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Abstract We consider the estimation problem with classical case-cohort data.
The case-cohort design was first proposed by Prentice (Biometrics 73:1–11,
1986). Most studies focus on the Cox regression model. In this paper, we con-
sider the linear regression model. We propose an estimator which extends the
Buckley–James estimator to the classical case-cohort design. In order to derive
the BJE, there is an additional problem of finding the generalized maximum
likelihood estimator (GMLE) of the underlying distribution functions. We pro-
pose a self-consistent algorithm for the GMLE. We also justify that the GMLE
is consistent and asymptotically normally distributed under certain regularity
conditions. We further present some simulation results on the asymptotic prop-
erties of the BJE and apply our procedure to a data set used in the literature.

Keywords Case-cohort study · Buckley–James estimator · Right-censorship ·
Linear regression model · Self-consistent algorithm · Survival data

1 Introduction

We consider the estimation problem under the classical case-cohort design
and under linear regression models. Many epidemiological cohort studies and
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disease prevention trials try to investigate the effects of certain covariates for
relatively rare disease. As a result, the cohort must be large to provide infor-
mative conclusion about the covariate effects. It is often that it is expensive
to collect covariates of interest which might involve, for example, biochemical
analysis of specimens. In order to lessen this burden without much loss of effi-
ciency, Prentice (1986) proposed the classical case-cohort design, under which,
one observes covariates for each subject experiencing an event and for each
from a random sample of the cohort, selected at the beginning of the study (call
a subcohort).

A pseudo-likelihood method assuming Cox’s regression model (1972) was
proposed and was later studied in details in a slightly modified version by Self
and Prentice (1988). In the classical case-cohort design, the censoring times for
subjects not in the subcohort do not need to be recorded and the pseudo-like-
lihood method does not utilize this information. Chen (2001) considered trans-
formation regression models for modified case-cohort designs, under which the
censoring time of the subjects not in the subcohort are also available. Scheike
and Martinussen (2004) suggested an estimation method based on maximiz-
ing likelihood under Cox’s regression model for modified case-cohort studies.
Models other than Cox model have been studied more recently. Kulich and Lin
(2000) proposed an additive hazards model for classical case-cohort studies that
allows estimation of absolute risk parameters. Kong et al. (2004) used weighted
estimating equation approach for transformation models under the classical
case-cohort design.

We consider an extension of Buckley–James-type (1979) of estimator under
linear regression models with the classical case-cohort design. In particular,
let Yi’s be monotonically transformed failure times obtained from a known
transformation. The log transformation is often used in practice to give the
accelerated failure time model (see, e.g., Kalbfleisch and Prentice 2002). Let Xi
be a vector of p-dimensional covariates. The model is Yi = β ′Xi+εi, i = 1, · · · , n,
where β ′ is the transpose of a regression coefficient vector β. We shall further
simplify notation and write βX = β ′X. In general, we assume εi has an unknown
cdf Fo. E(εi)may or may not be zero, which is not important, as in general E(εi)

is not identifiable under right censoring (Lai and Ying 1991).
In the case of complete data, the least squares estimator (LSE) is the standard

approach. Under right censoring, the Buckley–James (1979) estimator (BJE) is
an extension of the LSE. It is well known that the Cox and the Buckley–James
estimators are “two most reliable regression estimates to use with censored
data” and that “the choice between them should depend on the appropriate-
ness of the proportional hazards model or the linear model for the data” (see,
e.g., Miller and Halpern 1982; Hillis 1993). Lai and Ying (1991) showed that
the BJE is consistent and asymptotically normally distributed under certain
regularity conditions, and is efficient if ε ∼ N(µ, σ 2).

As far as we known, in the literature, the Buckley–James-type of estimator
has not been investigated in the classical case-cohort design setting. The focus
of the paper is to define an extension of the Buckley–James estimator under the
classical case-cohort design setting and to propose an algorithm for finding such
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an estimate. As explained in the paper, our derivation involves the estimation
of the underlying distribution Fo and the estimation of the joint distribution
function of the covariates and the censoring variable.

