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Abstract A linear model in which random errors are distributed independently
and identically according to an arbitrary continuous distribution is assumed.
Second- and third-order accurate confidence intervals for regression parameters
are constructed from Charlier differential series expansions of approximately
pivotal quantities around Student’s t distribution. Simulation verifies that small
sample performance of the intervals surpasses that of conventional asymptotic
intervals and equals or surpasses that of bootstrap percentile-t and bootstrap
percentile-|t| intervals under mild to marked departure from normality.

Keywords Bootstrap · Charlier differential series · Cornish-Fisher transfor-
mation · Edgeworth expansion · Kurtosis · One-sample t · Skewness

1 Introduction

Non-normality of the parent population can greatly influence type I error rate
of t tests as well as coverage of confidence intervals for means, especially if
sample size is small (Pearson and Please, 1975, Bowman et al., 1977, Posten,
1979, Cressie, 1980). If sample size is large and departure from normality is
not too severe, however, then the t test might still be used. Ractliffe (1968),
Posten (1979), and Cressie et al. (1984) provided guidelines for this strategy. If
the distribution has heavy tails or if outliers are present then a procedure based
on trimmed means or on a robust estimating function (e.g., M or S) could be
employed (Rousseeuw and Leroy, 1987, Staudte and Sheather, 1990, Wilcox,
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1997, 1998). These robust procedures enable investigators to make accurate
inferences about location parameters under widely varying conditions, but the
location parameters are not necessarily means.

If interest truly is in means, and the tails of the distribution are not too heavy,
then a compromise approach – something between the robust methods and
the ordinary t test – might be reasonable. Johnson (1978) proposed a modi-
fied one-sample t test based on a Cornish-Fisher transformation (Cornish and
Fisher, 1937). Johnson’s test is not strongly affected by population skewness,
provided that sample size is not too small. The test statistic, however, is not a
monotonic function of t. Accordingly, the test cannot be inverted to produce a
confidence interval with arbitrary confidence coefficient. Hall (1992a) proposed
a monotonic cubic transformation to correct this deficiency.

In this article, the methods of Johnson (1978) and Hall (1992a) are extended
to the linear models setting. Specifically, it is assumed that a linear regres-
sion function E(Y|x) = x′β holds, where x is a vector of explanatory variables
and β is a vector of regression coefficients. Random errors are assumed to be
identically, but not necessarily normally, distributed. Section 2 summarizes the
conventional asymptotic inference procedures and develops notation that is
used throughout the article. Cumulants of V = (̂ψ − ψ)/SE(̂ψ) are derived
in Sect. 3, where ψ = c′β is estimable, SE(̂ψ) is an estimator of

√

Var(̂ψ),
and ̂ψ is a linear estimator of ψ . The cumulants are used in Sect. 4 to obtain
Charlier differential series expansions of the distribution of V as well as mono-
tonic approximations to generalized Cornish–Fisher transformations of V. The
transformations are employed in Sect. 5 to construct second- and third-order
accurate one- and two-sided confidence intervals for ψ . The intervals are illus-
trated in Sect. 6. Section 7 summarizes a simulation study that compares the
performance of the proposed intervals to that of normal-theory and bootstrap
intervals. A Matlab function for computing the proposed intervals as well as a
supplement that contains proofs and numerical algorithms can be downloaded
from <http://www.math.montana.edu/∼rjboik/interests.html>.

2 Notation and background

2.1 Model and assumptions

The linear model under consideration is

Y = Xβ + ε, (1)

where Y is an N-vector of responses, X is an N × p matrix of fixed explanatory
variables, rank(X) = r ≤ p, β is a p-vector of regression coefficients, and ε is
an N-vector of random deviations. Estimability of c′β requires that c ∈ R(X′),
where R(X′) is the vector space generated by the columns of X′. The following
assumptions are made about ε:
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(a) {εi}N
i=1 are iid with mean 0 and positive variance σ 2 < ∞,

(b) E|εi|8 < ∞, and
(c) lim sup

||ξ ||→∞
|φW(ξ)| < 1, where W = (εi ε

2
i )

′,
(2)

and φW(ξ) is the characteristic function of W. It is likely that (2b) can be weak-
ened. Hall (1987) showed that the Edgeworth expansion of the one sample t
with remainder o(n−k/2) requires only k+2 rather than 2(k+2) finite moments.
Hall’s result, however, is applicable to studentized sums of iid random variables,
whereas (̂ψ−ψ)/SE(̂ψ) is a studentized sum of independent but not identically
distributed random variables.

Under (2), the best linear unbiased estimator of ψ is ̂ψ = c′
̂β, where ̂β =

(X′X)−X′Y, and (X′X)− is any generalized inverse of X′X. Properties of ̂ψ

include the following:

√
n

(

̂ψ − ψ
) = b′ε, E(̂ψ) = ψ and Var(̂ψ) = n−1σ 2

ψ , where

b = X
(

X′X
)− c

√
n, σ 2

ψ = q0σ
2, q0 = b′b = nc′ (X′X

)− c, and n = N − r.

(3)

The conventional unbiased estimator of σ 2
ψ is

σ̂ 2
ψ = q0S2, where S2 = n−1Y′AY, and A = IN − X(X′X)−X′. (4)

Scaling ̂ψ − ψ by SE(̂ψ) = σ̂ψ/
√

n yields an approximately pivotal quantity,

V def= √
n(̂ψ − ψ)/σ̂ψ , (5)

which is denoted by V rather than T to avoid the implication that it has a t
distribution.

Denote the ith column of X′ by xi, and denote the smallest non-zero singular
value of X by dN . The following assumptions are made about X:

(a) R(X′) is invariant ∀ N > r, where r = rank(X) is constant,
(b) lim

N→∞ min
i

aii = 1, where A = {aij} is defined in (4),

(c) 1N ∈ R(X), where 1N is an N-vector of ones, and
(d) MN = O(nh), where MN = max

i
||xi|| and h ∈ [0, 1/2),

(e) lim sup
N→∞

N−1
∑N

i=1
||xi||5 < ∞, and

(f) lim inf
N→∞ d2

N/N > 0.

