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Abstract Autoregressive models are commonly employed to analyze empirical
time series. In practice, however, any autoregressive model will only be an approx-
imation to reality and in order to achieve a reasonable approximation and allow
for full generality the order of the autoregression, h say, must be allowed to go to
infinity with T , the sample size. Although results are available on the estimation
of autoregressive models when h increases indefinitely with T such results are
usually predicated on assumptions that exclude (1) non-invertible processes and
(2) fractionally integrated processes. In this paper we will investigate the conse-
quences of fitting long autoregressions under regularity conditions that allow for
these two situations and where an infinite autoregressive representation of the pro-
cess need not exist. Uniform convergence rates for the sample autocovariances are
derived and corresponding convergence rates for the estimates of AR(h) approxi-
mations are established. A central limit theorem for the coefficient estimates is also
obtained. An extension of a result on the predictive optimality of AIC to fractional
and non-invertible processes is obtained.

Keywords Autoregression · Autoregressive approximation · Fractional process ·
Non-invertibility · Order selection · Asymptotic efficiency

1 Introduction

The use of autoregressive (AR) models has a long history that can be traced back
to the early papers of Akaike (1969, 1970) and Parzen (1974) and beyond to the
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prescient work of Yule (1921). It is not surprising given this long history that there
is a substantial literature dealing with such models : using the Google web browser
with the search word autoregression produced 17,600 sites, the word autoregressive
produced 89,700! Nevertheless, there are still gaps in the theory of AR approx-
imation that need to be filled if AR modelling is to be routinely extended to the
type of long memory processes currently employed to investigate empirical time
series that exhibit long-term persistence. A brief history of the application of long
memory processes and a review of various statistical procedures for analyzing such
processes is provided in Beran (1992, 1994), see also Baillie (1996).

In order to set the scene, let y(t) for t ∈ Z denote a linearly regular, covari-
ance-stationary process,

y(t) =
∞∑

j=0

κ( j)ε(t − j), (1)

where ε(t), t ∈ Z, is a zero mean white noise process with variance σ 2 and the
impulse response coefficients satisfy the conditions κ(0) = 1 and

∑
j≥0 κ( j)2 <

∞.

Assumption 1 Let E t denote the σ -algebra of events determined by ε(s), s ≤ t .
It will be supposed throughout the paper that ε(t) is ergodic and that

E
[
ε(t) | Et−1

] = 0 and E
[
ε(t)2 | Et−1

] = σ 2 . (2)

Furthermore, E
[
ε(t)4] < ∞.

Assumption 1 imposes a classical martingale difference structure on the innovations
ε(t). The significance of this assumption here is that it implies that the minimum
mean squared error predictor of y(t) given Et−1, ȳ〈t |t−1,...,−∞〉 say, is the linear
predictor, Hannan and Deistler (1988, Theorem 1.4.2).

Consider now the best linear predictor of y(t) based on the finite past y(t − j),
j = 1, . . . , h. Let γ (τ) = γ (−τ) = E[y(t)y(t + τ)] = σ 2∑

r≥0 κ(r)κ(τ + r),
τ = 0, 1, . . ., denote the autocovariance function of the process y(t). The coeffi-
cients of the minimum mean squared error predictor are obtained by solving the
Yule–Walker equations

h∑

j=0

αh( j)γ ( j − k) = δ0kσ
2
h k = 0, 1, . . . , h, (3)

for αh( j), j = 1, . . . , h, where δ0k is Kronecker’s delta, αh(0) = 1 and σ 2
h =

E[εh(t)2] is the minimizing value of the prediction error variance of the prediction
error

εh(t) = y(t)− ȳ〈t |t−1,...,t−h〉 =
h∑

j=0

αh( j)y(t − j) (4)

associated with the best linear predictor ȳ〈t |t−1,...,t−h〉 = −αh(1)y(t − 1)− · · · −
αh(h)y(t − h).
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Heuristically speaking it is clear that h must be allowed to go to infinity in
order to capture the influence of effects in the remote past and it seems reason-
able to suppose that as h → ∞ the best linear predictor ȳ〈t |t−1,...,t−h〉 determined
from the AR(h) model implicit in the Yule–Walker calculations will form a good
approximation to the optimal predictor ȳ〈t |t−1,...,−∞〉.

Results currently available on the properties of AR(h) models when the autore-
gressive order h is allowed to increase with the sample size T are usually predicated
on the assumption that the process admits an infinite AR representation with coeffi-
cients that tend to zero at an appropriate rate. These assumptions are often expressed
in terms of particular summability conditions on the AR coefficients themselves,
or equivalently the Wold representation. Thus it is commonly assumed that (1) the
transfer function associated with Wold’s representation,

k(z) =
∞∑

j=0

κ( j)z j ,

is invertible, which following common practice is defined to mean k(z) �= 0, |z| ≤
1, and, (2) a summability condition such as

∑
j≥0 |κ( j)| < ∞, or

∑
j≥0 j |κ( j)|2 <

∞, or
∑

j≥0 j
1
2 |κ( j)| < ∞ holds. See Hannan and Deistler (1988, Sect. 7.4) for

example. There are two critical cases that do not meet such conditions (1) non-
invertible processes, of course, and (2) fractionally integrated processes. One con-
tribution of this paper is to show that such assumptions can be relaxed and that
results on the statistical properties of AR approximations can be extended to allow
for fractionally integrated and non-invertible processes.

Fractionally integrated processes were introduced by Granger and Joyeux
(1980) and were independently described in Hosking (1980). The class of frac-
tionally integrated processes can be characterized by the specification

y(t) =
∑

j≥0

κ( j)ε(t − j) = k(z)ε(t) = m(z)

(1 − z)d
ε(t)

wherein m(z) = ∑ j≥0 µ( j)z j and, as will be done henceforth in expressions of
this type, the indeterminate z is interpreted as the lag operator, that is zε(t) =
ε(t − 1). For any b > −1 we can expand the operator (1 − z)b via a binomial
expansion and rearranging terms in k(z) = m(z)/(1− z)d we obtain the result that

κ( j) =
j∑

r=0

µ( j − r)	(r + d)

	(r + 1)	(d)
j = 1, 2, . . .

where the gamma function 	(x) = ∫∞
0 t x−1e−t dt for x ≥ 0 and the relation

	(x +1) = x	(x) defines 	(x) for x < 0. If m(z) is such that
∑

j≥0 |µ( j)| < ∞,
then using Sterling’s approximation it can be shown that

κ( j) ∼ m(1)

	(d)
jd−1 as j → ∞ . (5)
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From (5) it follows that
∑

j≥0 |κ( j)|2 < ∞ if |d| < 0.5 and y(t) is well-defined
as the limit in mean square of a covariance-stationary process with spectral density

f (ω) = σ 2|k(eiω)|2
2π

= σ 2|m(eiω)|2
2π |1 − eiω|2d

.

Using the result that |1−eiω|2d = |2 sin(ω/2)|2d and sin(ω/2) ∼ ω/2 asω → 0 we
find that the spectral density obeys the inverse power law f (ω)∼ σ 2|m(1)|2/2πω2d

as ω approaches zero. Similarly, the autocovariance function declines at a hyper-
bolic rate, γ (τ) ∼ Cτ 2d−1, C �= 0, as τ → ∞. Throughout the paper C will
stand for a universal, though not the same, constant. Note that the sequence γ (τ)
is absolutely summable if d ∈ (−0.5, 0), but not if d ∈ (0, 0.5). In the former case
y(t) is sometimes said to have intermediate memory, and in the latter case long
memory.

This paper extends the theory of AR approximation to both intermediate and
long memory processes, and coincidentally non-invertible processes. Beran et al.
(1998) discuss the modelling of finite order AR processes driven by fractional
Gaussian noise; here we consider the application of long AR approximations to
general fractionally integrated processes. We establish uniform convergence rates
for the sample autocovariances and derive corresponding convergence rates for
the estimates of AR(h) approximations under regularity conditions that allow for
fractionally integrated and non-invertible processes. A central limit theorem for the
coefficient estimates is also obtained. All these results are, to the authors knowl-
edge, new to the literature. A major contribution of this paper is to provide a
verification of a conjecture of Beran (1992, p. 410) concerning the extension of a
result on the predictive optimality of AIC due to Shibata (1980) to fractional and
non-invertible processes.

