ξ∗
n ,

we have that


ξn(an) ≤ sup
j

∣∣ξ◦
n (t(j + 1)) − ξ◦

n (t( j))
∣∣ + sup

j

∣∣ξ∗
n (t(j + 1)) − ξ∗

n (t( j))
∣∣

≤ sup
j

∣∣ξn(t(j + 1)) − ξn(t( j))
∣∣ + 2 sup

j

∣∣ξ∗
n (t(j + 1)) − ξ∗

n (t( j))
∣∣ , (16)

where t(j + 1) := (tj1+1, . . . , tjd+1). By assumption (2), the second supremum on
the right-hand side of (16) converges to 0 in probability. To show that the first
supremum on the right-hand side of (16) also converges to 0 in probability, for
any fixed ε > 0 we write the bounds:

P

{
sup

j

∣∣ξn(t(j + 1)) − ξn(t( j))
∣∣ > ε

}
≤ 1

εα

∑

j

E
(∣∣ξn(t(j + 1)) − ξn(t( j))

∣∣α)

≤ c
εα

∑

j

‖t(j + 1) − t( j)‖β , (17)

where the right-most bound in (17) follows from assumption (1). Note that the
norm ‖t(j + 1) − t( j)‖ does not exceed an. Furthermore, there are at most ca−d

n
indices j in the sum in (17). Hence, the right-hand side of (17) does not exceed
caβ−d

n for a constant c that depends only on d. Since β > d and an ↓ 0 by
assumption, the right-hand side of (17) converges to 0 when n → ∞. Hence,
we have proved statement (15) and thus, in turn, ωξn(an) →P 0. Notice that we
have not used assumption (9) in this subsection.

3.5 Verification of (5) assuming (9)

In view of (6) we have reduced weak convergence of stochastic processes ξn to
weak convergence of the continuous processes ηn, which are defined by Eq. (7).
To establish weak convergence of the processes ηn, we apply Theorem 2. For
this, we need to check assumption (5), which we do by separately considering
the following three cases:

(1) Both points s and t are in same rectangle.
(2) The points s and t are in different rectangles that have non-empty inter-

section.



On weak convergence of random fields 355

(3) The points s and t are in different rectangles that do not intersect.

We shall first show that the second and third cases follow from the first one, and
we shall then verify assumption (5) in the first case. Hence, when considering
the second and third cases, we assume the validity of (5) in the first case.

We start with the second case, that is, when both s and t are in different
rectangles that have at least one common point. The straight line connecting
the points s and t can be subdivided into a finite number of segments whose
interiors lie in different rectangles R(·). Hence, we write

[s, t] =
r0⋃

r=1

[tr−1, tr], (18)

where t0 := s, tr0 := t, and every interval [tr−1, tr] is of the form [s, t]∩R( j) with
a different j. The number r0 in (18) does not exceed a constant that depends
only on the dimension d. We now rewrite the expectation E(|ηn(t) − ηn(s)|α) as
E(|ηn(tr0) − ηn(t0)|α) and then note that the latter expectation does not exceed
c
∑r0

r=1 ‖tr − tr−1‖β due to the assumed validity of (5) in case (1). The latter sum
does not, in turn, exceed c‖t − s‖β . This finishes the proof of (5) in case (2).

We next consider the third case, that is, when the two points s and t are in
different rectangles that do not have any common point. Let the indices j and
k be such that s ∈ R( j) and t ∈ R(k). We write the bound

E(|ηn(t) − ηn(s)|α) ≤ cE(|ηn(t) − ηn(t(k))|α)

+cE(|ηn(t(k))−ηn(t( j))|α)+cE(|ηn(t( j))−ηn(s)|α). (19)

Since we have assumed the validity of (5) in case (1), the first and the third expec-
tations on the right-hand side of (19) do not exceed, respectively, c‖t − t(k)‖β

and c‖t( j) − s‖β . The two norms do not exceed caβ
n , which in turn does not

exceed c‖t − s‖β , since ‖t − s‖ ≥ an due to the assumption that s and t are
in rectangles that do not have any common point. The second expectation on
the right-hand side of (19) equals E(|ξn(t(k)) − ξn(t( j))|α) and hence does not
exceed c‖t(k) − t( j)‖β due to (1). The norm ‖t(k) − t( j)‖ does not exceed
‖t − s‖ + 2an, which in turn does not exceed c‖t − s‖ since ‖t − s‖ ≥ an. Sum-
marising the findings above, all the three expectations on the right-hand side of
bound (19) do not exceed c‖t − s‖β . This concludes the proof of (5) in the third
case.