(6)

Assumption (6a) ensures that the space of estimable functions of β does
not depend on N and that rank(X) remains constant. Assumption (6b) en-
sures asymptotic normality of

√
n(̂ψ − ψ) for any estimable function Huber
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(1973). Assumption (6c) ensures that ̂ψ is location equivariant. Without loss
of generality, the first column of X is taken to be 1N and, therefore, the first
entry in β, say β0, is an intercept parameter. Assumptions (6d–f) are parts of
assumptions C2–C3 in Yanagihara (2003) and ensure that the coefficients of the
Hermite polynomials in the Edgeworth expansions are finite and that the jth
cumulant of V in (5) has magnitude O(n−(j−2)/2) for j = 3, 4.

The following quantities are needed in later sections:

a = (a11, . . . , aNN)
′, q1 = a′b√

nq0
, q2 = a′a

n
, q3 = 1

q0

N
∑

i=1

aiib2
i ,

q4 =
√

n

3q3/2
0

N
∑

i=1

b3
i , q5 = n

3q2
0

N
∑

i=1

b4
i , q6 = 1

n

N
∑

i=1

N
∑

j=1

a3
ij, q7 = 1

n

N
∑

i=1

N
∑

j=1

a4
ij,

q8 = 1
q6

√
nq0

N
∑

i=1

N
∑

j=1

a3
ijbj, q9 = 3q5 − q2 − 2q3, and q10 = 2q3 − q2 − q5,

(7)

where aij is defined in (4). It is readily shown that qi = O(1) for i ≥ 0.
Under (2) and (6), the central limit theorem together with Slutsky’s theorem

(Sen and Singer, 1993, Sects. 3.3–3.4) imply that V
dist−→ N(0, 1) as N → ∞,

where V is defined in (5). More precisely, the cumulative distribution function
(cdf) of V in (5) satisfies

�V(v)
def= P(V ≤ v) = �Tn(v)+ O

(

n− 1
2

)

, (8)

where�Tn(v) is the cdf of Tn, a central t random variable with df = n. Equation
(8) justifies the conventional upper, lower, and two-sided symmetric confidence
intervals;

(

−∞, ̂ψ − σ̂ψ√
n

tα

)

,
(

̂ψ − σ̂ψ√
n

t1−α , ∞
)

and
(

̂ψ − σ̂ψ√
n

t1−α/2, ̂ψ − σ̂ψ√
n

tα/2

)

, (9)

respectively, where tα is the 100α percentile of the t distribution with n degrees
of freedom.

2.2 Accuracy of interval estimators

Let I = (L, U) be an interval estimator of ψ with nominal coverage 1 − α,
where L and/or U are functions of Y, and α ∈ (0, 1). Exact one-sided intervals
satisfy P(ψ ≤ U) = 1 − α or P(L ≤ ψ) = 1 − α. Exact two-sided equal-tailed
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intervals satisfy P(L ≤ ψ) = P(ψ ≤ U) = 1 − α/2. A two-sided interval is
symmetric if L = ̂ψ − C and U = ̂ψ + C, where C is a non-negative function of
Y. If the distribution of V is skewed, then an exact symmetric interval cannot
be equal-tailed. An interval, I, is said to have kth-order accurate coverage if
P(ψ ∈ I) = 1 − α+ O(n−k/2) uniformly in α ∈ (ε, 1 − ε) (Hall, 1992b, Sect.3.5),
where ε > 0. The one-sided intervals in (9) have first-order accurate coverage
and the two-sided symmetric interval in (9) has second-order accurate coverage.

The difference between the cdf of Zψ = √
n(̂ψ − ψ)/σψ and the N(0, 1) cdf

can be expressed either as O(n−1/2) or as O(N−1/2). The actual rate of con-
vergence, however, varies depending on the degree to which b in (7) contains
dominating large values. Under weaker assumptions about X than those in (6),
Navidi (1989) showed that the error in the two term Edgeworth expansion for
Zψ is O(N−1

b ) rather than O(n−1), where

Nb = q0/max
i

b2
i . (10)

The quantity Nb can be thought of as the effective sample size and is bounded
by (maxi 	i)

−1 ≤ Nb ≤ N, where 	i = 1 − aii is the leverage of the ith observa-
tion. The lower bound is attained by equating c to the column of X′ that has the
largest leverage. The upper bound is obtained by equating c to x = X′1NN−1.

3 Moments and cumulants of V

An approximation to the moments of V can be obtained by using a stochastic
Taylor series expansion of Vj around S2 = σ 2. The expansion, up to Op(n−3/2),
is the following:

Vj = n
j
2 (̂ψ − ψ)j

σ
j
ψ

(

1 + Z2√
n

)j/2 = Zj
1

[

1 − j

2
√

n
Z2 + j(j + 2)

8n
Z2

2 + Op

(

n− 3
2

)

]

, (11)

where Z1 = √
n(̂ψ − ψ)/σψ and Z2 = √

n(S2 − σ 2)/σ 2. Theorem 1 gives the
moments of V. The expressions were obtained by constructing an Edgeworth
expansion of the joint distribution of (Z1, Z2) and then taking the expecta-
tion of (11) with respect to the Edgeworth expansion. A proof is given in the
supplement. Corollary 1 gives the first four cumulants of V.

Theorem 1 If (2) and (6) are satisfied and j ≥ 0 is an integer, then

E(V2j)= (2j)!
2jj!

{

1 + j(j + 1)
n

+ jκ2
3

n

[

j(j + 1)q2
1 − 2j(j − 1)q1q4 + (j − 1)(j − 2)q2

4

]

+ jκ4

2n

[

(j + 1)q2 − 2jq3 + (j − 1)q5
]

}

+ O
(

n−2
)

, and
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E(V2j+1) = (2j + 1)! κ3

j! 2j
√

n

[

jq4 −
(

j + 1
2

)

q1

]

+ O
(

n− 3
2

)

,

where κj is the jth cumulant of εi/σ , and the remaining terms are defined in (7).

Corollary 1 The first four cumulants of V are the following:

ρ1(V) = E(V) = ω1√
n

+ O
(

n− 3
2

)

, ρ2(V) = Var(V) = 1 + ω2

n
+ O

(

n−2
)

,

ρ3(V) = ω3√
n

+ O
(

n− 3
2

)

, and ρ4(V) = ω4

n
+ O

(

n−2
)

,

where ω1 = −q1κ3/2, ω2 = 2 + 7q2
1κ

2
3/4 + κ4(q2 − q3), ω3 = 3(q4 − q1)κ3, and

ω4 = 6 + 18q1(q1 − q4)κ
2
3 − 3q10κ4. Furthermore, ωi = O(1) for i = 1, . . . , 4.