The paper proceeds as follows. Section 2 reviews results from the prediction
theory of stochastic processes that provide a rationale for a consideration of AR
approximations in more general settings than are currently considered. Section 3
outlines the estimation techniques to be discussed. As well as providing basic back-
ground, Sects. 2 and 3 establish further notation and present some basic assump-
tions. Section 4 lists some of the fundamental results that underly the statistical
properties of the estimators considered. The properties of AR approximations are
discussed in detail in Sects. 5 and 6 the consequences of noninvertibility are inves-
tigated. Section 7 of the paper presents a central limit result for the AR estimator.
Section 8 closes the paper with a small simulation study illustrating the (finite
sample) practical impact of the (asymptotic) theoretical results obtained. Proofs
are assembled together in the appendix.

2 Linear prediction and autoregressive approximation

Since by assumption y(t) is a regular process then we know from a famous result
due to Szegö (1939) and Kolmorgorov (1941) that

∫ π
−π log{ f (ω)} dω > −∞

and it is not possible to determine y(t + 1) precisely from its own history up to
time t , i.e.
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σ 2 = 2π exp

⎧
⎨

⎩
1

2π

π∫

−π
log{ f (ω)} dω

⎫
⎬

⎭ > 0 . (6)

Factorization of f (ω) implies that k(z) belongs to the Hardy class H2, has no
zeroes inside the unit circle, and |k(eiω)|2 > 0 almost everywhere (a.e.) where
|k(eiω)|2 = limρ↑1 |k(ρeiω)|2 (see inter alia Anderson, 1971, Sect. 7.6). The con-
dition k(z) �= 0, |z| ≤ 1, need not hold, however, and k(z) does not have to
be invertible in order for there to be an autoregression that yields an appropriate
approximation to y(t).

Rewriting the Yule–Walker equations in matrix–vector notation yields �hαh =
−γ h where �h = [γ (i − j)]i, j=1,...,h , αh = (αh(1), . . . , αh(h))′ and γ h =
(γ (1), . . . , γ (h))′. Regularity of y(t) implies that �h is nonsingular for all h and it
follows that αh is unique. Using the Levinson (1947) and Durbin (1960) algorithm
to solve (3) it can be shown that ah(z) =∑h

j=0 αh( j)z j �= 0, |z| ≤ 1, and that σ 2
h

is monotonically decreasing in h. Moreover, basic Hilbert space arguments imply
that limh→∞ σ 2

h = σ 2. The later is an immediate consequence of the following
result, see Anderson (1971, Theorem 7.6.6) for example.

Lemma 1 If y(t) is a linearly regular, covariance-stationary process then the limit
of E[(εh(t)− ε(t))2] as h → ∞ is zero.

We can therefore think of an infinite autoregressive, AR(∞), representation of
y(t) as arising, not by inverting k(z), but from the limit of the AR operators ah(z)
as h → ∞. Indeed, Wold (1938) first derived (1) by fitting autoregressions of ever
increasing order.

Example 1 Suppose that y(t) = ε(t) − ε(t − 1). Then y(t) is regular and the
predictor ȳ〈t |t−1,...,t−h〉 is well defined for all h ≥ 1. Solving the Yule–Walker
equations with

�h = σ 2

⎡

⎢⎢⎢⎢⎢⎣

2 −1 0 . . . 0
−1 2 −1 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . . −1

0 . . . 0 −1 2

⎤

⎥⎥⎥⎥⎥⎦
and γ h = σ 2

⎡

⎢⎢⎢⎣

−1
0
0
0
0

⎤

⎥⎥⎥⎦

it is easily verified that the solution is

αh =
(

h

h + 1
,

h − 1

h + 1
, . . . ,

1

h + 1

)′
and σ 2

h = σ 2
{

1 + 1

h + 1

}
.

Clearly y(t) is not invertible, and although substituting k(z) = 1 − z into the
recursions, α(0) = κ(0) = 1,

∑ j
i=0 κ(i)α( j − i) = 0, j = 1, 2, . . ., that define

the reciprocal a(z) =∑ j≥0 α( j)z j = 1/k(z), yields the algebraic result α( j) =
1 for all j , the series

∑
j≥0 y(t − j) is not convergent in mean square since
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E[(∑ j≥n y(t − j))2] = σ 2 for all n ≥ 1. Nevertheless, expanding the prediction
error process

εh(t) =
h∑

j=0

{
1 − j

h + 1

}
y(t − j)

as a function of the innovations and rearranging terms gives

εh(t) = ε(t)− 1

h + 1

h+1∑

j=1

ε(t − j) .

Since ε(t) are martingale differences the second term in this last expression obeys
the law of the iterated logarithm in h and εh(t) converges to ε(t) almost surely
(a.s.) as h → ∞, not just in mean square. �

Example 2 Now suppose that y(t) is a fractional noise process, y(t) = (1 −
z)−dε(t), |d| < 0.5. Set ψ( j) = 	( j − d)/[	( j + 1)	(−d)], j = 1, 2, . . ., the
coefficients in the binomial expansion of (1 − z)d . Then it can be shown that y(t)
is the solution to the stochastic difference equation

∑
j≥0 ψ( j)y(t − j) = ε(t).

Thus y(t) admits an infinite AR representation for all d ∈ (−0.5, 0.5) even though
k(z) = (1 − z)−d is not invertible in the conventional sense if −0.5 < d < 0.
Inserting the recursion γ (h) = γ (h − 1)(h + d − 1)/(h + d), h = 1, 2, . . . ,
γ (0) = σ 2	(1−2d)/	2(1−d), into the Levinson–Durbin algorithm we find that

αh( j) = ψ( j)

{
	(h + 1)	(h + 1 − d − j)

	(h + 1 − j)	(h + 1 − d)

}

for j = 1, . . . , h and

σ 2
h = σ 2	(h + 1)	(h + 1 − 2d)

	2(h + 1 − d)
.

Now, from Sterling’s approximation it follows that 	(x + 1 + a)/	(x + 1) =
xa{1+o(1)} for |a| < 1 as x → ∞ and from this it is straightforward to show that

	(h + 1)	(h + 1 − 2d)

	2(h + 1 − d)
=
{

1 + (1 − d)

h

}d

{1 + o(1)}

and σ 2
h → σ 2 as h → ∞, illustrating directly the consequence of Lemma 1 in

this case. It also follows that |αh( j)−ψ( j)| → 0 for all j = 1, . . . , h as h → ∞
for, as might have been anticipated, the sequence of autoregressions characterized
by ah(z), h = 1, 2, . . . , converge in mean square to the infinite AR representation
(1 − z)d y(t) = ε(t). �


From the preceding discussion it is apparent that it is the regularity of y(t) that is
important in the context of AR modelling rather than invertibility. This observation
motivates the following assumption:

Assumption 2 The series y(t) is a linearly regular, covariance-stationary process
with Wold representation y(t) =∑ j≥0 κ( j)ε(t − j) where k(z) = m(z)/(1 − z)d

for |d| < 0.5 and m(z) is a causal transfer function with impulse response coeffi-
cients satisfying

∑
j≥0 |µ( j)| < ∞.
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3 Model fitting

Let y(t), t = 1, . . . , T denote a realisation of T observations on an observed
process and set

cT (r) = cT (−r) = T −1
T∑

t=r+1

y(t − r)y(t) r = 0, 1, . . . , T − 1 , (7)

the sample autocovariance function. Substituting cT (r) for γ (r) in the Yule–Walker
equations and solving for αh( j), j = 1, . . . , h, and σh yields estimates of the
parameters in the AR(h)model. We will denote the Yule–Walker estimator and its
associated estimates by the use of an over-bar. This estimator can be readily calcu-
lated via the Levinson–Durbin recursions, and being based on Toeplitz calculations
āh(z) will be stable. The variance estimate σ̄ 2

h = cT (0)+∑h
j=1 ᾱh( j)cT ( j) need

not minimize the empirical mean squared error however.
Estimating the parameters by directly minimizing the observed mean squared

error leads to the least squares estimates of course, which we shall denote by use
of a carét. The least squares estimator is obtained by solving the normal equations
Mh α̂h = −mh where

Mh = T −1
T∑

t=1

⎡

⎢⎣
y(t − 1)

...
y(t − h)

⎤

⎥⎦
(
y(t − 1, . . . , y(t − h))

and

mh = T −1
T∑

t=1

y(t)

⎡

⎢⎣
y(t − 1)

...
y(t − h)

⎤

⎥⎦ .

By way of contrast with the Yule–Walker estimator, the prediction error variance
estimate σ̂ 2

h = T −1∑T
t=1(y(t)+ α̂h(1)y(t −1)+· · ·+ α̂h(h)y(t −h))2 minimizes

the observed mean squared error, but there is no guarantee that âh(z)will be stable.
In the above expressions the pre-sample values y(1−h), . . . , y(0) are assumed

to be equal to zero. For ease of exposition and notational simplicity summations
will continue to be expressed in this manner in what follows. In practice the range
of summation for the least squares estimator is often taken as t = h+1, . . . , T . The
effects of the elimination of the initial terms will, for given h, be asymptotically
negligible. Efficient numerical methods for solving least squares problems of this
type are readily available of course.