The paper is organized as follows. In Sect. 2, we introduce the notations
and an approach of the BJE, which is a score equation based approach which
leads to an extension of the BJE to case-cohort studies. This extension of the
BJE involves estimation of underlying distribution functions. In Sect. 3, we
propose to utilize the generalized maximum likelihood estimators (GMLE) of
the underlying distribution functions and provide a feasible algorithm for com-
puting the GMLE. In Sect. 4, we propose an algorithm for obtaining a BJE.
Section 5 deals with the estimation of the covariance matrix of the estimator.
Section 6 presents some simulation results. We apply our procedure to a real
data example in Sect. 7. The detailed proofs of some statements in Sects 2–4
are relegated to Appendices.

2 Buckley–James-type of estimator under the case-cohort design

Consider the linear regression model Y = βX + ε, where ε has an unknown
distribution Fo and X is a p×1 dimensional covariate vector. Let C be a censor-
ing variable. Denote δ = 1(Y≤C), the indicator function of the event {Y ≤ C}.
Let M = min{Y, C}. Under the classical case-cohort design, in addition to the
random variables introduced for the usual linear regression model, we need
to introduce another random variable, namely, the indicator function that the
individual is selected to be in the sub-cohort, denoted by η. Under the classical
case-cohort design, if an individual is in the subcohort or if an individual is
not in the subcohort but the event of interest has taken place, then (M, X) is
recorded, otherwise, X is not measured and M is not recorded. the observation
about (M, δ, X, η) can be represented by O, where

O =
{
(M, δ, X, η) if δ = 1 or η = 1,
(missing, δ, missing, η) if δ = 0 and η = 0.

Note that O is an extended random vector in the sense that its components can
take a “value” called “missing”.

Let T = T(b) = M − bX. Let (Mi, δi, Xi, Ci, εi, Ti, ηi, Oi), i = 1, …, n, be i.i.d.
copies of (M, δ, X, C, ε, T, η, O). We assume that

A1 η, ε and (C, X) are independent and P{η = 1} > 0.

The identifiability assumption made under the uncensored simple linear regres-
sion case is P{X1 �= X2} > 0. The identifiability condition under the censored
simple linear regression model is P{δ1 = δ2 = 1 and X1 �= X2} > 0. Under
multiple linear regression it becomes

A2 P
{
δ1 = δ2 = · · · = δp+1 = 1, rank

(
1 · · · 1

X1 · · · Xp+1

)
= p + 1

}
> 0.
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The BJE was first proposed by replacing Y in the score function by its con-
ditional expectation. However, it is not clear how to extend this idea to the
case cohort design. It is well known in the literature (see Ritov 1990) that
the BJE is somewhat a zero point of a modified score function with the cen-
sored linear regression data under the normal distribution assumption, namely,
ε ∼ N(µ, σ 2), taking advantage of the expressions

f ′
o

fo
(x) = −x if ε ∼ N(0, 1), and f (x) = −

∫
t>x

f ′

f
(t)f (t)dt. (1)

This approach provides a valid method to extend the BJE to the case-cohort
design.

We now modify the BJE with case-cohort data through a score function with
plugging-in method. Abusing notations, we treat (Mi, Xi) as random variables as
well as realizations of the random variables, whenever it is appropriate. Denote
FC,X the cdf of (C, X). Notice that the full nonparametric likelihood function is

L =
n∏

i=1

⎧⎪⎨
⎪⎩fo(Ti(b))

∫

c≥Mi,x=Xi

dFC,X(c, x)

⎫⎪⎬
⎪⎭

δi

×{So(Ti(b))fC,X(Mi, Xi)}(1−δi)ηi

×

⎧⎪⎨
⎪⎩

∫
c∈R,x∈Rp

So(c − bx)dFC,X(c, x)

⎫⎪⎬
⎪⎭

(1−ηi)(1−δi)

, (2)

where the three factors in L correspond to the observations which are observed
failures, censored times in the subcohort and missing censored times outside the
subcohort, respectively. In our later approach, we need to find the non-paramet-
ric or generalized maximum likelihood estimator (GMLE) of (So, FC,X), say