If c = x, then b ∝ 1N , V in (5) simplifies to the one-sample t statistic, the first
four moments of V in Theorem 1 agree with those reported by Gayen (1949,
Eq. 4.3) and the first four cumulants agree with those reported by Geary (1947,
Eq. 2.18).

The first four cumulants of Tn, a central t random variable with df = n, are

ρ1(Tn) = 0, ρ2(Tn) = 1 + 2/n + O
(

n−2
)

, ρ3(Tn) = 0,

and ρ4(Tn) = 6/n + O
(

n−2
)

.

Note that ρ1(Tn)−ρ1(V) and ρ3(Tn)−ρ3(V) are O(n−1/2), whereas ρ2(Tn)−
ρ2(V) and ρ4(Tn) − ρ4(V) are only O(n−1). Furthermore, the leading terms in
ρ1(V) and ρ3(V) depend only on κ3. Accordingly, κ3 �= 0 is the major issue when
inference is based on V. Bias and/or skewness of V can be small, however, even
if |κ3| is large. For example, if ψ is a contrast in an ANOVA model and data
are balanced, then q1 = 0 and ρ1(V) decreases to O(n−3/2). If the coefficients
of the contrast are symmetric around zero, then q4 = 0 and ρ3(V) decreases
to O(n−3/2). This robustness of normal-theory ANOVA procedures when data
are balanced is well known (Scheffé, 1959). If data are not balanced and κ3 �= 0,
then ρ1(V) and ρ3(V) can vary widely depending on the coefficient vector c.

4 Asymptotic expansions

Existing expansions of the one sample t (Chung, 1946, Geary, 1947, Gayen,
1949, Tiku, 1963) are applicable to V in (5) but only if c ∝ x. In this section,
Corollary 1 is used to construct expansions of the distributions of V and |V| for
arbitrary c ∈ R(X′).

Denote the probability density functions (pdfs) of V and Tn by ϕV(v) and
ϕTn(v). Also, denote the cdfs of V, |V|, and Tn by�V(v),�|V|(|v|), and�Tn(v). A
Charlier differential series can be used to express ϕV in terms of ϕTn (Wallace,



Accurate confidence intervals 67

1958, Finney, 1963, Hill and Davis, 1968). Specifically, the pdf of V is recovered
from φV(u) by inversion:

ϕV(v) = 1
2π

∞
∫

−∞
e−iuvφV(u)du = 1

2π

∞
∫

−∞
e−iuveKV(u)−KTn (u)φTn(u)du, (12)

where KW(u)
def= ln [φW(u)] and φW(u) is defined in (2). Define Hj(v) as

Hj(v)
def=

(

(−1)j

ϕTn(v)

)

∂ jϕTn(v)
(∂ v)j

, for j = 1, 2, . . . .

With a remainder of O(n−1), Hj(v) is the jth Hermite polynomial. It follows
from Corollary 1 that the difference between cumulant generating functions of
V and Tn is

KV(u)−KTn(u) = ω1iu√
n

+ (ω2 − 2)(iu)2

2n
+ ω3(iu)3

6
√

n
+ (ω4 − 6)(iu)4

24n
+O

(

n− 3
2

)

.

Term by term integration in (12) yields ϕV(u). The expansion is given in Theo-
rem 2.

Theorem 2 If assumptions (2) and (6) are satisfied, then

ϕV(v) = ϕTn(v)
[

1 + ω1H1(v)√
n

+ g1H2(v)
2n

+ ω3H3(v)

6
√

n
+ g2H4(v)

24n
+ ω2

3H6(v)

72n

]

+ O
(

n− 3
2

)

,

�V(v) = �Tn(v)− ϕTn(v)
[

ω1√
n

+ g1H1(v)
2n

+ω3H2(v)

6
√

n
+ g2H3(v)

24n
+ ω2

3H5(v)

72n

]

+ O
(

n− 3
2

)

,

and

�|V|(|v|) = 2�Tn(|v|)− 1 − ϕTn(|v|)
n

[

g1H1(|v|)+ g2H3(|v|)
12

+ ω2
3H5(|v|)

36

]

+ O
(

n−2
)

uniformly in v, where g1 = ω2+ω2
1 −2, g2 = ω4+4ω1ω3−6, forωi in Corollary 1.

The validity of Edgeworth expansions for functions of studentized regres-
sion coefficients under assumptions comparable to (2) and (6) was established
by Qumsiyeh (1990, 1994) and Yanagihara (2003). To verify that the Charlier
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expansion in Theorem 2 is valid, Fisher’s (1925) expansions for �Tn(v) and
ϕTn(v), namely,

�Tn(v) = �Z(v)− ϕZ(v)
4n

(v3 + v)+ O
(

n−2
)

and

ϕTn(v) = ϕZ(v)
[

1 + v4 − 2v2 − 1
4n

]

+ O
(

n−2
)

, (13)

can be employed, where Z ∼ N(0, 1). An analysis similar to that in Peiser
(1949) shows that the expansions in (13) are accurate to O(n−2) uniformly in v.
Edgeworth expansions are obtained by substituting (13) for �Tn(v) and ϕTn(v)
in Theorem 2.

Generalized Cornish-Fisher expansions (Hill and Davis, 1968, Hall, 1983,
Pace and Salvan, 1997, Sect. 10.6) based on the cdf expansions in Theorem 2
are summarized in Corollary 2.

Corollary 2 The 100α percentiles of T, V, |Tn|, and |V| are

tα =
(

1 + g3

n

)

vα − ω1√
n

+ ω3

6
√

n
(1 − v2

α)+ g4

n
v3
α + O

(

n− 3
2

)

,

vα =
(

1 − g5

n

)

tα + ω1√
n

− ω3

6
√

n
(1 − t2α)+ g6

n
t3α + O

(

n− 3
2

)

,

|t|α =
(

1 + g7

n

)

|v|α + g8

n
|v|3α − ω2

3

72n
|v|5α + O

(

n−2
)

, and

|v|α =
(

1 − g7

n

)

t 1+α
2

− g8

n
t31+α

2
+ ω2

3

72n
t51+α

2
+ O

(

n−2
)

uniformly in α ∈ (ε, 1 − ε), where ε > 0, 8g3 = (q2
1 + 6q1q4 − 14q2

4)κ
2
3 + q9κ4,

4g4 = (q1 − q4)(q1 − 4q4)κ
2
3 + q10κ4/2, 8g5 = (10q2

4 − 2q1q4 − q2
1)κ

2
3 − q9κ4,

4g6 = (q1 − q4)(q1 + 2q4)κ
2
3 − q10κ4/2, 8g7 = (q2

1 + 6q1q4 − 15q2
4)κ

2
3 + q9κ4,

4g8 = (q1 − q4)(q1 − 5q4)κ
2
3 + q10κ4/2, and qi is defined in (7).