As will be shown below, (α̂′
h, σ̂

2
h ) and (ᾱ′

h, σ̄
2
h ) are asymptotically equivalent

under the regularity conditions employed here, but they can exhibit quite different
finite sample behaviour.

4 Some asymptotic theory

We begin with some asymptotic properties of the basic statistics that form the
building blocks of the Yule–Walker and least squares estimators.
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Theorem 1 Suppose that y(t) is a covariance-stationary process that satisfies

Assumption 1 and Assumption 2 and that HT = o{(T/ log T )
1
2 −d ′ } where d ′ =

max{0, d}. Then with probability one

max
0≤τ≤HT

|cT (τ )− γ (τ)| = O

{(
log T

T

) 1
2 −d ′}

.

This result is of interest in its own right for it indicates that the convergence rate of
the autocovariance estimates of a fractional process equals that that obtains in the
standard stationary case if d < 0 and y(t) has intermediate memory, but if d > 0
and y(t) exhibits long memory then the convergence can be much slower.

Let

cT ( j, k) = T −1
T∑

t=1

y(t − j)y(t − k)

= T −1
T∑

t=max{ j,k}+1

y(t − j)y(t − k) j, k = 0, 1, . . . , HT .

Whereas the autocovariance estimates cT (τ ) are used to calculate ᾱh , it is the lag
covariances cT ( j, k) that determine the normal equations that define α̂h .

Theorem 2 Under the same conditions as for Theorem 1

max
0≤τ≤HT

max| j−k|=τ |cT ( j, k)− γ (τ)| = O{(log T/T )
1
2 −d ′ } a.s.

uniformly in j, k = 0, 1, . . . , HT .

Combining Theorem 1 with Theorem 2 gives rise to the following corollary.

Corollary 1 If y(t) satisfies assumptions 1 and 2 then the Yule–Walker and least
squares AR estimators ᾱh and α̂h are asymptotically equivalent and

‖α̂h − ᾱh‖2 = O

{(
h1+4d

λmin(�
4
h)

)(
log T

T

)1−2d ′}

+O

{(
h

λmin(�
2
h)

)(
log T

T

)1−2d ′}

with probability one.

In the light of Corollary 1 the results that follow will be expressed and proven in
terms of the least squares or the Yule–Walker estimates, whichever is most conve-
nient, it being understood that equivalent asymptotic properties will hold for both
estimators.

In what follows consideration will be given to the properties of the estimates
obtained by fitting an AR(h) model where the order h is allowed to increase with
T . In the conventional case where an AR(∞) representation exists it is common
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practice to analyse the truncation effects due to employing an AR(h) approxima-
tion using Baxter’s inequality, Baxter (1962). Since under present assumptions an
infinite AR representation is not guaranteed to exist this technique is not available
to us. We can, nevertheless, handle the consequences of using an AR(h) approxi-
mation if we know something of the relationship between the statistical properties
of realizations of the innovations ε(t) and realizations of the prediction errors εh(t).

Theorem 3 Let ε(t) and εh(t) denote the innovations and prediction errors associ-
ated with the minimum mean squared error predictors ȳ〈t |t−1,...,−∞〉 and
ȳ〈t |t−1,...,t−h〉 of y(t) where y(t) satisfies Assumptions 1 and 2. Then

T −1
T∑

t=1

ε(t){εh(t)− ε(t)} = O

{(
log log T

T

) 1
2
}

with probability one, uniformly in h.

Theorem 3 implies that

T −1
T∑

t=1

εh(t)
2 − T −1

T∑

t=1

ε(t)2 = T −1
T∑

t=1

{εh(t)− ε(t)}2

+O{(log log T/T )
1
2 }, (8)

which provides an empirical counterpart to the result that σ 2
h ≥ σ 2 in that the

first term on the right hand side of (8) will converge to E[(εh(t) − ε(t))2] ≥ 0,
by ergodicity, and thus for T sufficiently large T −1∑T

t=1 εh(t)2 will be bounded
below by T −1∑T

t=1 ε(t)
2, with the difference converging to zero as h increases,

see Lemma 1. It will be seen that (8) plays an important role in determining the
behaviour of model selection devices for large T , as does the following result.

Theorem 4 Let y(t) and εh(t) be as in Theorem 3. Then uniformly in h ≤ HT

max
1≤ j≤h

T −1
T∑

t=1

εh(t)y(t − j) = O

{(
log T

T

) 1
2 −d ′}

a.s..

Theorem 4 is the empirical counterpart of the result that the prediction error εh(t) is,
by construction, orthogonal to y(t −1), . . . , y(t −h), that is E[εh(t)y(t − j)] = 0,
j = 1, . . . , h.

5 Autoregressive modelling

In practice, of course, neither ε(t) nor εh(t) can be observed and their properties
will have to be deduced by fitting AR models to the data. We begin, therefore, by
first establishing the consistency of the coefficient estimates of the AR(h) model
to those of the AR(h) approximation to the process.
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Theorem 5 If y(t) is a stationary process that satisfies Assumption 1 and Assump-
tion 2 then uniformly in h ≤ HT

h∑

j=1

|α̂h( j)− αh( j)|2 = O

{(
h

λmin(�
2
h)

)(
łogT

T

)1−2d ′}
a.s..

The following theorem relates to the residuals

ε̂h(t) =
h∑

j=0

α̂h( j)y(t − j)

as estimates of the prediction errors εh(t).

Theorem 6 Under the same assumptions as for Theorem 5

T −1
T∑

t=1

εh(t){ε̂h(t)− εh(t)} = O

{(
h

λmin(�h)

)(
log T

T

)1−2d ′}

with probability one, uniformly in h ≤ HT .

Comparison of Theorem 6 with Theorem 3 indicates that whereas the devi-
ation of εh(t) from ε(t) relative to the magnitude of ε(t), as measured by their
covariation, converges to zero at a rate that is independent of d the same is not true
of the corresponding relationship between ε̂h(t) and εh(t). The relevance of this
observation stems from the fact that it is common practice to determine the order
of the model to be employed by minimizing a model selection criterion of the form

SCT (h) = log(σ̂ 2
h )+ hCT

T

over the range h = 0, 1, . . . ,MT where σ̂ 2
h = T −1∑T

t=1 ε̂h(t)2 and CT > 0 is
chosen by the practitioner such that CT /T → 0 as T → ∞, as is MT < HT . If
CT = 2 we have AIC, if CT = log T we have BIC, Schwarz (1978), and setting
CT = log log T we obtain the criterion advanced in Hannan and Quinn (1979).

Consider the function

LT (h) = (σ 2
h − σ 2)+ hσ 2

T
.

Shibata (1980) introduced LT (h) as a figure of merit in the context of fitting AR
models to a truly infinite-order process. Shibata shows that if an AR(h) model is
fitted to a stationary Gaussian process that has an AR(∞) representation and it is
used to predict an independent realization of the same process then the difference
between the mean squared prediction error of the fitted model and the innovation
variance converges in probability to LT (h). Thus, if y(t)′ denotes an independent
realization of the process y(t) then

E

⎡

⎣
(

y(t)′ +
h∑

i=1

α̂h(i)y(t − i)′
)2⎤

⎦

= σ 2
h + E

⎡

⎣
h∑

j=1

h∑

i=1

(α̂h(i)− αh(i))(α̂h( j)− αh( j))γ ( j − i)

⎤

⎦
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and given that T
1
2 (α̂h − αh)

L→ N (0, σ 2�−1
h ) then the asymptotic expectation

and probability limit of the second term is hσ 2/T . Noting that
E[(y(t)′ − ȳ′〈t |t−1,...,t−h〉)2] = σ 2

h ≥ limh→∞ E[εh(t)′2] = σ 2 we can see that
the first term of LT (h) measures the fit of the model and the second reflects the
inaccuracy or uncertainty in the determination of the parameters of ȳ′〈t |t−1,...,t−h〉 =
−∑h

j=1 αh( j)y(t − j)′. Now, LT (h) is bounded below by LT (h∗
T ) in the range

h = 0, 1, . . . ,MT where LT (h∗
T ) = minh=1,...,MT LT (h) and Shibata defines a se-

quence of selected orders h′
T as being efficient if limT →∞ LT (h′

T )/
LT (h∗

T ) = 1.
Although the regularity conditions imposed by Shibata (1980) are too restric-

tive to be applicable here a similar rationale for consideration of LT (h) can be
given. Observe also that by Theorem 6 the empirical difference T −1∑T

t=1 ε̂h(t)2 −
T −1∑T

t=1 ε(t)
2 equals

T −1
T∑

t=1

εh(t)
2 − T −1

T∑

t=1

ε(t)2 + T −1
T∑

t=1

(ε̂h(t)− εh(t))
2

+ O

{
h

(
log T

T

)1−2d ′}
.