We now consider the first case, that is, when both s and t are in same rectangle,
say in R( j). To simplify the proof we assume without loss of generality that all
the coordinates of s except only one are equal to the corresponding coordinates
of t. To simplify the proof even further, we assume that only the last coordinate
of s is different from the corresponding one of t. (Other cases can be investigated
similarly.) Thus, we write s = (s1, . . . , sd−1, sd) and t = (s1, . . . , sd−1, td). Finally,
without loss of generality we assume that sd ≤ td. After all this preparatory
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work, we write the equalities:

ηn(t) − ηn(s) =
∫

[0,t]\[0,s]
σn(s)ds

=
∫

⋃d−1
i=1 [0,ti]×[sd,td]

σn(s)ds

=
∫

⋃d−1
i=1 (Ti∪�i)×[sd,td]

σn(s)ds, (20)

where Ti = [0, tji] and �i = [tji , ti]. The product
∏d−1

i=1 (Ti ∪ �i) equals
⋃

S∈Fd−1

(
∏

i∈S Ti × ∏
j/∈S �i), where Fd−1 denotes the collection of all the subsets of

{1, 2, . . . , d − 1}. With the already introduced and used notation Rt(S) for∏
i∈S Ti × ∏

j/∈S �i, we continue the string of equalities (20) and have

ηn(t) − ηn(s) =
∑

S∈Fd−1

∫

Rt(S)×[sd,td]
σn(s)ds

=
∑

S∈Fd−1

∑

l

�n(R(l))
λ(Rt(S) × [sd, td] ∩ R(l))

λ(R(l))
. (21)

Given a fixed set S ∈ Fd−1, and for all indices l such that Rt(S) ∩ R(l) �= ∅, we
have that the ratios λ(Rt(S)×[sd, td]∩R(l))/λ(R(l)) are all equal. We therefore
denote them by ct(S), which is independent of l. In turn, for any S ∈ Fd−1, we
write the second sum (with respect to l) in (21) as

ct(S)
∑

l:Rt(S)×[sd,td]∩R(l) �=∅
�n(R(l)). (22)

Since ct(S) does not exceed |td − sd|/an, we have the bound ct(S) ≤ ‖t − s‖/an.
Next we note that the sum in (22) can be written in the form

∑
(ξn(u) − ξn(v)),

where the summation is taken over some neighbouring vertices u and v of a
(d − 1)-dimensional rectangle. The number of summands in

∑
(ξn(u) − ξn(v))

does not exceed a constant that depends only on d. Furthermore, E(|ξn(u) −
ξn(v)|α) does not exceed c‖u − v‖β and the latter quantity does not exceed caβ

n
since the vertices u and v are neighbouring. In view of the notes above, we have
from (21) that

E
(|ηn(t) − ηn(s)|α) ≤ c‖t − s‖αaβ−α

n . (23)

The right-hand side of (23) does not exceed c‖t − s‖β because α ≥ β and
‖t − s‖ ≤ an (the latter bound holds because both t and s are in same rectangle).
The verification of (5) in the first case is now finished. This also completes the
proof of Theorem 1 under assumption (9).
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3.6 Introduction to the proof of Theorem 1 without assumption (9)

The idea of removing assumption (9) is based on first shrinking the domain
of definition [0, 1]d of the process ξn to, say [1/2, 1]d, and then extending the
“shrunken” process to [0, 1]d in such a way that the extension, say ξ̃n, would sat-
isfy the assumption ξ̃n(t) = 0 for all t ∈ [0, 1]d \ (0, 1]d. We shall now implement
the idea rigorously.

First we define the process ξ̂n by the formula

ξ̂n(u) := ξn(2u − 1)

for every u ∈ [1/2, 1]d. Then we define Dθ := {t ∈ [0, 1]d : ‖t − [1/2, 1]d‖ = θ}
for every 0 < θ ≤ 1

2 . Finally, with t∗ ∈ [1/2, 1]d denoting the closest to t point
in [1/2, 1]d, we extend the process ξ̂n to the whole cube [0, 1]d as follows:

ξ̃n(t) :=
{

ξ̂n(t) if t ∈ [1/2, 1]d,
(1 − 2θ )̂ξn(t∗) if t ∈ Dθ .