(Ŝb, F̂C,X,b), which depends on b ∈ Rp. The GMLE maximizes the likelihood
L over all possible values of (So, FC,X) and over all possible values of b. Under
the nonparametric set-up, it suffices to assume that (C, X) is discrete and thus
L in (2) becomes

L =
[ n∏

i=1

(fo(Ti(b)))δi(So(Ti(b)))ηi(1−δi)

]⎛
⎝∑

c,x
So(c − bx)fC,X(c, x)

⎞
⎠

n1

×
n∏

i=1

⎛
⎝∑

c≥Mi

fC,X(c, Xi)

⎞
⎠
δi

(fC,X(Mi, Xi))
(1−δi)ηi , (3)
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where
∑

c,x means the summation over all possible values of the random vector
(C, X) and n1 = ∑

i∈K 1 and K = {i : δi +ηi = 0}. Taking derivative of ln L with
respect to b yields

∂ ln L
∂b

=
n∑

i=1

{
δi

f ′
o

fo
(Ti(b))− (1 − δi)ηi

fo

So
(Ti(b))

}
(−Xi)σ

−2

−n1

∑
c,x fo(c − bx)fC,X(c, x)(−x)∑

c,x So(c − bx)fC,X(c, x)
σ−2

=
∑
i/∈K

{
δiTi(b)+ (1 − δi)

∫
t>Ti(b) tfo(t)dt

So(Ti(b))

}
Xiσ

−2 (by (1))

+n1

∑
c,x
∫

t>c−bx tfo(t)dt fC,X(c, x)x∑
c,x So(c − bx)fC,X(c, x)

σ−2.

After centering to E(X) and multiplying σ 2, the foregoing score function be-
comes

H(b, So, fC,X) =
∑
i/∈K

{
δiTi(b)− (1 − δi)

∫
t>Ti(β)

t dSo(t)

So(Ti(b))

}
(Xi − E(X))

−n1

∑
c,x
∫

t>c−bx t dSo(t)fC,X(c, x)(x − E(X))∑
c,x So(c − bx)fC,X(c, x)

.

Since So, fC,X and E(X) are unknown, one can replace them by their estimators.

A logical choice is their GMLEs, say Ŝb, f̂C,X,b and X̄ (= ∑
c,x xf̂C,X,b(c, x)),

where f̂C,X,b is the pdf of the GMLE of FC,X.

Ideally, a solution to Ĥ(b) = 0 should be called an extension of the BJE,
where

Ĥ(b) = H(b, Ŝb, f̂C,X,b). (4)

If Ĥ(b) does not have a root, then a BJE is a point at which Ĥ(·) changes its
sign (called a zero-crossing ) (see James and Smith 1981). A standard extension
of the BJE under the case-cohort design is then a zero-crossing of Ĥ(b). This
basically is an estimation equation approach, as in Ritov (1990) for obtain-
ing various estimators of β with interval-censored data under linear regression
models.

3 The GMLE of the underlying cdf’s

We shall now discuss how to find the GMLE of (So, fC,X). For each given b, a
GMLE of (Fo, FC,X) is a pair of distribution functions such that it maximizes L
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over all possible values of (Fo, FC,X), say (F, G). From the GMLE of (Fo, FC,X),

we can obtain the GMLE of (So, fC,X) needed in Ĥ (see (4)).
Verify that an observation on (C, X) can be represented by an observable

1 + p dimensional rectangle Ii, where Ii is of the form

Ii =
⎧⎨
⎩

[Mi, ∞)× {Xi} if δi = 1, where {x} is a singleton set,
{Mi} × {Xi} if δi = 0 and ηi = 1,
Rp+1 otherwise.

An observation on ε can be represented by an observed interval which is of
the form

Bi =
⎧⎨
⎩

{Ti(b)} if δi = 1,
(Ti(b), ∞) if δi = 0 and ηi = 1,
(−∞, ∞) otherwise.