The limit of T −1∑T
t=1 εh(t)2 − T −1∑T

t=1 ε(t)
2 is σ 2

h − σ 2 and the third term

T −1
T∑

t=1

(ε̂h(t)− εh(t))
2 = T −1

T∑

t=1

h∑

j=1

h∑

i=1

(α̂h(i)− αh(i))

× (α̂h( j)− αh( j))y(t − i)y(t − j) .

is a consistent estimate of
∑h

j=1
∑h

i=1(α̂h(i)−αh(i))(α̂h( j)−αh( j))γ ( j − i) by
Theorem 2. Thus LT (h) can be viewed as providing a limiting bound to the empir-
ical difference in the mean squared prediction error and the innovation variance.

Set

L̄T (h) = log

(
1 +
∑T

t=1 εh(t)2 −∑T
t=1 ε(t)

2

∑T
t=1 ε(t)

2

)
+ h

T

and let h̄∗
T denote a sequence of non-negative integers at each of which the mini-

mum of L̄T (h) with respect to h is attained, that is

L̄T (h̄
∗
T ) = min

0≤h≤MT
L̄T (h)

or equivalently h̄∗
T = argmin0,1,...,MT

L̄T (h).

Theorem 7 If y(t) is a covariance-stationary process that satisfies Assumptions
1 and 2 then

lim
T →∞

∣∣∣∣∣
σ 2 L̄T (h̄∗

T )

LT (h∗
T )

− 1

∣∣∣∣∣ = 0

almost surely where h∗
T = argmin0,1,...,MT

LT (h).
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The criterion L̄T (h) is unfeasible, but letting AICT (h) denote the criterion
SCT (h) when CT = 2 we can deduce from Theorem 8 presented immediately
below that

max
1≤h≤MT

∣∣AICT (h)− L̄T (h)
∣∣ ≤
∣∣∣∣∣log

(
T −1

T∑

t=1

ε(t)2
)∣∣∣∣∣+

MT

T

+ O

{(
MT

λmin(�MT )

)(
log T

T

)1−2d ′}
. (9)

Theorem 8 Under the same assumptions as for Theorem 7

SCT (h) = log

(
T −1

T∑

t=1

ε(t)2
)

+ log

(
1 +
∑T

t=1 εh(t)2 −∑T
t=1 ε(t)

2

∑T
t=1 ε(t)

2

)

+ hCT

T
+ O

{(
h

λmin(�h)

)(
log T

T

)1−2d ′}

with probability one, uniformly in h = 0, 1, . . . , HT .

Note that if
(
MT /λmin(�MT )

)
(log T/T )1−2d ′

converges to zero as T → ∞
then the only non-vanishing term on the right hand side of (9) (the first term)
is independent of both d and h. We can therefore conclude that hAIC

T /h̄∗
T → 1 as

T → ∞ where hAIC
T is the autoregressive order determined by AICT (h) provided

that MT /λmin(�MT ) = o
{
(T/ log T )1−2d ′}

.

Theorem 9 Suppose that y(t) is a covariance-stationary process that satisfies
Assumptions 1 and 2, and let

hAIC
T = argmin0,1,...,MT

AICT (h)

where limT →∞
(
MT /λmin(�MT )

)
(log T/T )1−2d ′ = 0. Then the AR(hAIC

T )model
is asymptotically efficient in the sense that

LT (h
AIC
T ) = LT (h

∗
T ){1 + o(1)}

almost surely as T → ∞.

Alternative methods of autoregressive order determination that do not share the
same structure as SCT (h) above have been proposed in the literature. The criterion
autoregressive transfer function suggested by Parzen (1974) and the mean squared
prediction error criterion of Mallows (1973), for example. Parzen’s criterion can
be expressed as

CATT (h) = 1 − (T − h)σ̃ 2

T σ̂ 2
h

+ h

T

and Mallow’s statistic

MCT (h) = T

(
σ̂ 2

h

σ̃ 2 − 1

)
+ 2h
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where

σ̃ 2 = 2π exp

⎧
⎨

⎩(2πN )−1
N∑

j=1

log

{
(2π)−1

T −1∑

τ=1−T

cT (τ ) cos(2π jτ/T )

}
+ γ ′

⎫
⎬

⎭ ,

γ ′ = 0.57721 (Euler’s constant) and N = [(T − 1)/2], a nonparametric estimate
of the innovation variance constructed from the periodogram by analogy with (6).
Simple algebra shows that

CATT (h)− CATT (h − 1) =
{
(T − h + 1)σ̂ 2

h − (T − h)σ̂ 2
h−1

T σ̂ 2
h σ̂

2
h−1

}
σ̃ 2 + 1

T

and

MCT (h)− MCT (h − 1) = T

(
σ̂ 2

h − σ̂ 2
h−1

σ̃ 2

)
+ 2 ,

while from Theorem 6 and expression (8) it follows that

AICT (h)− AICT (h − 1) = σ̂ 2
h − σ̂ 2

h−1

T −1
∑T

t=1 ε(t)
2

+ 2

T
+ o(σ̂ 2

h − σ̂ 2
h−1) .

Similarly, it is straightforward to show that the final prediction error criterion

FPET (h) =
(

T + h

T − h

)
σ̂ 2

h

introduced by Akaike (1970) satisfies log FPET (h) = AICT (h)+ O(T −2). Thus,
bare remainder terms, we can anticipate that these criteria will move together and
will be minimized at the same value of h. This suggests, and it can be shown, that
CATT (h), MCT (h) and FPET (h) will also be asymptotically efficient selection
criteria.

6 The non-invertible case

Heretofore, specific reference has not been made to the non-invertible case. This is
because the existence of unit roots does not invalidate our basic assumptions and
the results presented thus far will hold regardless. It is apparent from Corollary 1
and Theorems 5, 6, 8 and 9, however, that the behaviour of λmin(�h) will play an
important role via its influence on the various orders of magnitude presented in
these results.

To investigate the impact of λmin(�h) in further detail it is necessary to impose
additional structure upon the process. This is done in the following lemma.
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Lemma 2 Suppose Assumption 2 holds. If m(z) �= 0, |z| ≤ 1, then as h → ∞

λmin(�h)

{
≥ infω σ 2|m(eiω)|2/|1 − eiω|2d > 0 when d ≥ 0,
= O(h2d) when d < 0.

If, however, there exists a set of frequencies θ j ∈ (0, π) and numbers ν j > 0, such
that for each j = 1, . . . , n, |m(eiω)| ∼ |φ j (ω)||ω−θ j |ν j asω → θ j , where φ j (ω)
is slowly varying at θ j , then

λmin(�h)

{
= O(h−2 max{ν1, ν2, ..., νn}) when d ≥ 0,
= O(h−2 max{−d, ν1, ν2, ..., νn}) when d < 0.

The factors |φ j (ω)||ω − θ j |ν j introduced in Lemma 2 mimic the effect of an
operator m(z) with roots on the unit circle and the lemma indicates how zeroes
in |k(eiω)|2 can translate into a measure of the proximity of λmin(�h) to zero as
h → ∞. When taken in conjunction with the results presented in Sects. 4 and 5,
Lemma 2 leads to a consideration of terms of order O{h1+4q(log T/T )1−2d ′ }, or
smaller, where q ≥ 0. In particular, to operationalize the estimation procedures
examined above a value for MT must be chosen that satisfies the requirements of
Theorem 9, namely, MT must be such that M1+4q

T (log T/T )1−2d ′ → 0 as T → ∞
for all possible values of q and d , both of which are unknown to the practitioner
of course. One such choice is MT = [c(log T )a], the integer part of c(log T )a for
some a ≥ 1 and c > 0.

It can be argued that processes observed in the real world are unlikely to exhibit
spectral zeroes, and hence that the supplementary conditions of Lemma 2, although
technically convenient, are unrealistic. As pointed out by a referee, a more mean-
ingful extension might be to consider situations where k(z) = m(z)/[(1 − z)d

(1 + z)s
∏n

j=1(1 − 2 cos(θ j )z + z2)ν j ] and y(t) is a member of the class of
Gegenbauer processes, Grey et al. (1989). An analysis of AR approximations to
Gegenbauer processes would take us too far afield in this paper.

