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Abstract Let A = (A;)1<i<n be a sequence of letters taken in a finite alphabet
®. Lets : ® — Z be a scoring function and X = (X;)1<;<, the correspond-
ing score sequence where X; = s(A;). The local score is defined as follows:

H, = maxi<ij<j<n Zi:i X. We provide the exact distribution of the local score
in random sequences in several models. We will first consider a Markov model
on the score sequence X, and then on the letter sequence A. The exact P-value of
the local score obtained with both models are compared thanks to several datasets.
They are also compared with previous results using the independent model.

Keywords Markov chain - Local score - P-value - Sequence analysis

1 Introduction

Biostatistics is becoming a very large discipline improving its tools as the
biological sequence databases are growing. One of the principal goals of the Hu-
man Genome Project started in 1990 consists in developing and improving the
tools of sequence analysis. A lot of software exists for providing an analysis of
the biological sequences. Some of them focus on the primary structure (succes-
sion of the nucleotides, or residues, of the sequence). For example, Antheprot
(Analyse The Protein, http://antheprot-pbil.ibcp.fr/ie sommaire.html), Protscale
(http://us.expasy.org/cgi-bin/protscale.pl), or Emboss Octanol (http://www.
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hgmp.mrc.ac.uk/Software/EMBOSS /Apps/octanol.html), determine protein or
nucleic profiles using score scales. A score scale assigns to each component a
numerical value, called score, reflecting physico-chemical properties. The two
scales most often used are the hydrophobic scale and that corresponding to the
parameters of secondary structure conformation (a first step to the spatial configu-
ration of the proteins). Let s (i) be the score of the i-th component of the sequence
and H (i) the score of the segment of a given length L defined as follows:

L-1

H(i) =Y s(i+k).

k=0

H (i) is calculated onto a sliding window of length L and plotted as a function
of the amino acid number. These profiles highlight the maximal score and also
the related region of interest. The fixed length can correspond for example to the
length of the cellular membrane, converted into a number of amino acids, if one is
studying the most hydrophobic regions of transmembrane proteins. But the length
of the region of interest is not always known.

The local score is defined as

J

=, e, 200
k=i

and the segment of maximal score does not have a determined length.

In order to distinguish common events from events of interest, we need to
establish the distribution of the local score. Thus we need to choose a model for
the biological sequences.

Let A:A1A>...A, be abiological sequence and ® the alphabet corresponding to
the biological sequence (for example ® = {A, C, G, T} if A is a DNA sequence)
andlets : ® — {Smin, ---, 0, ..., Smax | be the scoring function, with —smi, and smax
two non-negative integers. Let us define X; by X; = s(A;) and X : X1 X»...X,, the
score sequence, deduced from A.

Until now the models for local score studies have always been built for the
scoring sequence X. The usual model considers X as a sequence of independent
and identically distributed variables, and is called M model. Arratia and Waterman
(1994) proved the existence of a transition phase, with a linear growth of H, in
n : H, = O(n), when the average score is positive, and a logarithmic one: H,, =
O(In(n)) when the average score is negative. Daudin, Etienne and Valois (2003)
prove that H,, /+/n converges in distribution to a standard Brownian motion when
E[X;] = 0. For an overview of results on the local score, see Waterman (1995),
Durbin Eddy, Krogh and Mitchison (1998), Ewens (2002). The most famous result
is the approximation of Karlin et al. (see Karlin and Altschul 1990; Karlin and
Dembo 1992) implemented in BLAST for the sequence alignment problem

In(n)

P [H,, < +xi| ~exp(—Ke ™) asn — +oo0, (1)

where A and K depend only on the parameters of the sequence model. Note that
this work deals with the hypothesis of a non-positive average score (E[X;] < 0),
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what we call the logarithmic case. The parameter A is the only root in ]0, 1[ of the
equation E[e**i] = 1 and is easy to calculate. The parameter K is more difficult
and cannot be calculated easily for the sequence alignment problem. Several recent
articles proposed algorithmic methods in order to approximate it accurately and
rapidly (see Mott 2000; Bailey and Gribskov 2002 for example). Bacro Daudin,
Mercier and Robin (2003) propose a direct and simple proof of (1) and define the
parameter K by a new method which is easier to calculate. The result of Karlin
et al. is a better approximation when sequences are becoming longer, but must
be used with caution for short ones. For small proteins the approximation can be
unadapted (see Mercier Cellier, Charlot, and Daudin (2001), for comparison in
simple cases).