Using an arguement similar to that in Wong and Yu (1999), it can be shown
that in order to maximize L(b, F, G), it suffices to put mass of G to all maximum
intersections (MI) A1, …, Amg induced by Ii’s, where an MI A induced by sets
I1, …., In is a nonempty intersection of these Iis such that A ∩ Ii equals either
A or ∅ for each i. Notice that Aj is either of the form {Mi} × {Xi}, or of the form
[Mi, ∞)×{Xi}. It is well known that if an MI is not a singleton set then the mass
assigned by a GMLE to the MI is not uniquely defined (see Yu et al. 2000).
Thus if Aj = [Mi, ∞)× {Xi} is an MI, then we replace it by the set {Mi} × {Xi}.

Moreover, it can be shown that in order to maximize L(b, F, G) it suffices
to put mass of F to all distinct maximal intersection induced by the observed
intervals Bi’s on ε. Denote n2 the number of observed Xi’s and T(n2) the largest
among Ti, i /∈ K. It can be verified that each exact observation is a maximal inter-
section and if the largest T(n2)(b) is right censored, then V = (Ti(b), ∞) is also a
maximal intersection. For convenience, denote t1 < · · · < tmf −1 the first mf − 1
smallest distinct exact observations and denote tmf the largest exact observation
if T(n2) is not right-censored and denote tmf = T(n2)+1 if T(n2) is right-censored.
We shall use {tmf } to replace the role of the maximal intersection V.

For convenience, denote Aj = {cj}×{xj}, φij = 1(Aj ⊂ Ii) andψij = 1(tj ∈ Bi).
Let fj be the mass assigned by F on tj and gj be the mass assigned by G on Aj.
By (3),

ln L =
∑
i/∈K

ln
mf∑
j=1

ψijfj + n1ln
mg∑
j=1

gj

∑
k:tk>cj−bxj

fk +
∑
i/∈K

ln
mg∑
j=1

φijgj. (5)

In order to find the GMLE, it suffices to maximize the foregoing expression
over all possible values of (f1, . . . , fmf , g1, . . . , gmg) subject to the constraints that
fi ≥ 0, gi ≥ 0,

∑
i fi = ∑

i gi = 1.
One may choose to find the GMLE with the Newton–Raphson method.

However, there maybe too many parameters involved in implementing the
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Newton–Raphson method if n2 is moderate or large. Thus, it may cause a prob-
lem computationally in computing the inverse matrix of the Fisher information
matrix, which is needed in the method.

In order to design a feasible algorithm for computing the GMLE, we shall
establish in Appendices self-consistent equations for the case-cohort data as
follows:

fk = 1
n

∑
i/∈K

ψikfk∑mf

h=1 ψihfh

+ n1fk

n

∑mg

j=1 gj1(tk > cj − bxj)∑mg

j=1 gj
∑

m: tm>cj−bxj
fm

, k = 1, . . . , mf , (6)

gk = 1
n

∑
i/∈K

φikgk∑mg

h=1 φihgh
+ n1gk

n

∑
th>ck−bxk

fh∑mg

j=1 gj
∑

m: tm>cj−bxj
fm

, k = 1, . . . , mg. (7)

Verify that if P{η = 1} = 1 then Eq. (6) becomes

fk = 1
n

∑
i

ψikfk∑mf

h=1 ψihfh

, (8)

which is of the same form as the self-consistent equation proposed by Turnbull
(1976) for computing the GMLE with univariate interval-censored data in order
to overcome the same type of computational difficulty. However, form (8) is
quite different from form (6).

Equations (6) and (7) lead to a feasible self-consistent algorithm for deriving
the GMLE of Fo and FC,X as follows.