7 A central limit theorem

We now wish to establish the asymptotic distribution of the AR estimator α̂h , or
equivalently ᾱh , under the regularity conditions considered in this paper. The diffi-
culty is that the convergence rate of the autocovariance estimates upon which the
coefficient estimators are based depends on the value of d . If −0.5 < d < 0.25

then the asymptotic distribution of T
1
2 (cT (τ )−γ (τ)) is normal, but when d ≥ 0.25

the autocovariances are no longer
√

T consistent. See Hosking (1996) for details.
Given that in practice d will not be known, we seek a transformation that will lead
to a conventional

√
T consistent, asymptotic normal approximation in which the

parameters of the approximating distribution can be determined without explicit
knowledge of d .

An interesting feature of the autocovariances noted by Hosking (1996, p.268)
is that when d ∈ [0.25, 0.5) they contain a common slowly varying component

that can be removed by differencing. Indeed, in this case T
1
2 (cT (τ ) − γ (τ)) =
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T 2d− 1
2 �T − ζT (τ ) where �T and ζT (τ ) have non-degenerate limiting distribu-

tions, a Rosenblatt process and a Normal distribution respectively. Thus, if υ(τ) =
γ (τ)− γ (0) and uT (τ ) = cT (τ )− cT (0) then from Hosking (1996, Theorem 5) it

follows that, whatever is the value of d , T
1
2 {uT (τ )− υ(τ)}, for τ = 1, . . . , h, will

have a non-degenerate multivariate Normal limiting distribution with mean zero
and covariance matrix

�h =
[

1

2

∞∑

s=−∞
(γ (s)− γ (s − k)− γ (s + l)

+γ (s − k + l))2 + K4υ(k)υ(l)

]

k,l=1,...,h

where K4 is the fourth cumulant of ε(t). This suggests that some form of differenc-
ing, or centering, may be necessary to achieve our desired outcome and ultimately
gives rise to the following result.

Theorem 10 Let Ch = Ih − h−111′ denote the hth order centering matrix where
1 = (1, 1, . . . , 1)′ is the h element sum vector. Set �h = Ih + Ph where Ph equals

⎡

⎢⎢⎢⎢⎢⎢⎣

αh(2) αh(3) · · · · · · αh(h) 0
αh(3) αh(4) · · · αh(h) 0 0
...

... 0 0 0
αh(h − 1) αh(h)
αh(h) 0 · · · · · · 0 0

0 0 · · · · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 · · · · · · 0 0
αh(1) 0 · · · · · · 0 0
αh(2) αh(1) 0 · · · · · · 0
...

...
αh(h − 2) αh(h − 3) · · · αh(1) 0 0
αh(h − 1) αh(h − 2) · · · · · · αh(1) 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Then for any h component vectors λh, where 1 ≤ h ≤ MT , MT = [c(log T )a],
a ≥ 1, c > 0, such that 0 < ‖λh‖ < ∞ the scalars T

1
2 λ′

hCh�h(ᾱh−αh) form a tri-

angular array equal to βh,T +ρh,T where ρh,T = op(1) and βh,T /ηh
L→ N (0, 1)

where η2
h = λ′

h(Ch�h�h�′
hCh)λh.

A corollary of Theorem 10, that follows from Bernstein’s Lemma, is that if
λh = Chλh then a zero mean normal distribution with variance λ′

h(�h�h�′
h)λh

can be used as an asymptotic approximation to the large sample distribution of

T
1
2 λ′

h�h(ᾱh − αh). The condition that λh = Chλh implies, of course, that the
elements of λh must sum to zero.
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8 Empirical illustrations

This section of the paper reports the outcome of some simulation experiments
designed to illustrate the theoretical results and properties discussed above. The
experiments are based on three data generating mechanisms, the non-invertible
moving average process y(t) = ε(t) − ε(t − 1) of Example (1) and two cases of
the fractional noise process y(t) = ε(t)/(1 − z)d of Example (2) with d = 0.125
and 0.375. For all three processes ε(t) is standardized, Gaussian white noise. For
each process the sample sizes T = 100, 200, 500, 1, 000 were considered and
the values and figures presented here are all based on R = 1, 000 replications.
In light of the discussion in Sect. 3, the behaviour of both the Yule–Walker and
least squares estimates is reported here. The properties of the estimation proce-
dure proposed by Burg (1968) were also investigated. Burg’s estimator produces
an estimate of ah(z) that is, like the Yule–Walker estimate, stable, but the finite
sample properties of Burg’s estimator prove to be almost indistinguishable from
those of the least squares estimate. Detailed particulars of Burg’s algorithm and
other features of the simulations reported here can be found in Grose and Poskitt
(2005), where a more extensive range of simulation experiments are documented.

Figure 1 presents the relative frequency of occurrence of the different orders
given by hAIC

T when T = 100 and the value MT = 2
√

T = [(log T )1.962] = 20 is
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Fig. 1 Relative frequency of occurrence of hAIC
T , T = 100, for a y(t) = ε(t) − ε(t − 1),

b y(t) = ε(t)/(1 − z)0.125 and c y(t) = ε(t)/(1 − z)0.375
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employed. At this sample size the dispersion of hAIC
T about h∗

T is quite large, for all
three processes, and there are no obvious differences in the observed performance
of the two estimators. As T increases, however, first, the orders chosen by hAIC

T
become more concentrated around h∗

T , in accord with the predictions of Sect. 5, and
secondly, the values of hAIC

T produced by the Yule–Walker estimator are generally
smaller than those given by least squares. The latter feature is shown in Table 1,
which gives the average value of hAIC

T compared to h∗
T for each model and sample

size.
Some indication of why the Yule–Walker procedure produces smaller values

of hAIC
T than least squares can be found in Table 2, which presents the empirical

variance and the empirical bias of the estimates of the partial autocorrelation αh(h)
for h = h∗

T . For all three processes and at all sample sizes the Yule–Walker estimate
exhibits a larger bias than does least squares. The bias pushes the estimate of αh(h)
towards the origin, leading to smaller values of h being selected. This behaviour
is most noticeable in the case of the non-invertible moving average process, where
the bias of the Yule–Walker estimate exceeds that of least squares by an order of
magnitude even when T = 1, 000.

Table 1 Average value of hAIC
T compared to h∗

T

Process T h∗
T hAIC

T (LS) hAIC
T (YW)

y(t) = ε(t)− ε(t − 1) 100 9 9.218 7.855
200 13 13.209 11.936
500 21 21.208 19.904

1,000 31 30.993 29.29
(1 − z)0.125 y(t) = ε(t) 100 1 3.27 2.716

200 1 3.181 2.982
500 2 4.224 4.091

1,000 4 5.422 5.331
(1 − z)0.375 y(t) = ε(t) 100 4 4.658 3.916

200 5 6.078 5.484
500 8 8.694 8.326

1,000 12 11.992 11.72

Table 2 Partial autocorrelation estimates for h = h∗
T

Process T αh(h) LS YW

Variance Bias Variance Bias

y(t) = ε(t) 100 0.1 0.010335 −0.00278 0.008645 −0.016423
−ε(t − 1) 200 0.071429 0.004958 −0.00151 0.004601 −0.011105

500 0.045455 0.001991 −0.00028 0.001871 −0.005715
1,000 0.031250 0.001059 −0.00087 0.001041 −0.004680

(1 − z)0.125 y(t) 100 −0.142857 0.011214 0.001727 0.010982 0.003122
= ε(t) 200 −0.142857 0.005617 0.000256 0.005558 0.000974

500 −0.066667 0.002027 0.002196 0.002014 0.002440
1,000 −0.032258 0.001051 0.002046 0.001043 0.002185

(1 − z)0.375 y(t) 100 −0.103448 0.012071 0.028433 0.011374 0.035746
= ε(t) 200 −0.081081 0.005793 0.009894 0.005540 0.013757

500 −0.049180 0.002156 0.007040 0.002104 0.008661
1,000 −0.032258 0.001024 0.003841 0.001007 0.004590
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These results are consistent with findings reported elsewhere. Indeed, it is
known that in finite samples the stability of āh(z) can give rise to significant biases
that are not present with âh(z). Tjøstheim and Paulsen (1983) present empirical
evidence of this phenomenon and show that for finite autoregressions the first term
in an asymptotic expansion of the bias of ᾱh has order of magnitude O(T −1), with
the size of the constant varying inversely with the distance of the zeroes of the
true AR operator from the unit circle. Thus, when the data generating mechanism
shows strong autocorrelation the bias in the Yule–Walker coefficient estimates can
be substantial. This bias is known to feed through to other quantities of interest
such as the prediction error variance, Paulsen and Tjøstheim (1985), and estimates
of power spectra, Lysne and Tjøstheim (1987). Given that fractional processes can
display long-range dependence with autocovariances that decay much slower than
exponentially, similar effects can be anticipated when employing the Yule–Walker
estimates under the current scenario a-fortiori.