By definition, ξ̃n(t) vanishes for every t ∈ D1/2. Since D1/2 = [0, 1]d \ (0, 1]d, we
have the desired property ξ̃n(t) = 0 for every t ∈ [0, 1]d \ (0, 1]d.

We need to verify that the processes ξ̃n satisfy the conditions of Theorem 1.
Hence, in the next two subsections we shall show that

E
(∣∣̃ξn(t) − ξ̃n(s)

∣∣α) ≤ c‖t − s‖β whenever ‖t − s‖ ≥ 1
2

an (24)

and
ωξ̃n

(an) →P 0. (25)

When proving (24) and (25), we shall find it convenient to subdivide consider-
ations into the following three cases:

(A) both points s and t are in [1/2, 1]d;
(B) both points s and t are in [0, 1]d \ (1/2, 1]d;
(C) one of the points s, t is in [1/2, 1]d and the other one is in [0, 1]d \ (1/2, 1]d.

3.7 Verification of (24)

When s, t ∈ [1/2, 1]d, then we have that

E
(∣∣̃ξn(t) − ξ̃n(s)

∣∣α) = E
(∣∣ξn(2t − 1) − ξn(2s − 1)

∣∣α)

≤ c‖t − s‖β (26)

whenever ‖t − s‖ ≥ 1
2 an. This proves bound (24) in case (A).

To start the proof of bound (24) when s, t ∈ [0, 1]d \ (1/2, 1]d, we assume
without loss of generality that s is closer to [1/2, 1]d than t, that is, ‖s−[1/2, 1]d‖
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does not exceed ‖t−[1/2, 1]d‖. With s∗ ∈ [1/2, 1]d denoting the closest to s point
in [1/2, 1]d, we draw a straight line going through the points s∗ and s. We then
take the intersection of this line with the set [0, 1]d \ (1/2, 1]d and denote it by Is.
The intersection Is is a closed interval. One endpoint of the interval is s∗, and we
denote the other one by s∗. That is, Is equals [s∗, s∗]. With θ := ‖t − [1/2, 1]d‖,
let sθ denote the unique point of the intersection Is ∩ Dθ . We now write the
bound

E
(∣∣̃ξn(t) − ξ̃n(s)

∣∣α) ≤ cE
(∣∣̃ξn(t) − ξ̃n(sθ )

∣∣α) + cE
(∣∣̃ξn(sθ ) − ξ̃n(s)

∣∣α)
(27)

and estimate the two expectation on the right-hand side separately.
Since both t and sθ are in the set Dθ , we estimate the first expectation on the

right-hand side of (27) as follows:

E
(∣∣̃ξn(t) − ξ̃n(sθ )

∣∣α) = cE
(∣∣(1 − 2θ )̂ξn(t∗) − (1 − 2θ )̂ξn(s∗)

∣∣α)

≤ cE
(∣∣̂ξn(t∗) − ξ̂n(s∗)

∣∣α)
. (28)

Since the right-hand side of (28) equals cE(|ξn(2t∗ − 1) − ξn(2s∗ − 1)|α), it does
not exceed c‖t∗ − s∗‖β when ‖t∗ − s∗‖ ≥ 1

2 an. The norm ‖t∗ − s∗‖ does not
exceed ‖t − s‖. This gives the desired upper bound c‖t − s‖β for the right-hand
side of (28) under the assumption that ‖t∗−s∗‖ ≥ 1

2 an. If, however, the opposite
holds, that is, if ‖t∗ − s∗‖ < 1

2 an, then we can find a point v ∈ [1/2, 1]d such that
‖t∗ − v‖ = 1

2 an and ‖s∗ − v‖ = 1
2 an. Using this auxiliary point v, we estimate

the right-hand side of (28) as follows:

E
(∣∣̂ξn(t∗) − ξ̂n(s∗)

∣∣α) ≤ cE
(∣∣̂ξn(t∗) − ξ̂n(v)

∣∣α) + cE
(∣∣̂ξn(v) − ξ̂n(s∗)

∣∣α)

≤ c‖t∗ − v‖β + c‖v − s∗‖β . (29)

The right-hand side of (29) equals caβ
n , which does not exceed c‖t − s‖β because

‖t−s‖ ≥ 1
2 an. This completes the proof that the first summand on the right-hand

side of (27) does not exceed c‖t − s‖β .
To prove that the second expectation on the right-hand side of (27) does not

exceed c‖t − s‖β , we start with the equalities

E
(∣∣̃ξn(sθ ) − ξ̃n(s)