If α is a uniform (0, 1) random variable, then tα and |t|α in Corollary 2 are
random variables with cdfs�Tn(t) and�|Tn|(t), respectively. Accordingly, V and
|V| can be transformed to random variables having the same distributions as
Tn and |Tn| with errors O(n−3/2) and O(n−2), respectively. These results are
summarized in Corollary 3.

Corollary 3 Define T∗
n and M as

T∗
n

def=
(

1 + g3

n

)

V − ω1√
n

+ ω3

6
√

n
(1 − V2)+ g4

n
V3 and

M def=
(

1 + g7

n

)

|V| + g8

n
|V|3 − ω2

3

72n
|V|5,

where g3–g8 are defined in Corollary 2. Then, P(T∗
n ≤ t) = �Tn(t) + O

(

n−3/2)

and P(M ≤ |t|) = �|Tn|(|t|)+ O
(

n−2) uniformly in t on compact intervals.
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5 Interval estimators

5.1 Estimators of κ3 and κ4

The proposed estimators of κ3 and κ4 are ratios of unbiased or nearly unbiased
estimators and satisfy κ4 ≥ −2 and κ2

3 ≤ κ4+2. Denote the vector of residuals as
e and denote the ith residual as ei. Note that e = Ay = Aε and ei = ∑N

j=1 aijεj,

where A is defined in (4). Define µj
def= E(εj

i). Using the same methods as in
Boik (1998, Theorem 5), it can be shown that unbiased estimators of µ3 and µ4
are given by

µ̂3 = 1
nq6

N
∑

i=1

e3
i and µ̂4 = (n + 2 − 3q2)

n
[

(n + 2)q7 − 3q2
2

]

N
∑

i=1

e4
i + 3n(q7 − q2)

(n + 2)q7 − 3q2
2

S4

(14)

respectively, where qj is defined in (7). Expanding S2r around S2 = σ 2 and
taking expectations yields E(S2r) = σ 2r

[

1 + r(r − 1)Var(S2)/(2σ 4)
] + O

(

n−2),
where Var(S2) = σ 4(q2κ4 +2)/n. It follows from Theorem 5 in Boik (1998) that

̂Var(S2) = 1

q7(n + 2)− 3q2
2

[

q2

n

N
∑

i=1

e4
i −

(

3q2
2 − 2q7

)

S4

]

is unbiased for Var(S2). Accordingly, an estimator of σ 2r with bias O(n−2) is
given by σ̂ 2r = S2r/[1 + r(r − 1)̂Var(S2)/(2S4)] and the proposed estimators of
κ3, κ4, and κ2

3 are

κ̂3 = µ̂3

S3

[

1 + 3̂Var(S2)

8S4

]

, κ̂4 = max

{

µ̂4

S4

[

1 + ̂Var(S2)

S4

]

− 3, −2
}

and κ̂32 = min(̂κ2
3 , κ̂4 + 2), (15)

respectively. Estimators ofωi and gi, namely ω̂i and ĝi, can be obtained by substi-
tuting the above estimators for unknown cumulant functions in Corollary 1.

5.2 Second-order accurate intervals

5.2.1 Quadratic Cornish–Fisher transformation

Johnson (1978) proposed a modified one-sample t test that is less affected by
population skewness than is the conventional t test. Johnson’s procedure is
readily generalized to the regression setting by employing Corollary 3. Define
̂T∗

n,1 by
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̂T∗
n,1

def= V − ω̂1√
n

+ ω̂3

6
√

n
(1 − V2), (16)

where V is defined in (5). It follows from Corollary 3 that P(̂T∗
n,1 ≤ t) =

�Tn(t) + O(n−1). The inequality ̂T∗
n,1 ≤ t1−α can not always be inverted to

obtain a confidence interval forψ , however, because ̂T∗
n,1 is not monotonic with

respect to V.

5.2.2 Hall’s modification of the quadratic transformation

Hall’s (1992a) monotonic modification to the quadratic transformation is

̂T∗
n,2

def= V − ω̂1√
n

+ ω̂3

6
√

n
(1 − V2)+ ω̂2

3

108n
V3. (17)

Generalizations of (17) were given by Fujioka and Maesono (2000) and
Yanagihara and Yuan (2005). Note that ̂T∗

n,2 = ̂T∗
n,1 + Op(n−1). Inverting the

inequality tα ≤ ̂T∗
n,2 yields the endpoint of a one-sided upper 100(1 − α)%

confidence interval:

U = ̂ψ − σ̂ψ√
n

v̂n,2,α where

v̂n,2,α = 6
√

n
ω̂3

{

1 −
[

1 + ω̂3

2
√

n

(

ω̂3

6
√

n
− ω̂1√

n
− tα

)] 1
3
}

.
(18)

If |ω̂3| is near zero, then v̂n,2,α can be replaced by

v̂n,2,α = tα + ω̂1√
n

+
(

ω̂1√
n

+ tα − 1
) (

ω̂1√
n

+ tα + 1
)

ω̂3

6
√

n

+
[

5
(

ω̂1√
n

+ tα

)3

− 6
(

ω̂1√
n

+ tα

)

]

ω̂2
3

108n
+ O

(

ω̂3
3

n3/2

)

.

5.2.3 Box–Cox modifications of the quadratic transformation

Konishi (1991) proposed an alternative modification of the quadratic transfor-
mation. Konishi’s method begins by applying a power transformation in the
Box–Cox family (Box and Cox, 1964) to exp{V/√n}. Specifically, a value of λ
is chosen so that the distribution of B(V) = √

n(exp{λV/
√

n} − 1)/λ is sym-
metric to order O(n−1/2). The second-order Taylor expansion of B(V) around
V/

√
n = 0 is B(V) = V +λV2/(2

√
n)+Op(n−1). If λ is chosen to bêλ = −ω̂3/3,

then P[B(V)− ω̂1/
√

n + ω̂3/(6
√

n) ≤ t1−α] = 1 − α + O(n−1). Inverting yields
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the endpoint for a one-sided lower 100(1 − α)% confidence interval for ψ :

L = ̂ψ + 3σ̂ψ
ω̂3

ln

[

1 − ω̂3

3
√

n

(

t1−α + ω̂1√
n

− ω̂3

6
√

n

)]

.