Figures 2 and 3 illustrate the impact of the distributional properties discussed
in Sect. 7 for the two fractional noise processes.

Figure 2 plots the empirical distribution of h−1∑h
j=1(ᾱh( j) − α( j)) and

h−1∑h
j=1(α̂h( j) − α( j)), the average deviation or coefficient error of the Yule–

Walker and least squares estimators, when h = h∗
T and T = 500. The density

estimates are constructed from the simulated values using a Gaussian kernel with
bandwidth equal to 75% of the over-smoothed bandwidth i.e., 0.75 ξ 5

√
(243/35R)

where ξ is the standard deviation observed over the replications, see Wand and
Jones (1995). Comparison of the estimated distributions to a normal curve of error
with zero mean and variance ξ2 indicates that when d = 0.125 the distribution
of the average coefficient error is reasonably close to normal for both estima-
tors. When d = 0.375, however, the presence of the Rosenblatt process in the
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Fig. 2 Empirical distribution of h−1∑h
j=1(ᾱh( j)− α( j)) for fractional noise processes y(t) =

ε(t)/(1 − z)d with d = 0.125 and d = 0.375, h = h∗
T and T = 500
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Fig. 3 Observed distribution of ϕλ,T for y(t) = ε(t)/(1 − z)0.375, when λ′
h = (1, 0, . . . , 0,−1),

T = 1, 000

limiting behaviour of the underlying statistics is manifest in a marked distortion
in the distribution relative to the shape anticipated of a normal random variable,
particularly in the right hand tail of the distribution. This distortion is still present
when T = 1, 000 and does not disappear asymptotically.By way of contrast, Fig. 3

plots the observed distributions of ϕ̄λ,T = T
1
2 λ′

h�h(ᾱh−αh)/(λ
′
h(�h�h�′

h)λh)
1
2 ,

h = h∗
T , and, to use an obvious notation, ϕ̂λ,T , obtained from realizations of the

process y(t) = ε(t)/(1 − z)0.375 when λ′
h = (1, 0, . . . , 0,−1) and T = 1, 000.

The empirical distributions are overlayed with a standard normal density. Although
some bias is still apparent even at this sample size, more so for ᾱh than α̂h , kurtosis
and skewness of the type observed previously with this process has now gone and
the operation of Theorem 10 is apparent.

Appendix: Proofs

Proof of Theorem 1 Assume that 1
4 < d < 1

2 . By Theorem 3 of Hosking (1996)
E[(cT (τ )− γ (τ))2] = O(T −2(1−2d)) and from Chebychev’s inequality

Pr

(
|cT (τ )− γ (τ)| > δ

(
log T

T

) 1
2 −d
)

≤ C

δ2

1

(T log T )1−2d
.

Now set �τ(T ) = (cT (τ )− γ (τ))(log T/T )d− 1
2 . Then for T ′ = N ′4/(1−2d)

∞∑

N ′=1

Pr

(
max|τ |≤HT ′

|�τ(T ′)| > δ

)
≤ C

δ2

∞∑

N ′=1

(
1 − 2d

4 log N ′

)3(1−2d)/2 1

N ′2 < ∞

and by the Borel–Cantelli lemma �τ(T ′) → 0 a.s. uniformly in τ , |τ | ≤ HT ′ .
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Let N 2 = T ′. Then for all T such that N 2 < T < (N + 1)2

�τ(T ) =
(

T

log T

log(N + 1)2

(N + 1)2

) 1
2 (1−2d)

(N + 1)2

T
�τ((N + 1)2)

−
(

T

log T

) 1
2 (1−2d) 1

T

(N+1)2∑

t=T +1

(y(t)y(t − τ)− γ (τ))

and

max|τ |≤HT
|�τ(T )| ≤ max|τ |≤HT

(
T

log T

log(N + 1)2

(N + 1)2

) 1
2 (1−2d)(

1 + 1

N

)2

|�τ((N + 1)2)|

+ max|τ |≤HT

(
T

log T

) 1
2 (1−2d) 1

T

∣∣∣∣∣∣

(N+1)2∑

t=T +1

(y(t)y(t − τ)− γ (τ))

∣∣∣∣∣∣
.

(10)

But

T

log T

log(N + 1)2

(N + 1)2
≤ log(N + 1)

log N
→ 1 as N → ∞

and by what has already been shown it follows that the first term on the right hand
side of (10) converges to zero a.s. .

Moreover, using Chebychev’s inequality once more we can bound

Pr

⎛

⎝ max|τ |≤HT

∣∣∣∣∣∣

(N+1)2∑

t=T +1

(y(t)y(t − τ)− γ (τ))

∣∣∣∣∣∣
≥ δ(log T )

1
2 (1−2d)T

1
2 (1+2d)

⎞

⎠ (11)

by

(
(N + 1)2

log(N + 1)2

) 1
2 (1−2d)

· C

δ2(log T )(1−2d)T (1+2d)
· (2N + 1)4d

where the first factor accounts for the maximum being taken over HT < H(N+1)2

terms and the last factor arises because the sum contains (N +1)2 − T < (2N +1)
summands. Thus we can deduce that the probability in (11) is less than

(2N + 1)4d(N + 1)(1−2d)

(2 log N )3(1−2d)/2 N 2+4d
≤ 18

N 1+2d

and hence, via the Borel–Cantelli lemma, that the second term of (10) converges
to zero with probability one since the series {N−(1+2d)} is convergent.

A similar proof using the method of subsequences can be employed to estab-
lish the result for the remaining cases, d = 1

4 , when E[(cT (τ ) − γ (τ))2] =
O(log T/T ), and d ∈ (− 1

2 ,
1
4 ), when E[(cT (τ )− γ (τ))2] = O(T −1). �
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Proof of Theorem 2 The following relationship exists between the elements of the
sequence cT (τ ) and the cT ( j, k) for j − k = τ = 0,±1, . . . ,±HT :

T {cT (τ )− cT ( j, k)} =
T∑

s=BT ( j,k)

y(s − |τ |)y(s) = DT ( j, k, τ ) (12)

where BT ( j, k) = T + 1 − min{ j , k}. Note that DT ( j, k, τ ) contains min{ j , k},
or at most HT , summands. Now, since ε(t) has finite fourth moment

E[y(t)4] = σ 4

⎛

⎝
∞∑

j=0

κ( j)2

⎞

⎠
2

+ K4

∞∑

j=0

κ( j)4 < ∞,

where K4 is the fourth cumulant of ε(t), and the variance of DT ( j, k, τ ) is domi-
nated by C H2

T uniformly in j , k = 0, 1, . . . , HT . Thus

Pr

(
max|τ |≤HT

|DT ( j, k, τ )| ≥ δT

)
< HT

C H2
T

δ2T 2 ≤ C

(log T )3/2T
1
2

(13)

where the final inequality follows since for 0 < d < 1
2 HT = o{(T/ log T )

1
2

(log T/T )d} and (log T/T )d < 1 and HT = o{(T/ log T )
1
2 } for − 1

2 < d ≤ 0.
Along the subsequence T ′ = N ′4 it follows that limN ′→∞ max|τ |≤HT ′

T ′−1|DT ′( j, k, τ )| = 0 a.s. because {N ′−2} is a convergent series. Furthermore, let-
ting N 2 = T ′, then for all T between N 2 and (N + 1)2 we can bound∣∣N−2 DN 2( j, k, τ )− T −1 DT ( j, k, τ )

∣∣ by

∣∣∣∣
(T − N 2)DN 2( j, k, τ )

T N 2

∣∣∣∣

+
∣∣∣∣∣∣

∑BT ( j,k)
s=BN2 ( j,k) y(s − |τ |)y(s)−∑T

s=N 2+1 y(s − |τ |)y(s)
T

∣∣∣∣∣∣
. (14)

The first term in (14) converges to zero uniformly in j , k and τ by what has
already been proved since (T − N 2)/T N 2 ≤ (2N + 1)/N 4 and the second term
converges similarly via an application of Chebychev’s inequality and the Borel–
Cantelli lemma.
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To show the latter, consider the case d ∈ (− 1
2 ,

1
4 ) for example. By Theorems

1 and 2 and Theorem 3 of Hosking (1996) the variance of the numerator can be
bounded by C(T − N 2) ≤ C(2N + 1) uniformly in j , k = 0, 1, . . . , HT so

Pr

⎛

⎝ max|τ |≤HT

∣∣∣∣∣∣

BT ( j,k)∑

s=BN2 ( j,k)

y(s − |τ |)y(s)−
T∑

s=N 2+1

y(s − |τ |)y(s)
∣∣∣∣∣∣
≥ δT

⎞

⎠

< HT · C(2N + 1)

δ2T 2

and HT (2N + 1)/T 2 ≤ 2(N + 1)(2N + 1)/N 4 log(N + 1) < 6/N 2. �

For convenience and completeness we now state a result taken from Poskitt

(2000).