Self-consistent algorithm:
Step 1. Denote fk,1 = 1/mf , k = 1, …, mf and gk,1 = 1/mg, k = 1, …, mg.
Step v (v ≥ 2). For k = 1, …, mf , compute

fk,v = 1
n

∑
i/∈K

ψikfk,v−1∑mf

h=1 ψihfh,v−1
+ n1fk,v−1

n

∑mg

j=1 gj,v−11(tk > cj − bxj)∑mg

j=1 gj,v−1
∑

m: tm>cj−bxj
fm,v−1

. (9)

For k = 1, · · · , mg, compute

gk,v = 1
n

∑
i/∈K

φikgk,v−1∑mg

h=1 φihgh,v−1
+ n1gk,v−1

n

∑
h: th>ck−bxk

fh,v−1∑mg

j=1 gj,v−1
∑

m: tm>cj−bxj
fm,v−1

. (10)

Stop if |fk,v − fk,v−1| < c and |gk,v − gk,v−1| < c for all possible k, where c is a
predetermined tolerance. Otherwise, go to next step.

Denote the resulting estimator by f̂k and ĝk. Then the GMLE’s of So and
fC,X for the given b are Ŝb(t) = ∑

tk>t f̂k and f̂C,X,b(c, x) = ĝk if (c, x) ∈ Ak.
A solution to self-consistent equations (6) and (7) is called a self-consistent

estimator (SCE) of fk and gk. The GMLE is an SCE but an SCE may not be the
GMLE. However, we shall establish the following statement in Appendices.
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Proposition 1 If the foregoing self-consistent algorithm converges, then the solu-
tion is the GMLE. Moreover, the GMLE satisfies that f̂k, ĝk ∈ (0, 1) for all
possible k.

The key to the proof of the proposition is that the initial point in the algorithm
satisfies fk,1 �= 0 and gk,1 �= 0 ∀ k.

Though in practice, we have not encountered the case in which the algorithm
does not converge, there is still difficulty in proving that in general the self-con-
sistent algorithm under the case-cohort design does converge. However, this is
also true for the self-consistent algorithm with interval-censored data proposed
by Turnbull (1976) and the standard numerical algorithm using the NR method.
In all the three cases, it has only been shown that the algorithm converges under
the assumption that the initial point is very close to a true local maximum point.
Since the proof of the foregoing statement under the case-cohort design is
almost exactly the same as the arguement in the paragraph corresponding to
Equation (3.12) in Turnbull (1976), we shall not repeat here.

A desirable estimator should be consistent and efficient if b = β. In Theo-
rems 1 and 2, we show that the GMLE satisfies such properties under a simple
assumption:
A3 (ε, X, C) takes on finitely many values.

In the literature, A3 has been utilized in many pioneering papers on a new
procedure in order to justify its nice properties without going through the
lengthy investigation, see for example, Miller (1981) on the PLE with right-cen-
sored data and Turnbull (1976) on the GMLE with interval-censored data. We
also follow this path here.

Theorem 1 Under A1, A2 and A3, the GMLE (F̂β , F̂C,X,β) satisfies that with

probability one, we have limn→∞ F̂β(t) = F∗(t), where

F∗(t) =
⎧⎨
⎩

Fo(t) if for t ≤ τ1,
Fo(τ1) if t ∈ (τ1, τ1 + 1),
1 if t ≥ τ1 + 1,

and τ1 = max
j

Tj(β),

and limn→∞ F̂C,X,β(c, x) = F∗
C,X(c, x) pointwise, where

F∗
C,X(c, x) =

{
FC,X(c, x) if c < τx,
FC,X(∞, x) if c ≥ τx,

and τx = max{Mj : Xj = x, j /∈ K}.

.

Theorem 2 Under A1, A2 and A3, the GMLE (F̂β , F̂C,X,β) is asymptotically
efficient.

The proofs of these two theorems are given in Appendices.



Buckley–James estimator 683

4 Computation of the BJE

If p is 1 or 2, one can graph the function Ĥ by plotting (b, Ĥ(b)) to find out the
zero-crossings directly. If p > 2, we shall introduce an algorithm for computing
the BJE. Notice that

Ĥ(b) = H(b, Ŝb, f̂C,X,b)

=
∑
i/∈K

{
δiTi(b)+ (1 − δi)

∑
t>Ti(b) tf̂b(t)

Ŝb(Ti(b))

}
(Xi − X̄)

+n1

∑
c,x
∑

t>c−bx tf̂b(t)f̂C,X,b(c, x)(x − X̄)∑
c,x Ŝb(c − bx)f̂C,X,b(c, x)

.