The endpoint for a one-sided upper interval is obtained by replacing t1−α by tα .
If sample size is small and/or ω̂3 is large, then the argument to the log function
can be negative. In this case, the method fails to produce an interval. One can
avoid using the log function by replacing it by its Taylor series expansion to
obtain

L = ̂ψ − σ̂ψ√
n

v̂1−α , where v̂1−α = t1−α + ω̂1√
n

− ω̂3

6
√

n
(1 − t21−α),

but v̂1−α is not monotonic in α. Konishi’s interval also can be obtained by
applying the Box–Cox transformation to exp{̂ψ} rather than to exp{V/√n}.
This alternative method was employed by DiCiccio and Monti (2002) in the
context of M-estimators.

5.2.4 An exponential modification of the quadratic transformation

Consider the transformation from V to ̂T∗
n,3, where

̂T∗
n,3

def= V − ω̂1√
n

+ ω̂3

6
√

n
− exp

{

−
̂d1

2
V2

}

ω̂3

6
√

n
V2 = ̂T∗

n,1 + Op(n−3/2), and

̂d1 = ω̂2
3 (31 − 7

√
17)

72n
exp

{

−1
2
(5 − √

17)
}

(19)

is the smallest non-negative number such that ̂T∗
n,3 is non-decreasing in V.

Monotonicity of ̂T∗
n,3 ensures that the inequalities tα ≤ ̂T∗

n,2 and ̂T∗
n,2 ≤ t1−α can

be inverted to obtain second-order accurate one-sided confidence intervals for
ψ with endpoints

L = ̂ψ − σ̂ψ√
n

v̂n,3,1−α and U = ̂ψ − σ̂ψ√
n

v̂n,3,α , (20)

where v̂n,3,α is the solution to ̂T∗
n,3 = tα for V. The solution can be computed

using the modified Newton method described in the supplement.
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5.3 Third-order accurate intervals

5.3.1 Third-order accurate two-sided symmetric intervals

It follows from Corollary 3 that P(̂M ≤ m) = �|Tn|(m) + O(n−3/2), where
̂M = |V|(1 + ĝ7/n)+ |V|3̂g8/n − |V|5ω̂2

3/(72n). Consider the modified transfor-
mation of |V|:

̂M∗ = |V| exp

{

ĝ7

n

}∗
+ exp

{

−1
2

V2
̂d2

}

(

|V|3 ĝ8

n
− |V|5 ω̂

2
3

72n

)

,

wherêd2 is the smallest non-negative number such that ̂M∗ is monotonic in |V|,
and exp{̂g7/n}∗ = max

[

exp{̂g7/n}, 1/(2n2)
]

. It can be shown that̂d2 = Op(n−1/2)

and, therefore, ̂M∗ = ̂M + Op(n−3/2). The associated 100(1 − α)% symmetric
confidence interval with third-order accurate coverage is

̂ψ ± σ̂ψ√
n

|v̂|∗1−α , (21)

where |v̂|∗1−α is the solution to ̂M∗ = t1− α
2

for |V|. The quantities |v̂|∗1−α and ̂d2
can be computed using the modified Newton methods that are described in the
supplement.

Alternatively, it follows from Corollary 2 that P(|V| ≤ |v̂|1−α) = 1 − α +
O(n−3/2), where |v̂|1−α = |t|1−α(1 − ĝ7/n) − |t|31−α ĝ8/n + |t|51−αω̂

2
3/(72n), but

|v̂|1−α need not be monotonic with respect to α. The proposed remedy is to
replace |v̂|1−α by

|v̂|∗∗
1−α = t1− α

2
exp

{

− ĝ7

n
− t21− α

2

ĝ8

n
+ t41− α

2

ĝ9

n

}

, where ĝ9 = ω̂2
3

72
+ ĝ2

8

4n
,

which is monotonic in α. Furthermore, P(|V| ≤ |v̂|∗∗
1−α) = 1 − α + O(n−3/2)

because |v̂|∗∗
1−α = |v̂|1−α + Op(n−2). The associated third-order accurate sym-

metric interval is

̂ψ ± σ̂ψ√
n

|v̂|∗∗
1−α . (22)

5.3.2 Third-order accurate one-sided intervals

A transformation of ̂T∗
n,1 in (16) whose cumulants differ from those of Tn by

only O(n−3/2) can be constructed, but the random quantity Vj√n(̂κ3 −κ3)must
be taken into account. An expression for E

[

Vj√n(̂κ3 − κ3)
]

is given in Theorem
3. A proof is sketched in the supplement. Cumulants of ̂T∗

n,1 are summarized
in Corollary 4. Associated Cornish-Fisher transformations are summarized in
Corollary 5.
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Theorem 3 If (2) and (6) are satisfied, then

E
[

V2j√n(̂κ3 − κ3)
]

= O
(

n− 1
2

)

and

E
[

V2j+1√n(̂κ3 − κ3)
]

= (2j + 1)!
2jj!

(

κ4q8 − 3q1

2
κ2

3

)

+ O
(

n−1
)

,

where j is any nonnegative integer, qi is defined in (7), and V is defined in (5).

Corollary 4 Under (2) and (6), the cumulants of ̂T∗
n,1 in (16) are

E(̂T∗
n,1) = O

(

n− 3
2

)

, Var(̂T∗
n,1) = 1 + ω∗

2

n
+ O

(

n− 3
2

)

,

ρ3(̂T∗
n,1) = O

(

n− 3
2

)

, and ρ4(̂T∗
n,1) = ω∗

4

n
+ O

(

n− 3
2

)

,

where ω∗
2 = 2 − (25q2

1 − 36q1q4 + 10q2
4)κ

2
3/4 + [q2 − q3 + q8(3q1 − 2q4)]κ4,

ω∗
4 = 6 − 24(q1 − q4)

2κ2
3 + 3[4q8(q1 − q4)− q10]κ4, and qi is defined in (7). To

ensure that 1 +ω∗
2/n > 0 and ω∗

4/n ≥ −2 are satisfied, ω∗
2 and ω∗

4 can be replaced
by n

[

exp(ω∗
2/n)− 1

]

and max(ω∗
4, −2n), respectively. These substitutions do not

change the order of accuracy.