Lemma 3 Let AT and BT denote two h × h (stochastic) matrices such that
‖AT − BT ‖ equals O(CT ) where CT → 0 as T → ∞ and suppose that
lim infT →∞ λmin[BT ] ≥ δh > 0. Then AT is nonsingular for all T sufficiently
large and ‖A−1

T − B−1
T ‖ = (δh)

−2 O(CT ).

Proof of Corollary 1 Let �̄h=[cT (i − j)]i, j=1,...,h and γ̄ h=(cT (1), . . . , cT (h))′.
Then

ᾱh − α̂h = �̄
−1
h γ̄ h − M−1

h mh

= (�̄
−1
h − M−1

h )mh + �̄
−1
h (γ̄ h − mh) . (15)

From Theorem 1 it follows that

lim sup
T →∞

‖�h − �̄h‖2 = O

{
h2
(

log T

T

)1−2d ′}
= o(1)

and hence that

lim inf
T →∞ λmin(�̄h) ≥ λmin(�h)− lim sup

T →∞
‖�h − �̄h‖

= λmin(�h) > 0 .

It can also be shown that lim infT →∞ λmin(Mh) ≥ λmin(�h), using the previous
argument in conjunction with Theorem 2. From Lemma 3 it follows that the norm

‖�̄−1
h − M−1

h ‖ is O{(h/λmin(�
2
h))(log T/T )

1
2 (1−2d ′)}. Now the first term on the

right hand side of (15) can be bounded in norm by ‖(�̄−1
h − M−1

h )‖ · (‖γ h‖ +
‖mh − γ h‖), which equals

O

{(
h

λmin
(�2

h)

)(
log T

T

) 1
2 (1−2d ′) (

h
1
2 (4d−1) + h

1
2

(
log T

T

) 1
2 (1−2d ′))}

,

and the norm of the second term of (15) is O{(h 1
2 /λmin(�h))(log T/T )

1
2 −d ′ }. �
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Proof of Theorem 3 Let r(z) = ∑ j≥1 ρ( j)z j = ah(z)k(z) − 1. Then εh(t) −
ε(t) = r(z)ε(t) =∑ j≥1 ρ( j)ε(t − j). From Parseval’s relation

∑

j≥1

ρ( j)2 = 1

2π

π∫

−π
|ah(e

iω)k(eiω)− 1|2dω = σ−2 E[(εh(t)− ε(t))2] < ∞

and therefore we can conclude that T −1∑T
t=1 ε(t){εh(t)− ε(t)} = O{(log log T/

T )
1
2 } by Theorem 5.3.5. of Hannan and Deistler (1988). �


Proof of Theorem 4 By definition εh(t) =∑h
j=0 αh( j)y(t − j). Simple substitu-

tion now gives us

T −1
T∑

t=1

εh(t)y(t − r)=
h∑

j=0

αh( j)T −1
T∑

t=1

y(t − j)y(t − r)=
h∑

j=0

αh( j)cT ( j, r),

which by Theorem 2 equals

h∑

j=0

αh( j)[γ ( j − r)+ O{(log T/T )
1
2 −d ′ }] .

Since αh( j), j = 1, . . . , h, solve the Yule–Walker equations
∑h

j=0 αh( j)γ ( j −
r) = 0 for r = 1, . . . , h. Moreover, ah(z) �= 0, |z| ≤ 1, and there exists constants
C < ∞ and ζ < 1 such that |αh( j)| < Cζ and

∑h
j=0 |αh( j)| < C(1 − ζ h+1)/

(1 − ζ )<C(1 − ζ )−1 so that
∑h

j=0 αh( j)O{(log T/T )
1
2 −d ′ }=O{(log T/T )

1
2 −d ′ }.

Hence the desired result. �

Proof of Theorem 5 Substituting εh(t) = ∑h

j=0 αh( j)y(t − j) into the normal
equations yields the expression

Mh(α̂h − αh) = T −1
T∑

t=1

εh(t)

⎡

⎢⎣
y(t − 1)

...
y(t − h)

⎤

⎥⎦ .

It follows that

‖α̂h − αh‖2 ≤ 1

λmin(�
2
h)

h∑

j=1

(
T −1

T∑

t=1

εh(t)y(t − j)

)2

and hence that ‖α̂h − αh‖2 = (1/λmin(�
2
h))O{h(log T/T )1−2d ′ } by Theorem 4.

�
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Proof of Theorem 6 From the definition of ε̂h(t) and εh(t) we get

ε̂h(t)− εh(t) =
h∑

j=1

{α̂h( j)− αh( j)}y(t − j)

and from the Cauchy-Schwartz inequality, Theorem 4 and Theorem 5 we have

|T −1
T∑

t=1

εh(t){ε̂h(t)− εh(t)}| = |T −1
T∑

t=1

h∑

j=1

{α̂h( j)− αh( j)}εh(t)y(t − j)|

≤
⎡

⎣‖α̂h−αh‖2 ·
h∑

j=1

(
T −1

T∑

t=1

εh(t)y(t− j)

)2⎤

⎦

1
2

= O

{
h

λmin(�h)

(
log T

T

)1−2d ′}
, (16)

giving the result of the theorem. �

Proof of Theorem 7 Since h/T → 0 as T → ∞ and σ 2

h − σ 2 is monotonically
decreasing in h it follows that h∗

T → ∞ as T → ∞. Similarly, for T sufficiently
large the behaviour of

log

(
1 +
∑T

t=1 εh(t)2 −∑T
t=1 ε(t)

2

∑T
t=1 ε(t)

2

)

will be determined by that of log(1 + (σ 2
h − σ 2)/σ 2). The latter is decreasing

in h and it follows that h̄∗
T → ∞ as T → ∞. Indeed, expanding L̄T (h) using

log(1 + x) =∑r≥1(−)r−1xr/r and recognizing from Lemma 1 and Eq. (8) that

T −1∑T
t=1 εh(t)2 − T −1∑T

t=1 ε(t)
2 = E[(εh(t)− ε(t))2]+ o(1)will converge to

zero as h increases we find that

L̄T (h) =
∑T

t=1 εh(t)2 −∑T
t=1 ε(t)

2

∑T
t=1 ε(t)

2
+ h

T
+ o

{∑T
t=1 εh(t)2 −∑T

t=1 ε(t)
2

∑T
t=1 ε(t)

2

}

and
∣∣∣∣L̄T (h)− LT (h)

σ 2

∣∣∣∣ ≤
∣∣∣∣∣

(
σ 2

∑T
t=1 ε(t)

2

)(∑T
t=1 εh(t)2 −∑T

t=1 ε(t)
2

σ 2
h − σ 2

)
− 1

∣∣∣∣∣

×
(
σ 2

h − σ 2

σ 2

)
+ o

{∑T
t=1 εh(t)2 −∑T

t=1 ε(t)
2

∑T
t=1 ε(t)

2

}

= o
{
(σ 2

h − σ 2)/σ 2} . (17)

From (17) we conclude that
∣∣∣∣
σ 2 L̄T (h)

LT (h)
− 1

∣∣∣∣ =
(

σ 2

(σ 2
h − σ 2)+ h/T

)
o
{
(σ 2

h − σ 2)/σ 2} = o(1).
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By definition of h̄∗
T and h∗

T as the minimizing values of, respectively, L̄T (h)
and LT (h) over the common range h = 0, 1, . . . ,MT it now follows that

σ 2 L̄T (h̄∗
T )

LT (h∗
T )

= L̄T (h̄∗
T )

L̄T (h∗
T ){1 + o(1)} ≤ 1 + o(1)

and

σ 2 L̄T (h̄∗
T )

LT (h∗
T )

= LT (h̄∗
T ){1 + o(1)}
LT (h∗

T )
≥ 1 + o(1) ,

which implies that
∣∣∣∣∣
σ 2 L̄T (h̄∗

T )

LT (h∗
T )

− 1

∣∣∣∣∣ = o(1) ,

as required. �

Proof of Theorem 8 The least squares residual ε̂h(t) is by construction orthogonal
to y(t − 1), . . . , y(t − h) for t = 1, . . . , T and thus

T −1
T∑

t=1

ε̂h(t){ε̂h(t)− εh(t)} =
h∑

j=1

{α̂h( j)− αh( j)}T −1
T∑

t=1

ε̂h(t)y(t − j) = 0 .