∣∣α) = E
(∣∣(1 − 2θ1)̂ξn(s∗) − (1 − 2θ2)̂ξn(s∗)

∣∣α)

= 2α|θ1 − θ2|αE
(∣∣̂ξn(s∗)

∣∣α)
, (30)

where θ1 is the distance between sθ and s∗, and θ2 is the distance between s
and s∗. Since the three points sθ , s and s∗ are on same straight line, |θ1 − θ2| is
the distance between sθ and s. The latter distance does not exceed the distance
between t and s. Hence, from (30) we have that

E
(∣∣̃ξn(sθ ) − ξ̃n(s)

∣∣α) ≤ c‖t − s‖αE
(∣∣̂ξn(s∗)

∣∣α)

≤ c‖t − s‖α
(

1 + sup
n

E
(∣∣ξn(0)

∣∣α) )
, (31)
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where the right-most bound in (31) can be proved as follows. If ‖t‖ ≥ an, then

sup
s∈[0,1]d

E
(∣∣ξn(t)

∣∣α) ≤ cE
(∣∣ξn(0)

∣∣α) + E
(|ξn(0) − ξn(t)|α)

≤ c sup
n

E
(∣∣ξn(0)

∣∣α) + c. (32)

If ‖t‖ ≤ an, then we find a point v ∈ [0, 1]d such that ‖v‖ ≥ an and ‖t − v‖ ≥ an,
and then write the bounds:

sup
s∈[0,1]d

E
(∣∣ξn(t)

∣∣α) ≤ cE
(∣∣ξn(0)

∣∣α) + E
(|ξn(0) − ξn(v)|α) + E

(|ξn(v) − ξn(t)|α)

≤ c sup
n

E
(∣∣ξn(0)

∣∣α) + 2c. (33)

This completes the proof of the right-most bound in (31). The supremum on
the right-hand side of (31) is finite by assumption. This implies that the second
summand on the right-hand side of (27) does not exceed c‖t − s‖α and thus, in
turn, does not exceed c‖t − s‖β since both t and s are in the unit cube [0, 1]d.
This completes the proof of (24) in case (B).

We shall now verify (24) in case (C), assuming without loss of generality that
s ∈ [1/2, 1]d and t ∈ [0, 1]d \ (1/2, 1]d. Recall that we want to verify bound (24)
for s and t such that ‖t − s‖ ≥ 1

2 an. Given all this, we find a point w in the
intersection of the sets [1/2, 1]d and [0, 1]d \ (1/2, 1]d such that ‖t − w‖ ≥ 1

2 an

and ‖w − s‖ ≥ 1
2 an. Hence,

E
(∣∣̃ξn(t) − ξ̃n(s)

∣∣α) ≤ cE
(∣∣̃ξn(t) − ξ̃n(w)

∣∣α) + cE
(∣∣̃ξn(w) − ξ̃n(s)

∣∣α)

≤ c‖t − w‖β + c‖w − s‖β . (34)

Note that in addition to the properties above, the point w can be chosen such
that the bounds ‖t − w‖ ≤ c‖t − s‖ and ‖w − s‖ ≤ c‖t − s‖ hold with a constant
c that does not depend on s and t. This observation and bound (34) complete
the proof of (24).

3.8 Verification of (25)

Consider the difference ξ̃n(t) − ξ̃n(s) when ‖s − t‖ ≤ 1
2 an. When both s and t

are in [1/2, 1]d, the difference equals ξn(2t − 1) − ξn(2s − 1). Hence, we have
the bound ∣∣̃ξn(t) − ξ̃n(s)

∣∣ ≤ ωξn(an). (35)

The right-hand side of (35) converges to 0 in probability by assumption, which
completes the verification of (25) in case (A).