Corollary 5 Denote the 100α percentile of ̂T∗
n,1 by t∗n,1,α and define

̂T∗
n,4

def=
(

1 + g10

n

)

̂T∗
n,1 + g11

n
̂T∗3

n,1 and̂t∗n,1,α
def=

(

1 − g10

n

)

tα − g11

n
t3α ,

where g10 = (2+ω∗
4 −4ω∗

2)/8, g11 = (6−ω∗
4)/24, and tα is the 100α percentile Tn.

Then, P(̂T∗
n,4 ≤ t) = �Tn(t)+ O(n−3/2) uniformly in t on compact intervals and

P(̂T∗
n,1 ≤̂t∗n,1,α) = α + O(n−3/2) uniformly in α ∈ (ε, 1 − ε), where ε > 0. Fur-

thermore, ω∗
2 and ω∗

4 may be replaced by ω̂∗
2 and ω̂∗

4 from (15) without affecting
the order of accuracy.

The remaining issue is that the transformations V to ̂T∗
n,1, ̂T∗

n,1 to ̂T∗
n,4, V

to ̂T∗
n,5, and tα tôt∗n,1,α are not necessarily monotonic. Corollaries 6–8 describe

several remedies in which polynomial functions are replaced by monotonic
exponential functions.

Corollary 6 Define ̂T∗
n,5 and v̂n,5,α as

̂T∗
n,5

def=
(

1 + ĝ10

n

)

V + q4

2
√

n
κ̂3 + (q1 − q4)

2
√

n
κ̂3V2 + ĝ11

n
V3, and

v̂n,5,α
def=

(

1 + ĝ12

n

)

tα − q4

2
√

n
κ̂3 + (q4 − q1)

2
√

n
κ̂3t2α + ĝ13

n
t3α ,
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where g12 = q4(q1−q4)κ
2
3/2+(4ω∗

2−ω∗
4−2)/8, g13 = (q4−q1)

2κ2
3/2+(ω∗

4−6)/24,
and tα is the 100α percentile of the distribution of Tn. Then, ̂T∗

n,5 = ̂T∗
n,4 +

Op(n−3/2), P(̂T∗
n,5 ≤ t) = �Tn(t)+ O(n−3/2) uniformly in t on compact intervals,

and P(V ≤ v̂n,5,α) = α + O(n−3/2) uniformly in α ∈ (ε, 1 − ε), where ε > 0.

Corollary 7 Define ̂T∗
n,6 and v̂n,6,α as

̂T∗
n,6

def= q4

2
√

n
κ̂3 + exp

{

ĝ10

n

}

V+exp

{

−
̂d3

2
V2

}

(

(q1 − q4)

2
√

n
κ̂3V2 + ĝ11

n
V3

)

and

v̂n,6,α
def= − q4

2
√

n
κ̂3 + exp

{

ĝ12

n

}

tα + exp

{

−
̂d4

2
t2α

}

(

(q4 − q1)

2
√

n
κ̂3t2α + ĝ13

n
t3α

)

,

where ̂d3 and ̂d4 are chosen to be the smallest non-negative values for which
the transformations are monotonic. Then, ̂T∗

n,6 = ̂T∗
n,5 + Op(n−3/2), v̂n,6,α =

v̂n,5,α + Op(n−3/2), P(̂T∗
n,6 ≤ t) = �Tn(t) + O(n−3/2) uniformly in t on compact

intervals, and P(V ≤ v̂n,6,α) = α + O(n−3/2) uniformly in α ∈ (ε, 1 − ε), where
ε > 0. Furthermore, if κ̂2

3 ≤ 12̂g11 exp{̂g10/n}/(q1 − q4)
2, then ̂d3 = 0 and if

κ̂2
3 ≤ 12̂g13 exp{̂g12/n}/(q1 − q4)

2, then ̂d4 = 0. Otherwise, ̂d3 and/or ̂d4 can be
computed using the modified Newton algorithm described in the supplement.

Corollary 8 Define ̂T∗
n,7 and̂t∗n,3,α as

̂T∗
n,7

def= exp

{

ĝ10

n

}

̂T∗
n,3 + exp

{

−
̂d5

2
̂T∗2

n,3

}

ĝ11

n
̂T∗3

n,3 and

̂t∗n,3,α
def= exp

{

− ĝ10

n

}

tα − exp

{

−
̂d6

2
t2α

}

ĝ11

n
t3α

wherêd5 and̂d6 are the smallest non-negative numbers for which the transforma-
tions are monotonic. Then, ̂T∗

n,7 = ̂T∗
n,4 + Op(n−3/2),̂t∗n,3,α =̂t∗n,1,α + Op(n−3/2),

P(̂T∗
n,7 ≤ t) = �Tn(t) + O(n−3/2) uniformly in t on compact intervals, and

P(̂T∗
n,3 ≤ ̂t∗n,3,α) = α + O(n−3/2) uniformly in α ∈ (ε, 1 − ε), where ε > 0.

Furthermore, the solutions for ̂d5 and ̂d6 are

̂d5 = max

[

0, − 2̂g11

n
exp

{

− 2̂g10 + n
2n

}]

and ̂d6 = max

[

0,
2̂g11

n
exp

{

2̂g10−n
2n

}]

.

Corollaries 7 and 8 provide a framework for constructing third-order accu-
rate one-sided or equal-tailed two-sided confidence intervals. The endpoints for
100(1 − α)% one-sided intervals can be written as

L = ̂ψ − σ̂ψ√
n

v̂1−α and U = ̂ψ − σ̂ψ√
n

v̂α , (23)
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where the estimated percentiles v̂α and v̂1−α are method-specific. Corollary 9
summarizes four procedures for estimating the percentiles of V.

Corollary 9 The 100α percentile of V can be estimated as follows:

(a) v̂α is the solution to ̂T∗
n,6 = tα for V, where ̂T∗

n,6 is given in Corollary 7,
(b) v̂α is v̂n,6,α from Corollary 7,
(c) v̂α is the solution to ̂T∗

n,3 =̂t∗α for V, wherêt∗α is the solution to ̂T∗
n,7 = tα for

̂T∗
n,3, ̂T∗

n,3 is given in (19), and ̂T∗
n,7 is given in Corollary 8, and

(d) v̂α is the solution to ̂T∗
n,3 =̂t∗n,3,α for V, where ̂t∗n,3,α is given in Corollary 8.

The algorithm in the supplement can be used to solve the exponential equations.
The resulting confidence intervals in (23) are third-order accurate.