The problem of the length of the sequences combined with that of the param-
eter K motivates the work of Mercier and Daudin (2001) who establish the exact
distribution in the My model. This work has several advantages. First, it does not
need any hypothesis on the average score. Second, the exact distribution is ideally
adapted for small sequences: in order to calculate the P-value, P[H, < a], for an
observed local score @, an (a 4 1) x (a 4 1) matrix corresponding to the transition
matrix of a suitable process derived from X is implemented at the power n, with
n the length of the sequence. This method is fast for short sequences but becomes
more tedious for very long ones (n > 1, 000). Thus, the two results, the approxi-
mation of Karlin et al. and the exact method, can be considered as complementary.

At the present time, Markov chains and their variant, the hidden Markov chains,
have an important role in the interaction between biology and mathematics (see
Prum 2001). The independent model is not adapted for biological sequences be-
cause there exists a dependence between the components, which can be shown in
the genetic code for example. The use of a simple model was dictated more by the
complexity of the mathematical problem of establishing the distribution of the local
score than by a real interest in the model itself. The Markovian model can integrate
a certain dependence between the component; it takes into account the different
frequencies of words (words of two letters for a Markovian model of order 1) and
not only the differences between the frequencies of each component. For example,
let us consider the following score scale for amino acids which takes +2 for the
residues coded as D, E, K, R, H and —1 for the others. This example is proposed
in Karlin and Altschul (1990), for the research of the most significant amphoteric
segments (an amphoteric residue has the property of being charged positively or
negatively according to the medium). Let us study the Human protein 67-kDa
keratin cytoskeletal type II of length n = 643. We deduce from the sequence the
matrix of counts, where P (resp. N) stands for the residues with a positive (resp.
negative) score

P N Total
P 24 110 134
N 110 399 509

The segments of two residues scored +2 appear only 24 times, whereas
segments of score +1 appear 110 times. The probability of the apparition of a
segment of high score is influenced by the sparseness of the couple (+2, 42). This
observation can be extanded to longer words. We still keep in mind that the length
of the segment which realizes the local score is not fixed.
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The simplicity of the proof of the exact distribution in My model and the
importance of the Markovian model for biological sequences encourage us to gen-
eralize the exact method to Markovian models.

We first consider in this article a Markov model based on the score sequence
X, called the M_x model, and the exact P-value of the local score is given (see
Hassenforder and Mercier 2003). Secondly, we consider a Markov model based
on the letter sequence A, called the M;_4 model and the exact P-value is also
established. Note that the Markovian dependence on the letter sequence is better
justified biologically, and that for A as a Markov chain and s a scoring function
which is not bijective, the sequence X = s(A) is not a Markov chain, thus the
model M;_4 is more realistic than the M_x one. The theoretical results are easy
to prove and use classic tools of Markov chain theory.

These new results allow us to compare the My model and the Markov chain mod-
els for local score significance. We want to see if the improvments of
Makovian models are significant enough to encourage us to use them instead of the
independent model. These comparisons will be based on exact formulas and thus
will focus only on the models. Simulations have been made using different data-
bases. Different scoring functions are also used. Several computational problems
appear for the Markovian model based on the letter sequence A.

Section 2 deals with the theoretical P-values with proofs in both Markovian
models on X and A. Numerical comparisons are developed in Sect. 3, where some
details of the programs are also given. Section 4 provides a conclusion and some
perspectives on the study.

2 Theorical results and demonstrations

The Markov chains will implicitly be of order 1.

2.1 Model for the scoring sequence

Let X = (Xx)x>1 be a Markov chain of probability matrix A = (A,y)y vez and y
the initial distribution.
Let P = (P(,',u)(jyv)) be a matrix such that (i, ) and (j, v) belong to

E =10, ...,a} X {Smin, ---» 0, ..., Smax} Witha € N, 2)
and defined by

Puwya,v) = Aww and P uy(jv) =0for j #a (3)
andfor0 <i <a-—1

Piuyow) = Aw  ifi+u =<0
Piuyituw) =AM 1 <itu=<a—1, and P =0else. (4)
P(l"u)(d‘v) = Awy fi4+u>a

Theorem 2.1 The statistical significance of the local score H,, is given by

(Ya = 0) P[H, >a]l= Zyu : P(’Z),u)(a,v)'
u,v
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Let Sy, be the partial sums of the sequence X: Sp = Oand Sy = X|+...4+ Xi. Let
T} be the following stopping times: 7o = 0 and Ty = inf{i > Ty; S; — S, < 0}.
By definition of the T, the sequence (St,) is strictly decreasing, and the T} are
called the successive times of negative records.