The residual mean square can therefore be re-expressed as

T −1
T∑

t=1

ε̂h(t)
2 = T −1

T∑

t=1

εh(t)
2 + T −1

T∑

t=1

εh(t){ε̂h(t)− εh(t)}

and the right hand side equals

T −1
T∑

t=1

εh(t)
2 + O

{
h

λmin(�h)

(
log T

T

)1−2d ′}

by Theorem 6. A trivial re-expression of T −1∑T
t=1 εh(t)2 as the sum of T −1∑T

t=1

ε(t)2 and T −1∑T
t=1 εh(t)2 − T −1∑T

t=1 ε(t)
2, used in conjunction with the usual

McLaurin expansion of log(1 + x) as given above, now yields the result that

log T −1
T∑

t=1

ε̂h(t)
2 = log T −1

T∑

t=1

ε(t)2 + log

(
1 +
∑T

t=1 εh(t)2 −∑T
t=1 ε(t)

2

∑T
t=1 ε(t)

2

)

+ O

⎧
⎨

⎩

(∑T
t=1 ε(t)

2

T

)−1
h

λmin(�h)

(
log T

T

)1−2d ′
⎫
⎬

⎭ .

But T −1∑T
t=1 ε(t)

2 converges to σ 2 a.s. , giving the result as stated in the theorem.
�
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Proof of Lemma 2 Let x denote a unit eigenvector associated with the eigenvalue
λmin(�h). Then λmin(�h) = x′�hx. Now consider the following cases:

First, m(z) �= 0, |z| ≤ 1, and d ≥ 0. Then

λmin(�h) =
π∫

−π

∣∣∣∣∣

h∑

s=1

xs exp(−iωs)

∣∣∣∣∣

2

f (ω)dω

≥ inf
ω

f (ω)

π∫

−π

∣∣∣∣∣

h∑

s=1

xs exp(−iωs)

∣∣∣∣∣

2

dω = 2π inf
ω

f (ω)

and 2π f (ω) = σ 2|m(eiω)|2/|1 − eiω|2d > 0 for all ω.
Second, m(z) �= 0, |z| ≤ 1, and d < 0. An adaptation of the circulant imbed-

ding argument underlying the simulation technique of Davies and Harte (1987)
yields the result that �h = U∗	U where the (2h + 1)× h matrix

U = [(2h + 1)−
1
2 exp(−i2π( j − 1)(k − 1)/(2h + 1))] j=1,...,2h+1, k=1,...,h,

and 	 = 2πdiag{ fh(ω0), . . . , fh(ω2h)},

fh(ω) = 1

2π

h∑

τ=−h

γ (τ) exp(−iωτ), ω j = 2π j/(2h + 1), j = 0, . . . , 2h ,

as can be readily verified via straightforward, if somewhat tedious, algebra. Hence
λmin(�h) = x′�hx = w∗	w where w = Ux and ‖w‖ = 1 since ‖x‖ = 1 and
U∗U = I.

From the Rayleigh–Ritz theorem it follows that

λmin(�h) ≥ min{2π fh(ω0), . . . , 2π fh(ω2h)}. (18)

But fh(ω) = f (ω)−∫ π−π { f (ω)− f (θ)}Dh(ω−θ)dθ where Dh(θ) = sin((h+
1
2 )θ)/2π sin(θ/2), Dirichlet’s kernel, and since f (·) is absolutely integrable and
continuous a.e. it follows from the Riemann–Lebesgue lemma that

lim
h→∞ sup

0≤ω≤π

π∫

−π
{ f (ω)− f (θ)} Dh(ω − θ)dθ = 0.

We can therefore conclude that for every δ > 0

|argminω∈{ω0,...,ω2h} fh(ω)− argminω∈{ω0,...,ω2h} f (ω)| < δ (19)

for h sufficiently large. Now, f (ω0) = 0 and f (ωi ) > 0, i = 1, . . . , 2h, and
therefore

min{2π fh(ω0), . . . , 2π fh(ω2h)} = 2π fh(ω0) =
h∑

τ=−h

γ (τ) = O(h2d)

for all h sufficiently large.
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Third, |m(eiω)| ∼ |φ j (ω)||ω−θ j |ν j asω → θ j , j = 1, . . . , n. Then by assump-
tion 2π f (ω) ∼ σ 2|m(1)|2/ω2d as ω → 0 and 2π f (ω) ∼ σ 2

|2 sin(ω/2)|−2d |φ j (ω)|2|ω − θ j |2ν j as ω → θ j . Arguing as above we also know
that (18) holds and that (19) obtains for h sufficiently large.

Set ji (h) = [(2h+1)θi/2π] for i = 1, . . . , n. Both |ω ji (h)−θi | and |ω( ji (h)+1)−
θi | are less than 2π/(2h + 1). Thus, as h → ∞, 2π f (ω ji (h)) ∼ σ 2|2
sin(ω ji (h)/2)|−2d |φ j (ω ji (h))|2|ω ji (h)− θ j |2ν j , which is O({2π/(2h + 1)}2ν j ), and
similarly f (ω( ji (h)+1)) ∼ O({2π/(2h+1)}2ν j ). Now let ω̄m = argminω∈{ω0,...,ω2h}
fh(ω). Either ω̄m = ω0 and

min{2π fh(ω0), . . . , 2π fh(ω2h)} =
h∑

τ=−h

γ (τ) = O(h2d) ,

or ω̄m equals ω ji (h) or ω( ji (h)+1) for some i ∈ {1, . . . , n} and

min{2π fh(ω0), . . . , 2π fh(ω2h)} =
h∑

τ=−h

π∫

−π
gi (ω)e

iωτdω = O(h−2νi )

where gi (ω) = f (ω̄m + ω). It follows that fh(ω̄m) = O(h−2m) where m =
max{ν1 ν2, . . . , νn} if d ≥ 0 and m = max{−d, ν1 ν2, . . . , νn} if d < 0. �

Proof of Theorem 10 By definition of ᾱh

T
1
2 Ch�h(ᾱh − αh) = T

1
2 Ch(γ̄ h − γ h)− T

1
2 Ch(�̄h − �h)αh

+ T
1
2 Ch(�h − �̄h)(ᾱh − αh).

Multiplying through by λ′
h and rearranging terms on the right hand side yields the

result that T
1
2 λ′

hCh�h(ᾱh − αh) equals βhT + ρhT where ρhT = T
1
2 λ′

hCh(�h −
�̄h)(ᾱh − αh) and βhT = T

1
2 λ′

hCh[(γ̄ h − γ h) − (�̄h − �h)αh] . Hence we are
lead to consider the limiting behaviour of βhT and ρhT .

Let Dh = [uT (i − j) − υ(i − j)]i, j=1,...,h and dh = (uT (1) − υ(1), . . . ,
uT (h) − υ(h))′. Then it is a simple exercise to show that Ch(�̄h − �h) = ChDh

and Ch(γ̄ h −γ h) = Chdh and it follows that βhT = T
1
2 λ′

hCh[dh −Dhαh]. Writing
Dh as Th + T′

h where Th is the lower triangular Toeplitz matrix with first column
(0, uT (1)−υ(1), . . . , uT (h − 1)−υ(h − 1))′ we find, after some straightforward
rearrangement, that Dhαh = Phdh and hence that dh − Dhαh = �hdh . Thus

βh,T = T
1
2 λ′�hdh . By Theorem 5 of Hosking (1996), however, T

1
2 dh converges

in distribution to N (0,�h). We can therefore conclude that βh,T /ηh
L→ N (0, 1)

where η2
h = λ′

h(Ch�h�h�′
hCh)λh , as stated.

Similarly, ρhT = −T
1
2 λ′

h(ChDh)(ᾱh −αh). Corollary 1 and Theorem 5 imply

that ‖(ᾱh − αh)‖ = O(M1+4q
T (log T/T )1−2d ′

) where q ≥ 0 and from Theorem

5 of Hosking (1996), once again, we have that T
1
2 Dh = Op(1). This leads to the

conclusion that ρhT = op(1) and completes the proof. �
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