Since Ti(b) = Mi − bXi for i /∈ K, one can verify that Ĥ becomes

Ĥ(b) = A(b)− B(b)b, (11)

where

A(b) =
∑
i/∈K

⎧⎨
⎩Miδi + (1 − δi)

∑
t>Ti(b)

f̂b(t)

Ŝb(Ti(b))

∑
j/∈K Mj1(Tj(b)=t,δj=1)∑
k/∈K 1(Tk(b)=t,δk=1)

⎫⎬
⎭ (Xi − X̄)

+n1

∑
c,x
∑

t>cbx f̂b(t)

∑
h/∈K Mh1

(Th(b)=t,δh=1)∑
m/∈K 1

(Tm(b)=t,δm=1)

f̂C,X,b(c, x)(x − X̄)

∑
c,x Ŝb(c − bx)f̂C,X,b(c, x)

,

B(b) =
∑
i/∈K

(Xi − X̄)

⎧⎨
⎩Xiδi + (1 − δi)

∑
t>Ti(b)

f̂b(t)

Ŝb(Ti(b))

∑
j/∈K Xj1(Tj(b)=t,δj=1)∑
k/∈K 1(Tk(b)=t,δk=1)

⎫⎬
⎭

′

+n1

∑
c,x(x − X̄)

∑
t>cbx f̂b(t)

∑
h/∈K X′

h1
(Th(b)=t,δh=1)∑

m/∈K 1
(Tm(b)=t,δm=1)

f̂C,X,b(c, x)

∑
c,x Ŝb(c − bx)f̂C,X,b(c, x).

.

Ideally, a BJE is a solution to the equation A(b) + B(b)b = 0 (see (11). It
yields

b = {
B(b)

}−1A(b). (12)

Algorithm (for the BJE with case-cohort data)

1. Give an initial value to β, say b0.
2. Obtain (A(b0), B(b0))’s with the given b0.
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3. In view of (12), update b0 by

b1 = {
B(b0)

}−1A(b0).

4. For k ≥ 2, repeat Steps 2 and 3 iteratively, with values of b0 and b1 updated
by bk−1 and bk, respectively, until bk converges (i.e., |bk − bk−1| is very
small), or oscillates between two or more values. In the latter case, take
the midpoint of the last two values, say bk and bk−1, as an estimate of β.

Remark 1 It is well known that in the case when the algorithm oscillates, the
algorithm may not result in a solution of the BJE. However, if the two oscillat-
ing points are close, the estimate resulted from the algorithm can be viewed as
an approximation of the BJE. Finally, if the two oscillating points are far apart,
then one can graph the function Ĥ(b) between the oscillating points to find a
zero crossing of Ĥ(b).

5 Estimation of the variance of the BJE

Under the assumption that ε has a normal distribution, since the BJE is efficient
in the censored regression data case, we expect that the BJE is also efficient in
the subcohort case, though of course the efficient lower bound is different.

Based on the belief that the BJE is efficient under the normal assumption,
we estimate the covariance matrix of the BJE by 
̂

β̂
= (Î)−1, where I is the

Fisher information matrix. Under certain regularity, it can be estimated by

Î =
∑
i/∈K

{
δiTi(β̂)+ (1 − δi)

∫
t>Ti(β̂)

tdŜ
β̂
(t)

Ŝ
β̂
(Ti(β̂))

}2

(Xi − X̄)(Xi − X̄)′(σ̂−2)2

+n1
UU′(σ̂−2)2

(
∑

c,x Ŝ
β̂
(c − β̂x)f̂C,X,β̂ (c, x))2

.

where U = ∑
c,x
∫

t>c−β̂x t dŜ
β̂
(t)f̂C,X,β̂ (c, x)(x − X̄), where σ̂ 2, Ŝ

β̂
and f̂C,X,β̂

are estimates of σ 2, So and fC,X, respectively. The expression is based on the
formula that for n = 1, under certain regularity conditions,

−E
(∂2 ln L
∂β∂β ′

)
= E

[∂ ln L
∂β

∂ ln L
∂β

′]
= E

[{
A(β)− βB(β)

}{
A(β)− βB(β)

}′]
σ−4.