Consider the process U defined by: Uy = 0 and for 7y < j < Txy1, Uj =
S; — St,. Fig. 1 illustrates the link between the different processes. We have (see
Mercier and Daudin (2001) for the proof of the following lemma):

Lemma 2.1 Uj:II]EIX(Uj_l-i-Xj,O)Z(Uj_l-l-Xj)+ and Hp,=max1<k<p Uk.

Let U* be the process stopped in a, with a € N*, We get UJ’-‘ =U;ifj <1,
and U}k =aif j > 7, with 7, = inf{j > 1; U; > a}. And finally, let us define the
sequence Y by: Y, 41 = (U, X,+1) for n > 0. The Markov chain Y is homoge-
neous and takes its values in E defined in (2).

Lemma 2.2 Y is a Markov chain with probability matrix P = (P(i,u)(j,v))(i "

Goweks and P vy = PLUF = )N (Xpp1 =) | (U, _; =) N (X, =uw)],
determined in (3) and (4).

Proof Fori = a, we have P ,)(j,v) = 0if j < a — 1 because U™ is stopped in a,
and P u)(j,v) = Auy for j = a.
Fori # a,wehave P u(j,v»y =P [(UF = j) N(Xpp =0)| (Up1 =i) N(Xy = w)].

Fig. 1 Link between processes Sk, Uy and U;", with Sy the partial sums of the sequence X, T}
the successive times of negative records, Uy = O and U; = S; — Sp, for Ty < j < Ty, and
U* the process stopped in a for a an observed local score
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e If j =0, as U,_; only depends on X1, ..., X,—1 and X, is a Markov chain of
order 1 we have

Py = P[(Xn < =Up-1) N Xpg1 = 0) | Up1 =) N (X = )]
=P[u=<—-)NXns1 =0) | U1 =) N (X =u)]
=Plu<-)NXpr1=0) | Xn=w)].

Thus P u)©0,0) = Auy if u < —i and O else.
e If1 <j <a-—1,then

Py = P[Un=1 + Xp = )N (Xng1 =) | Un—1 =) N (X = u)]
=Pi+u=)NXpp1=0) | Up1 =0)N(Xy =u)]
= Ay sij=i+u andO else.

e If j = a, we have

P(i,u)(a,v) =P [(Xn >a—Up—)NXpp1 =0) | (Up1 =) N (X, = u)]
=Pluz=a—i)NXpp1 =0) | Upi =) N (X = w)]
= Ayysii+u>a andO else.

Lemma 2.3 The distribution of U} is given by
P = 1= 2 Y Py
u,v

From Lemma 2.1, we deduce P[H, > a] = P[U;’ = a] and using Lemma 2.3
and the explicitation of the P(; y)(j,v), Theorem 2.1 is proved.

2.2 Model for the letters sequence

Let ® be the set of letters. We suppose that the sequence A of these letters is a
I-order Markov chain, with transition matrix A = (Ag, g)a,see and initial distri-
bution u. Let:

E={0,...,a) x ©* witha € N. (5)

Let us introduce the matrix Q = (Q(,-,a’ﬂ)’(j,w;)), where (i, o, B) and (J, y, ) are
in E, defined by

O (a,a,8)(a,B.8) =Np,s

Oi,a,p)0,8,5 =Ap,s ifs(B)+i <0
Q(i,a,ﬂ)(&(ﬂ)—H,ﬂ,S) =AI3’5 if 1 < S(ﬂ)+i Sa—l fOI'Ofi Sa—l (6)
Oi.a.p)a.p.8) =Nps ifs(B)+i>a

O.a.p).(.y,8) =0 else.

We have the following result:
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Theorem 2.2 The statistic significance of the local score H, is given by the
following formula:

(Ya=0) PlHy=al= D a0 apiays:
o, B,v,8

Proof Let us denote Sy the partial sums associated with the sequence of the s(Ag):
So = 0and Sy = s(A1) + ... + s(Ag). Consider the sequence of stopping times T
defined by: Top = 0 and Tj 4| = inf{i > T; S; — S, < 0}.