Consider now the difference ξ̃n(t) − ξ̃n(s) when both s and t are in [0, 1]d \
(1/2, 1]d. Let ‖s − [1/2, 1]d‖ ≤ θ := ‖t − [1/2, 1]d‖, and let sθ denote the unique
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point in the intersection between of the earlier defined sets Is and Dθ . We have
that |̃ξn(t)− ξ̃n(s)| does not exceed the sum of the quantities |̃ξn(t)− ξ̃n(sθ )| and
|̃ξn(sθ ) − ξ̃n(s)|. We next estimate these two quantities, starting with the first
one. Since both t and sθ are in the set Dθ , we have that

∣∣̃ξn(t) − ξ̃n(sθ )
∣∣ = ∣∣(1 − 2θ )̂ξn(t∗) − (1 − 2θ )̂ξn(s∗)

∣∣
≤ ∣∣ξn(2t∗ − 1) − ξn(2s∗ − 1)

∣∣
≤ ωξn(an), (36)

where the right-most bound in (36) holds because ‖t∗ − s∗‖ does not exceed
‖t − s‖, and the latter does not exceed 1

2 an. To estimate the quantity |̃ξn(sθ ) −
ξ̃n(s)|, we note (cf. Eqs. (30) for a hint) that it equals 2|θ1 − θ2||̂ξn(s∗)|, where θ1
is the distance between sθ and s∗, and θ2 is the distance between s and s∗. Since
|θ1 − θ2| is the distance between sθ and s, it does not exceed ‖t − s‖ and thus, in
turn, does not exceed 1

2 an. We therefore have that

∣∣̃ξn(sθ ) − ξ̃n(s)
∣∣ ≤ an sup

s∈[0,1]d

∣∣ξn(s)
∣∣. (37)

Using bounds (36) and (37), we obtain that

∣∣̃ξn(t) − ξ̃n(s)
∣∣ ≤ ωξn(an) + an sup

s∈[0,1]d

∣∣ξn(s)
∣∣. (38)

The right-hand side of (38) converges to 0 in probability since an and ωξn(an)

converge to zero, and we already know from (31)–(33) that the supremum
sups∈[0,1]d |ξn(s)| is asymptotically bounded in probability.

Finally, we consider the difference ξ̃n(t)− ξ̃n(s) in case (C), assuming without
loss of generality that s ∈ [1/2, 1]d and t ∈ [0, 1]d \ (1/2, 1]d. Using bounds (38)
and (35), we have that

∣∣̃ξn(t) − ξ̃n(s)
∣∣ ≤ ∣∣̃ξn(t) − ξ̃n(t∗)

∣∣ + ∣∣̃ξn(t∗) − ξ̃n(s)
∣∣

≤
(

ωξn(an) + an sup
s∈[0,1]d

∣∣ξn(s)
∣∣
)

+ ωξn(an). (39)

The right-hand side of bound (39) converges to 0 in probability. This completes
the verification of (25). The proofs of Theorem 1 and Corollary 1 are now
finished.

4 Relationship of main results to Dudley’s contributions

Let X be a complete metric space, and denote the metric by ρ. We do not assume
that X is separable since the example we have in mind is the space B([0, 1]d; R)

equipped with the supremum norm. Next, let Y ⊆ X be a complete separable
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metric space equipped with the same metric ρ. The example of Y we have in
mind is the space C([0, 1]d; R) equipped with the supremum norm.

Let ξn, n ≥ 1, be random elements of X , and we want to check if they weakly
(in some sense) converge to an element η of Y . The information we have con-
sists of two facts. First, there are elements ηn of Y that weakly converge (in the
usual sense) to η. Second, the distance ρ(ξn, ηn) (assuming that it is a random
variable) converges to 0 in probability. We should not worry about the distance
ρ(ξn, ηn) being a random variable since this problem is not usually difficult to
check in practical situations. What we really need to find out, however, is how to
define weak convergence of the processes ξn to η, since the classical definition

(A) limn→∞ E[f (ξn)] = E[f (η)] holds for every bounded and continuous
functional f : X → R

does not work here, due to the fact that f (ξn) might not be a random vari-
able. Indeed, the element ξn might not be measurable with respect to the Borel
σ -algebra BX . Hence, the expectation E[f (ξn)] might not be defined. This situ-
ation occurs, for example, with the (classical) empirical processes en, since they
are not measurable with respect to BX . However, the processes are measurable
with respect to the (smaller) σ -algebra B0 generated by all open balls of X .

Dudley (1966) suggested a way to define weak convergence of stochastic
processes ξn in possibly non-separable spaces X as follows:

(B) limn→∞ E∗[f (ξn)] = limn→∞ E∗[f (ξn)] = E[f (η)] for every bounded
and continuous function f : X → R, where E∗ and E∗ denote, respectively,
the upper and lower expectations (cf. Dudley, 1966).