If the linear function ψ = c′β does not involve the intercept, β0, then Theo-
rem 3 and its corollaries simplify. Partition the matrix of explanatory variables,
X, as X = (1N X2), where X2 has dimensions N × (p − 1). If c1 = 0, then b in
(7) satisfies

b = X2·1
(

X′
2·1X2·1

)− c
√

n and 1′
Nb = 0, (24)

where X2·1 = (IN − P1)X2 and P1 = 1N(1/N)1′
N . Note that 1′

Nb = 0 implies
that q1 and q8 each have magnitude O(n−1/2) rather than O(1). Accordingly, the
bias of V has magnitude O(n−1) rather than O(n−1/2). Furthermore, it follows
from Theorem 3 that if 1′

Nb = 0, then E
[

Vj√n(ω̂3 − ω3)
] = O(n−1/2) for any

non-negative integer, j. This result is the basis of Hall’s claim (Hall, 1989) that if
c1 = 0, then percentile-t bootstrap confidence intervals are third-order accurate.
Under (24), the cumulants of ̂T∗

n,1 that were reported in Corollary 4 simplify.

Corollary 10 If c1 = 0 then q1 = O(n−1/2), q8 = O(n−1/2), and the cumu-
lants of ̂T∗

n,1 in (16) are those in Corollary 4 in which ω∗
2 and ω∗

4 simplify to

ω∗
2 = 2 − 5q2

4κ
2
3/2 + κ4(q2 − q3) and ω∗

4 = 6 − 24q2
4κ

2
3 − 3q10κ4. Further-

more, g3 = g10 + O(n−1/2), g4 = g11 + O(n−1/2), g5 = g12 + O(n−1/2), and
g6 = g13 +O(n−1/2), where g3–g6 and g10–g13 are defined in Corollaries 2, 5,
and 6.

6 Illustration

This section illustrates the proposed intervals using the Venables and Ripley
(2002, pp. 234) data set. The response is log permeability obtained on N = 12
rocks. The explanatory variables are total area ÷10,000, total perimeter ÷2,000,
and roundness. The explanatory variables were measured at four cross-sections
within each rock and the geometric mean of the four measures was used to
construct X. Using (15), κ̂3 = 0.913 and κ̂4 = −1.356. Table 1 displays the
coefficients of six linear functions together with effective sample size, ρ̂1(V), and
ρ̂3(V). The coefficients in row one maximize |ρ1(V)| whereas the coefficients in
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Table 1 Rock permeability study: bias, skewness, and effective sample size for selected linear
functions

Coefficients for ψ Bias Skewness

Function c0 c1 c2 c3 ρ̂1(V) ρ̂3(V) Nb

1 1 0.717 1.393 0.203 −0.133 −0.529 9.43
2 0 0.320 0.938 −0.132 −0.021 −0.592 1.54
3 1 0. 0. 0. −0.027 −0.111 4.90
4 0 1. 0. 0. −0.007 −0.011 3.19
5 0 0. 1. 0. 0.006 −0.126 2.50
6 0 0. 0. 1. 0.015 0.343 1.92

Table 2 Rock permeability: estimated percentiles of V for function 1

Percentile

Method Order Reference v̂0.05 v̂0.95

1. Conventional t 1 Equation (9) −1.860 1.860
2. Hall: ̂T∗

n,2 2 Equation (18) −2.363 1.583
3. Exponential: ̂T∗

n,3 2 Equation (20) −2.409 1.592
4. Exponential: ̂T∗

n,6 3 Corollary 9a −1.770 1.403
5. Exponential: v̂∗

n,6,α 3 Corollary 9b −1.837 1.205
6. Exponential: ̂T∗

n,7 3 Corollary 9c −1.927 1.352
7. Exponential:̂t∗n,3,α 3 Corollary 9d −1.756 1.257
8. Bootstrap t 2 −1.969 1.788

Percentile

Method Order Reference −|̂v|0.95 |̂v|0.95

9. Conventional |t| 2 Equation (9) −2.306 2.306
10. Exponential: ̂M∗ 3 Equation (21) −2.662 2.662
11. Exponential: |̂v|∗∗

1−α 3 Equation (22) −2.633 2.633
12. Bootstrap |t| 3 −2.351 2.351

row 2 maximize |ρ3(V)| subject to c0 = 0. It is apparent that bias, skewness, and
effective sample size can vary widely for different linear functions.

Table 2 displays estimates of v0.05, v0.95, and ±|v|0.95 that correspond to
intervals for ψ , where c′ is given in row one of Table 1. These estimated percen-
tiles can be used to compute one-sided 95% intervals (methods 1–8), two-sided
equal-tailed 90% intervals, (methods 1–8), and two-sided symmetric 95% inter-
vals (methods 9–12). Methods 8 and 12 correspond to percentile-t and percen-
tile-|t| bootstrap methods, based on 100,000 bootstrap samples. To compute the
estimated percentiles for method 6, one must first solve ̂T∗

n,7 = t0.95 for ̂T∗
n,3 as

described in Corollary 9 part (c). The solution is ̂T∗
n,3 = 1.5571. To compute the

estimated percentiles for method 7, one must first computêt∗n,3,0.95 as described
in Corollary 9 part (d). The solution iŝt∗n,3,0.95 = 1.4413. Table 2 reveals that
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even though skewness appears to be mild, the adjustments to one-sided intervals
can be appreciable. The adjustments to two-sided symmetric intervals are less
dramatic because the usual two-sided symmetric intervals already are second-
order accurate.

7 Simulation

Realizations of random N-vectors {εi}N
i=1 were sampled from one of three zero-

centered log-normal distributions, chosen so that (κ3, κ4) = (1, 1.83)(3, 19.40),
or (5, 65.26) and Var(εi) = 1. Sample size was N = 10, 20, 30, 40, 60, or 100.
The response was modeled as a function of a constant term plus four explan-
atory variables; i.e., p = 5. Without loss of generality, the vector of regression
coefficients, β, was set to zero. The N × p matrix of explanatory variables was
constructed as X = (1k ⊗ X∗), where X∗ is a 10 × 5 matrix whose ith row is
x′

i = [(i−5.5)0, . . . , (i−5.5)4], and k = N/10. The replication structure (blocks of
10) was chosen so that the effects of increasing sample size are not confounded
with effects of varying the model matrix.