Let U be the sequence defined by Up = 0 and for Ty < j < Tpy1, Uj =
S; — St = s(Ar41) + ... + 5(A;). We have in particular Uz, = 0 for all k > 0.
The sequence U is positive but not necessarily bounded. As proved in Mercier and
Daudin (2001), we have got the following results:

Lemma 2.4

Uj =max(Uj_1 +5(A;),0) = Uj_1 +s(A;)* and H,= max Uj;.

1<j<n
Consider U* the process from U stopped in a, where a is in N*.
U;‘:Ujifj <taandU;‘=aifj > 1, with 7, = inf{j > 1;U; > a}.

In the case of an i.i.d. sequence A (see Mercier and Daudin 2001), U* is a
Markov chain of order 1 and it is therefore easy to establish the distribution of
U, but this is no longer true in the case of a Markovian sequence A. In order to
establish the distribution of U,;, consider the chain Z = (Z,,) defined by:

Vj=0 Zjn1=U; Aj,Aj),
which is of order 1 and for which the set of states is E as defined in (5).
Lemma 2.5 (Transition matrix of Z) (Zy)i>1 is a Markov chain with transi-

tion matrix Q = (Q(l-,a,,g)(j’y,g)), with (i, o, B) and (j,y,8) in E, where the
Oi,a.p)(j,y,5) are given by (6). We have:

Qi,a.8)(j.y.8)
=P[(U;=j)N(Ay=y) N (App1=8) | (U =i) N (Asmi=a)N(A,=B)].

Lemma 2.6 (Distribution of U;)
PIUS=k= D ta Q@.ortapitrs
o, B,y,8

From Lemma 2.4, we deduce P[H, > a] = P[U,;; = a]. Theorem 2.2 is deduced
from Lemma 2.6 and the explanation of the Q; «,g)(j,y,5) given by (6).
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3 Numerical comparisons
3.1 Empirical and theorical P-values

We simulate 10,000 letter sequences of a given length n on the amino-acid
alphabet, using two different models: the independent model where letters are
independently and identically distributed, model noted IID, and a Markovian one,
noted MC. Parameters of the simulated sequences are derived from a real protein
(Human protein 67-kDa keratin cytoskeletal type II). For each sequence of the data-
set, the local score is calculated using a given scoring function s. The parameters
of the different models are also derived from the dataset, model M| _ 4, and from
both the dataset and the scoring function s for the models standing on the scoring
sequences, model My and M;_x.

For each observed local score a, an empirical P-value, noted pemp is calculated
as followed

Nq

Pemp(@) = Pemp[Hy, > a] = W

where N is the number of sequences of the dataset (N = 10, 000) and N, is the
number of sequences of the dataset with a local score equal or up to a. The different
theorical P-values, noted ppheo When the method is not specified, are also derived.

Ptheo = pk for the approximated P-value of Karlin et al.,
= pum, for the exact P-value with My model,
= pm,_y for the exact P-value with Markovian model on X.

Simulating letter sequences assume us to be under the null hypothesis “sequences
are ordinary”, or “common”, and to get every sequence of same length. This last
point allows us to estimate an empirical P-value: we need to observe realisations
of H,, for a fixed length n.

In order to evaluate the accuracy of the P-values using the Markovian model
on letters, noted pys,_,, we also use SCOP database and more precisely the old
parseable file 1.37 of SCOP, used by Bailey and Gribskov (2002), that contains
about 10,000 non-redundant sequences.

Diheo = Pu,_, for the exact P-value with Markovian model on A.

We cut the end of the sequences to obtain the same length.

3.2 The scoring functions

The scoring functions, or score scales, which are used by biologists and rely
on rational scores are very definite and quite various (see for example Kyte and
Doolittle 1982). Results with rational scores can be deduced from the integer case,
but the time of computation is increasing as it is a function of the range of the scores
(one can see in Table 1 that the time of computation of the theorical P-value for
Markovian models is directly linked with this range). In order to limit the global
time of computations, we prefer to create scoring functions very similar to that
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Table 1 Complexities in the different models with binary decomposition of the length n, with a
the observed local score calculated, R the range of the scores and v the cardinal of the alphabet:
v = 20 for proteins, and 4 for DNA

Mo My_x Mi_4

a x log(n) a x R x log(n) ax v x log(n)