The latter definition of weak convergence is equivalent (cf. Dudley, 1967) to
the statement that

(C) limn→∞ E[f (ξn)] = E[f (η)] for every bounded, continuous, and
B0-measurable function f : X → R.

Formulation (C) of weak convergence is very close to what we really need
for the purpose of the current project. Namely, we want to have the following
statement:

(D) limn→∞ E[f (ξn)] = E[f (η)] for every bounded, uniformly continu-
ous, and B0-measurable function f : X → R.

We shall later prove (cf. Proposition 1) that statements (C) and (D) are equiv-
alent. Now we show how property (D) can be put into good use.

Suppose that we want to prove weak convergence of the processes ξn to con-
tinuous η. In view of (D), this means that we want to prove that the difference
E[f (ξn)] − E[f (η)] converges to 0 for every bounded and uniformly continuous
function f , which is measurable with respect to the σ -algebra B0. We know
from the classical weak convergence notion that E[f (ηn)] − E[f (η)] converges
to 0 for the aforementioned functions f . Thus, we are only left to verify that
E[f (ξn)] − E[f (ηn)] converges to 0 when n tends to infinity. Since the function
f is uniformly continuous, we derive the desired weak convergence from the
convergence of ρ(ξn, ηn) to 0 in probability.



362 Y. Davydov, R. Zitikis

To see what can be obtained from the above discussed weak convergence of
ξn to η, we have (cf. Dudley, 1966, 1999) that f (ξn) converge to f (η) in distribu-
tion, provided that the function f is B0-measurable and µ-almost everywhere
continuous, where µ denotes the probability measure induced by the process
η. Note that it is trivial to check the B0-measurability when the function f is
the supremum norm ‖ · ‖∞. Verification of B0-measurability for functions other
than the supremum norm might be less trivial. Keeping this potential problem
in mind, in a number of specific applications we can reason as follows.

Assume that a specific application involves a functional, say f , and that we
want to establish convergence in distribution of f (ξn) to f (η). It is worth noting
that checking directly that the quantities f (ξn) are random variables is usually
an easier problem than doing so via specific measurability properties of f and
ξn separately. Having thus resolved the measurability question of f (ξn), we then
check that ρ(ξn, ηn) are random variables and that they converge to 0 in proba-
bility. From these facts and also using the weak convergence of the processes ηn
to η, we derive (cf. Proposition 2) the convergence of f (ξn) to f (η) in distribu-
tion, provided that the function f is almost everywhere continuous with respect
to the measure µ induced by η. Verification of the latter property is a task well
discussed in the literature.

Proposition 1 Statements (C) and (D) are equivalent.

Proof Obviously, from statement (C) we have (D). Hence, we now assume the
validity of statement (D) and prove (C). That is, let f be a continuous, bounded,
and B0-measurable function. (In the proof below it will be convenient to work
with functions f such that 0 ≤ f (x) ≤ 1, which we can always assume with-
out loss of generality.) We want to show that the convergence

∫
f dµn → ∫

f dµ

holds with µn and µ denoting the probability measures induced by the processes
ξn and η, respectively. This can, of course, be written as E[f (ξn)] → E[f (η)].
Note that by assumption (D) the latter convergence holds when the function f
is uniformly continuous.

We start proving the convergence of
∫

f dµn to
∫

f dµ with several notes.
First, since the space Y is separable and complete, for any ε > 0 we can find a
compact set K such that µ(Kc) < ε, where Kc denotes the complement of K.
Second, given ε > 0, we can find δ > 0 such that |f (x) − f (y)| ≤ ε whenever
x ∈ K, y ∈ X , and ρ(x, y) < δ. We next construct a B0-measurable function f +
on X such the bounds

f +(x) − 2ε ≤ f (x) ≤ f +(x) (40)

hold for every x ∈ K(δ), where K(δ) denotes the open δ-neighbourhood of K.
Let {xn} ⊂ K be a countable and everywhere dense subset, and let

f +(x) := sup
n

(f (xn) + ε) ϕ(x, xn),
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where

ϕ(x, xn) := 1
{

d(x, xn) ≤ δ

2

}
+ 2

(
1 − 1

δ
d(x, xn)

)
1
{

δ

2
< d(x, xn) ≤ δ

}
.

It is easy to see that in this way constructed functions x �→ ϕ(x, xn) are
B0-measurable, and so f + is B0-measurable as well.