The vector of coefficients, c, was chosen in one of four ways: (a) c1 was set
to 0 and the remaining coefficients were chosen to maximize |ρ3(V)|, (b) c1
was set to 1 and the remaining coefficients were chosen to maximize |E(V)|,
(c) c1 was set to 0 and the remaining coefficients were chosen to maximize
[E(V)]2 + [ρ3(V)]2 subject to κ∗

4 (b) = 2, and (d) c1 was set to 1 and the remain-
ing coefficients were chosen to maximize [E(V)]2+[ρ3(V)]2 subject to κ∗

4 (b) = 2,

where κ∗
4 (b) = ∑N

i=1 b4
i /

(

∑N
i=1 b2

i

)2 − 3, and b is defined in (7). The quantity

κ∗
4 (b) is a proxy for effective sample size, Nb in (10). The effective sample sizes

under condition (a) are near the minimal values and under condition (b) are
near the maximal values. Conditions (c) and (d) yield intermediate effective
sample sizes and likely are somewhat more representative of actual practice.
Bias, skewness, and effective sample sizes are displayed in Table 3. These quan-
tities depend only on R(X) and not on the specific structure of X. Accordingly,
multi-collinearity is not an issue. For each of the 3 × 6 × 4 = 240 conditions,
5,000 data sets were generated and analyzed.

Figures 1 and 2 display the coverage probabilities of eight one-sided nom-
inal 95% interval estimators under conditions (b) and (c). The results under
conditions (a) and (d) are similar to those under (c) and are displayed in the
supplement. Sub-plots in each figure display coverage for one method over the
three log-normal distributions. Solid (dashed) line segments reflect coverage of
one-sided lower (upper) intervals. The interval estimators are numbered as in
Table 2. Bootstrap intervals were based on 1,000 bootstrap samples. Johnson’s
(1978) and Konishi’s (1991) transformations were not evaluated because they
fail to produce an interval if sample size is too small and skewness is too large.

Figures 1 and 2 reveal that second- and third-order accurate intervals (meth-
ods 2–8) are superior to conventional t intervals. Furthermore, under condi-
tions (a), (c), and (d), method 6 third-order accurate intervals generally are
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Table 3 Simulation study: bias, skewness, and effective sample size

(a) Maximum |ρ3(V)|, c1 = 0 (b) Maximum |E(V)|, c1 = 1

N MincNb E(V)/κ3 ρ3(V)/κ3 Nb κ∗
4 (b) E(V)/κ3 ρ3(V)/κ3 Nb κ∗

4 (b)

10 1.07 −0.052 −1.036 1.21 3.871 −0.173 −0.680 6.91 −1.702
20 2.13 −0.011 −0.590 2.40 4.027 −0.113 −0.448 16.72 −1.930
30 3.20 −0.006 −0.460 3.59 4.035 −0.092 −0.365 26.74 −1.972
40 4.27 −0.003 −0.390 4.78 4.039 −0.079 −0.316 36.76 −1.985
50 6.40 −0.002 −0.312 7.17 4.040 −0.064 −0.258 56.78 −1.994

100 10.67 −0.001 −0.239 11.96 4.042 −0.050 −0.200 96.80 −1.998

(c) Maximum E2(V)+ ρ2
3 (V), c1 = 0 (d) Maximum E2(V)+ ρ2

3 (V), c1 = 1

N MincNb E(V)/κ3 ρ3(V)/κ3 Nb κ∗
4 (b) E(V)/κ3 ρ3(V)/κ3 Nb κ∗

4 (b)

10 1.07 −0.064 −0.953 1.44 2.000 −0.081 −1.000 1.44 2.000
20 2.13 −0.015 −0.493 2.87 2.000 −0.032 −0.555 2.87 2.000
30 3.20 −0.007 −0.373 4.31 2.000 −0.022 −0.428 4.31 2.000
40 4.27 −0.005 −0.312 5.75 2.000 −0.017 −0.361 5.74 2.000
60 6.40 −0.002 −0.247 8.62 2.000 −0.013 −0.288 8.62 2.000

100 10.67 −0.001 −0.186 14.37 2.000 −0.009 −0.219 14.36 2.000

superior and never are inferior to other methods, including the bootstrap. The
advantage of method 6 intervals over second-order accurate (methods 2 and 3)
is less apparent under condition (b), where effective sample size increases most
rapidly. In this case, intervals based on methods 2, 3, and 6 are similar and
are superior to bootstrap t intervals. Coverage of nominal 95% two-sided sym-
metric intervals under conditions (b) and (c) is displayed in Fig. 3. Coverage
under conditions (a) and (d) is similar and is displayed in the supplement. In
all cases, method 11 intervals are superior to both conventional |t| intervals and
bootstrap-|t| intervals.

8 Concluding comments

The simulation results reported in Sect. 7 verify that skewness and kurto-
sis corrections can yield interval estimators that are superior to conventional
large sample intervals. Furthermore, the third-order accurate intervals based on
methods 6 and 11 appear to perform as well or better than do the the remain-
ing intervals, including those based on the bootstrap. Method 6 (Corollary 9c)
is recommended for one-sided or equal-tailed two-sided confidence intervals.
Method 11 in (22) is recommended for two-sided symmetric intervals. Simula-
tions in which data were sampled from gamma or beta distributions also were
performed. The results of these simulations are not displayed because they do
not lead to different conclusions. In practice, it is unlikely that the linear func-
tions of interest will happen to be those that maximize skewness, bias, or some
function of skewness and bias. Accordingly, the coverage of the recommended
third-order accurate intervals likely will be even closer to the nominal coverage
than Figs. 1, 2, 3 would suggest.
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Fig. 1 Coverage of one-sided intervals under condition (b) in Table 3

An alternative approach to constructing accurate confidence intervals could
begin by developing an accurate approximation to the distribution of the con-
ventional F statistic for testing a family of linear functions under non-normal
conditions. One such approximation was obtained by Yanagihara (2003). The
modified omnibus test could be inverted to obtain modified simultaneous
confidence intervals. One disadvantage of this alternative approach is that
higher-order accurate simultaneous coverage is attained by making identical
adjustments to each interval. As illustrated in Sect. 6, however, intervals for
different linear functions within the same study require different adjustments
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Fig. 2 Coverage of one-sided intervals under condition (c) in Table 3

to attain second- or third-order accurate coverage on an interval by interval
basis.

The expansions in Sect. 4 are valid if the distribution of εi contains an abso-
lutely continuous part. If the distribution of εi is discrete, then the expansions
may still hold if the values of the explanatory variables do not cluster around
too few points. See Kong and Levin (1996) for a verification of this result in
logistic regression.
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Fig. 3 Coverage of two-sided symmetric intervals under conditions (b) and (c) in Table 3
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