Table 2 Score functions used for the numerical examples

-5 4 -3 -2 -1 0 +1 +2 43 +4 45
Score function 1
F K A, L D,R E.NNW H, QY S C vV G M 1
PT
Score function 2
-5 —4 -3 -2 -1 0 +1 +2 43 +4 45
A LW EK, D,GH NT C,R L Q S V Y F
M, P
Score function 3
-2 -1 0 +1 +2
A,D,N, CEG PQW KM EH, S,
T LLR V.Y
Score function 4
-2 1 0 +1 +2
K,R ,E,H, G,P,S, AC, LLV

D
N,Q T,W,Y EM

Score function 5

-2 -1 0 +1 +2
LLV A,C,F, G,P,S, D,E,H, KR
M T,W,Y N,Q

proposed by biologists, but with integer scores (see Table 2). The score function
4 corresponds to that proposed by Karlin and Altschul (1990) for an hydrophobic
example.

3.3 Measures for comparison

Three different measures are calculated to evaluate the possible improvments.

Bailey and Gribskov (2002) proposed a new method for evaluating the P-val-
ues of the local score for sequence alignment: the PSE (P-value slope error). Let
m be the least-squares estimation of the slope:

log(ptheo) = m - 1Og(pemp) + b,

where pemp and peo are defined in Sect. 3.1. They defined PSE by PSE = 1 —m,
which gives an indication of the direction and magnitude of the errors. Logarithmic
plot has the advantage of focusing the measure on the queue of the distribution.
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Mean square error, noted MSE, is also calculated using the log( P-value). Mean
square error between pemp and py,_y, for example, is given by:

1
MSE(pemp. pit,_x) = 5= ., [10g(pemp(@)) —log(ps,_x (@)’

where #a is the number of different observed local scores.
We also use the Kullback distance, noted dg . Let p = (py, ..., px) and g =
(91, ---» q«) be two discrete distributions, dx 1 (p, q) is given by:

K
dxL(p,q) = Y, pi -log, (%) :
i=1 !

We derive the different distributions, empirical and theorical, from the P-values
using the obvious equality: P[H,, = a] = P[H, > a]— P[H, > a+ 1]. Note first
that the Kullback distance is not symetric, and secondly that we need to cluster the
extreme values to avoid null probabilities.

As we will see in Sect. 3.5, the different measures give similar conclusion.

3.4 About the programs

We use the algorithm kiss () with a period of 2% (see Robert 1996) to simulate our
data.

For the exact P-values in all three models, a matrix at a given power n cor-
responding to the length of the sequences has to be calculated. Using a binary
decomposition, the complexity of the programs should be as indicated in Table 1.

We do not use the same method to compute the model based on A because the
considered matrix Q (see (0)) is too large. We use the fact that it is also particularly
sparse in this model: for example, for @ = 9 and an alphabet of 20 amino acids,
we have a 4, 000 x 4, 000 matrix, and there are at most 20 terms different from
zero in each horizontal line. The implementation problems come both from large
amount of memory required and the slow execution speed.

Even with such an improved program, the computation is not adapted (expo-
nential growth time with the value of the local score a). This results from the fact
that the matrices are still large and the implemented structure is not adapted for not
so sparse a matrix: the matrix Q2 is not as sparse as Q. Critical threshold seems
to be about 30% of filling. The main idea for improving the programs is to use the
fact that Q is actually built up with blocks which are partially filled with lines of A:
the lines of A are distributed in the different column-blocks defined by the value
of i and j for Q. Consider the following numerical example with a simple scale
[—1;0; +1], and @ = 2. The matrix corresponds to an 800 x 800 matrix. (The size
of which prohibits inclusion in this article.) Thus, as the property can also be seen
in the matrix P of the Markovian model on X, we give the numerical example for
P. With

0.5 0.250.25
A=1{ 0.1 04 05
0.330.33 0.34
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and a = 2, we get:

050250250 O OO0 O O
0104 050 0 OO0 O O
0 0 01033033034/ 0 0 O
050250250 O OO0 O O
p=]1 0 0 0101 04 05{0 0 O
0O 0 0|0 O 0033033034
0O 0 0]0 O O0050250.25
0O 0 0|0 O O01]01 04 05
0O 0 0|0 O 0033033034

We have few numerical results with the letter model, as it is much more time

consuming.