Equipped now with f +, we continue checking the convergence of the inte-
grals

∫
f dµn to

∫
f dµ with the bounds

lim sup
n→∞

∫
f dµn ≤ lim sup

n→∞

∫

K(δ)

f dµn + lim sup
n→∞

µn(K(δ)c) ≤ lim sup
n→∞

∫

K(δ)

f +dµn + ε

(41)
that hold because of f ≤ f + on K(δ), and also because of the following argu-
ments. Let φ be a function on the real line such that φ(t) = 1 when t ≤ 0, φ(t) =
1 − t when 0 ≤ t ≤ 1, and φ(t) = 0 when t ≥ 1. Define

F(x) := 1 − φ

(
1
δ

d(x, K)

)
,

where d(x, K) is the distance between the point x and the compact set K.
Note that the function F is bounded, uniformly continuous, and B0-measurable.
Hence, we have the bounds

lim sup
n→∞

µn(K(δ)c) ≤ lim sup
n→∞

∫
1K(δ)cdµn

≤ lim sup
n→∞

∫
Fdµn =

∫
Fdµ ≤ µ(Kc) < ε. (42)

This completes the proof of the right-most bound in (41). We still need to fur-
ther estimate the integral on the right-hand side of (41). For this, we use bounds
(40) and obtain the following string of inequalities:

lim sup
n→∞

∫

K(δ)

f +dµn ≤ lim sup
n→∞

∫
f +dµn =

∫
f +dµ ≤

∫

K

f +dµ + ε ≤
∫

K

f dµ + 3ε.

(43)
From (41) and (43) we obtain that

lim sup
n→∞

∫
f dµn ≤

∫

K

f dµ. (44)

Note that bound (44) also holds with the function 1 − f . This proves that the
lower limit of

∫
f dµn has the same lower bound as the upper bound in (44).

Hence, the limit of
∫

f dµn exists and is equal to
∫

K f dµ. The equivalence of (C)
and (D) has been established.
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Proposition 2 Assume that ρ(ξn, ηn) are random variables and that they converge
to 0 in probability. Furthermore, let the stochastic processes ηn ∈ Y weakly con-
verge to η ∈ Y . Assume that a function f defined on X is such that its set of
discontinuity points has µ-measure zero, where µ denotes the measure induced
by the process η. Given the above, the quantities f (ξn) (which we assume to be
random variables) converge to f (η) in distribution.

Proof Since the processes ηn converge weakly to η in the complete separable
space Y , for any ε > 0 we can find a compact set K such that µ(Kc) := P{η ∈
Kc} < ε and µn(Kc) := P{ηn ∈ Kc} < ε for all n. Furthermore, the compact
set K can be chosen in such a way that the function f would be (uniformly)
continuous on K. Now, for any ν > 0 and δ > 0, we write the bound

P {|f (ξn) − f (ηn)| > ν} ≤ P {|f (ξn) − f (ηn)| > ν, ρ(ξn, ηn) ≤ δ, ηn ∈ K}
+ P{ρ(ξn, ηn) > δ} + P{ηn ∈ Kc}. (45)

For all sufficiently large n, the second and the third probabilities on the right-
hand side of (45) do not exceed ε. A similar statement holds for the first prob-
ability. To show this, we start with the note that for any ν > 0 we can find δ > 0
such that |f (x) − f (y)| ≤ ν whenever x ∈ K and y ∈ X are such that d(x, y) < δ.
Indeed, this immediately follows from the continuity of the function f at every
point of K, including every boundary point of K. Hence, for every point x ∈ K,
there is an open ball of radius δ(x) > 0 such that the values of f on the ball
are at the distance from f (x) not larger than the given ε. Recall now that from
every open covering of a compact set we can select a finite covering. Taking
the minimum of the (finite number of) radii of the just selected balls, and then
denoting the minimum by δ, we obtain the desired property |f (x) − f (y)| ≤ ν

whenever x ∈ K and y ∈ X are such that d(x, y) < δ. But this contradicts the
statement |f (ξn) − f (ηn)| > ν inside the first probability on the right-hand side
of (45). Hence, the probability must be zero. This, in turn, implies that, for every
ν > 0 and ε > 0,

lim sup
n→∞

P {|f (ξn) − f (ηn)| > ν} ≤ 2ε. (46)

Consequently, the difference f (ξn)− f (ηn) converges to zero in probability. This
implies that f (ξn) converges to f (η) in distribution, which finishes the entire
proof.
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