3.5 Numerical results

We highlight the real improvment the Markovian model M;|_x can achieve
compared with the My model in Fig. 2. We plot the Kullback distance between the
empirical distribution and the exact distribution using model My, dky (emp, Mp),
versus the Kullback distance between the empirical distribution and that calcu-
lated using the Markovian model on the scoring sequence, dgp. (emp, M1_x). The

Improvment of model M1-X versus model MO

+50
X=y K
o Score function 4, E[X]=-0.01

© a Score function 3, E[X]=-0.22

84 +  Score function 2, E[X]=-1.19

[}

Dataset = MC letter sequences
400
200
A A
X 3 2900
= 84 a 400
= o Joo +
o 50 400
A 80 o

5 * 200
% + 200
T 100 °
° 84 50 °

[S) o

Q]

(=)

T T T T T T
0.0 0.02 0.04 0.06 0.08 0.10

dKL(emp,MO0)

Fig. 2 Plot—plot of Kullback distances: dki (emp, M|_x) (resp. dkr (emp, My)) is the Kullback
distance between empirical distribution of H, and the theorical distribution calculated using
the exact method with model M_x (resp. My). Letter sequences of the dataset are simulated
using the Markovian model. Score functions and parameters of the simulated sequences vary to
obtain different mean scores E[X]. Numbers close to the points correspond to the length n of the
simulated letter sequences. The different scoring functions are given in Table 2
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advantage of using the M|_y model for establishing the statistical significance of
an observed local score is considerable and clear in this figure: the line 'x = y’ is
close to the vertical axis due to the different scales of the two axes. It seems that
there is no particular influence of the mean score E[X]. Simulation with n = 50
and E[X] = —1.19 apart, one can observe that the Kullback distance seems to
increase with the length n.

The measures (MSE, PSE, di; defined in Sect. 3.3) used on the different
examples which correspond to the logarithmic case (E[X] < 0) are summarized
in Table 3. We give the average of each measurements between empirical values and
the theorical values, using the approximation of Karlin et al. and the exact methods
for the My and M|_x models. The averages are calculated on 14 values both for I[ID
sequences and MC sequences. These 14 values correspond to the different cases
studied for E[X] < 0, making length and scoring function used vary. For the IID
case, the scoring sequences are also independent and identically distributed, thus
we expect to get measures close to zero for the exact method using both the M and
M/ _x models. The corresponding averages allow us to appreciate the accuracy of
our method of comparison, in respect to the problem of parameter estimation and
to the precision of the measuring. For the Markovian dataset, we can see that even
if the scoring sequences are not Markovian, the model M;_y gives very good aver-
age measurements, on the same order that of the IID case, and that the improvment
of model M;_x over model M, is of real interest (more than a factor 10~! for
MSE and dk;. measures). For the linear case, with E[X] > 0, we obtain similar
results: MSE(pemp, Pmy) = 8.79 - 1072 and MSE(pemp, pum, ) = 5.70 x 1073
for n = 100, scoring function number 5 of Table 2, with E[X] = +0.02.

The parameters of the Markovian model on the letter sequence, model M|_4,
are estimated on truncated sequences (n = 100) of a non-redundant database
(SCOP, old parseable file 1.37). Due to a considerable time calculation, only one
case is presented. The scoring function used is the second one given in Table 2
and corresponds to a mean score E[X] equal to —1.5. The numerical results are
given in Table 4 (see also Fig. 3). Note that time calculation is too excessive for the
model M1_4 for observed local score a up to 10. Thus the comparison between the
different models, including the model M/_4, is done only for the small values of
a (a < 9). Both Markovian models achieve a real improvment on real sequences,
especially for model M1_4.

We also want to compare the exact method with the Mj_x model and the
approximation of Karlin et al. (see Fig. 4) to indicate a possible length threshold

Table 3 Mean of the three different measures defined in Sect. 3.3 between the empirical
values and the theorical values for independent and identically distributed sequences (IID) and
for Markovian sequences (MC)

IID generated sequences MC generated sequences
MSE PSE dx1 MSE PSE dxi.
K 947 x 1072 0.182 832x10°! 3.85x10~' 0391 1.76
My 588 x 1073 0.026 2.66x1073 9.87x1072  0.153  4.20 x 1072

Mi_x 507x1073  0.022 274x1073  7.98x1073  0.038 3.66x 1073

PSE P-value slope error, MSE mean square error, dk, to Kullback distance,K for the approxi-
mation of Karlin et al., My, resp., M_x, exact method using model My, resp. M|_x
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Table 4 SCOP: PSE corresponds to P-value slope error, M SE to mean square error, dg to
Kullback distance

SCOP database (n = 100, Scoring function 2)

a <35 a<?9

MSE PSE dxi. MSE PSE dki,
K 291 x 1072 0.102 644x1072  516x107* —0.169 3.84 x 1072
My 280 x 1072 0.095 691x1072 3.18x10~* 0.267 1.94 x 1072

Mi_x 158x1072 0061 6.14x1072 1.60x 10~ 0.138  1.19 x 1072
Mi_p - - - 1.18 x 104 0.105 9.91 x 1073

The numerical results are calculated with the empirical P-values and the different theorical
values: K for the approximation of Karlin et al., Mg (resp. M1_x, M|_4) the exact values with
model My (resp. M1_x, M1_4) and with the corresponding distributions for Kullback distance.
For the M|_ 4 model, the measurements are given for only small observed local score a (a > 9)
and we also give the different measurements for comparison

All observed local score Only small values a<10
o
=
7o)
Q |
<
o O
o o
Q (0]
£ s o
o 2 5
o =) T
> >
o o
- |
1o}
S
X x K
o MO
A M1-X
S o M1-A
3
-3 -2 -1 0 -0.15 -0.10 -0.05 0.0
Log10[p_emp(a)] Log10[p_emp(a)]

Fig. 3 SCOP: Plot—plot of logarithm of the P-values calculated for all observed local scores a
on SCOP database and only for small observed ones. The length n is 100, and the score function
used is number 1 in Table 2. Measurements corresponding to this example are given in Table 4

for which the asymptotic approximation is just as accurate as the exact method.
This figure clearly shows the asymptotic property of the approximation, but we
cannot determine any threshold because the accuracy also greatly depends on the
mean score E[X]. (For E[X] close to zero, the approximation is not good at all
even for sequences with length up to the mean length of real sequences, >~ 350
residues, whereas for strongly negative mean score, see E[X] = —3.3 in Fig. 4,
Karlin’s approximation gives not-so-bad results even for length equal or less than
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Improvment of the exact method M1-X versus the approximation of Karlin et al.

o | 50°
—
X 8 1 v Score function 4; E[X]=-0.01
Z o 4002 X Score function 3, E[X]=-0.22
= o X % 200 O Score function 2, E[X]=-1.19
g o | 1)(0)980
g 2 400% 50
[o) 10%@ X v
= o | 200 400 v
- o 200 v
X 2 100 v
T © 50
o | Dataset: MC sequences
[S]
0 2 4 6 8
dKL(emp,K)
©
< 8 v v
a Score function 1, E[X]=-0.13
v
= ° 400 V2OO 100 X Score function 1, E[X]=-1.1
2 g V50 o Score function 1, E[X]=-3.3
Q o | X
£ S |e00
O o X
~ X 50
< 8 J400 > o
5 g | 200)(0 %0
© 600!
2 | 100% 4000, Dataset: IID sequences
0 2 4 6 8
dKL(emp,K)

Fig. 4 Plot—plot of Kullback distances: dxr.(emp, K) (resp. dki(emp, M1_x)) is the Kullback
distance between empirical distribution of H, and the theorical distribution calculated using the
approximation of Karlin et al. (resp. the exact method with model M|_x). Score functions and
parameters of the simulated sequences vary to obtain different mean scores E[X]. Numbers close
to the points correspond to the length n of the simulated letter sequences. The different scoring
functions are given in Table 2

50.) The line 'x = y’ does not appear in the figures because it is too close to
the vertical axis (see the different scales of the two axes): the improvment is very
considerable.

4 Conclusion and perspectives

As is already known, the asymptotic approach must be used for long sequences,
but we have also shown that the exact methods are preferable in the case of mean
score average 0, even for not-so-small sequences. Results in this case (accuracy and
speed) should be compared with the Brownian approach of Daudin et al. (2003).

The Markovian model is performed on the score sequence for scoring func-
tion with reasonable range and the numerical results achieved point out the real
advantage of this model.

The computation of the exact method with the Markovian model on the letters
requires that significant work be done (before it can be efficently utilized). Easy
improvments of computation using mathematical properties could be made which
allow the important benefit of such a model to be realized (see Nuel 2006).

The comparisons are done with a “mathematical” approach which focuses on
the distribution itself. Biologists’ use of P-value stands more on the rank of the
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most exceptional sequences deduced from the P-values. Studies should be com-
pleted using this aspect. Accuracy of the different methods should also be measured
using sensibility and specificity criteria.

Acknowledgement We would like to thank the referees for their helpful remarks in clarifying
this article.
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