For each i, denote vi = Mi − β̂Xi and m = ∑
i δi. The parameter σ can be

estimated in two ways. If the largest vi is not censored, then one can estimate
it by σ̂ 2 = ∑

i v2
i f̂
β̂
(vi)− (

∑
i vif̂β̂ (vi))

2. Otherwise, we can use the least squares

method as follows. We can find the quantiles of F̂(vi) under N(0, 1), say qi’s.
Then we find the least squares estimate of (µ, σ) that minimizes
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m∑
i=1

δi

(
vi − µ

σ
− qi

)2

.

It can be shown that the LSE is σ̂ = v̄q−v̄·q̄
q̄2−(q̄)2 , where v̄ = 1

m

∑m
i=1 δivi, q̄ =

1
m

∑m
i=1 δiqi, q̄2 = 1

m

∑m
i=1 δiq2

i and v̄q = 1
m

∑m
i=1 δiviqi.

If Fo is not normal, then the estimator (Î)−1 is no longer valid, as the BJE is
not efficient in this case. At the moment, we propose to bootstrap the BJE to
derive an empirical estimator of the covariance matrix.

6 Simulation studies

In this section, we shall present four sets of simulation results on our proposed
estimators for evaluating its propoties under various sample sizes and various
continuous distributions. In each simulation study, we had 1,000 replications
and computed the sample mean and sample standard error (SE) of the 1,000
estimates. The computation was quite fast, it only took a few seconds for a
sample size of 800.

We also compare the estimator to the BJE based on the subcohort data alone
(called subcohort BJE). The estimator is easy to compute.

For simplicity, we assume p = 1 and the random vector (C, X) is a dis-
crete uniform distribution on the set {(0, 0), (0, 1), (1, 1)}. Hereafter Exp(µ, σ)
denotes an exponential distribution with the pdf f (x) = 1

σ
e−[ x−µ

σ
+1]1(x>µ−σ).

We consider 4 different cases.

Case 1 (censored-data under a normal distribution). Suppose ε ∼ N(2, 1) (the
normal distribution), q =P{η = 1} = 0.2 and 0.5. β = 1. Censoring rate is 0.984.
Results are listed in Blocks 1 and 2 of Table 1.

Case 2 (censored-data under a normal distribution). Suppose ε ∼ N(0, 1), q =
0.2 and 0.5. β = 1. Censoring rate is 0.614. Results are listed in Blocks 3 and 4
of Table 1.

Case 3 (censored-data under an exponential distribution). Suppose ε ∼
Exp(0.9, 1). q = 0.2 and 0.5. β = 1. Censoring rate is 0.937. Results are listed in
Blocks 1 and 2 of Table 2.

Case 4 (censored-data under an exponential distribution). Suppose ε ∼
Exp(0, 1). q = 0.2 and 0.5. β = 1. Censoring rate is 0.579. Results are listed
in Blocks 3 and 4 of Table 2.

In Cases 1 and 2, ε has a normal distribution. We adjust the mean so that
there is a severe censoring rate in one case but not in the other. Similarly, in
Cases 3 and 4, ε has an exponential distribution. We adjust the mean so that
one has a severe censoring rate and the other does not. The case cohort design
is proposed for epidemiological studies for rare diseases, thus one expects that
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Table 1 Comparison on two
BJE methods

n β GMLE (SE) Subcohort (SE)

Under N(2,1) with censoring rate 0.984
with q = 0.2
100 1 0.779 (21.302) SE too large
200 1 1.191 (1.038) SE too large
400 1 1.607 (0.581) SE too large
800 1 1.226 (0.527) SE too large
1600 1 1.045 (0.288) SE too large
with q = 0.5
100 1 0.792 (4.872) SE too large
200 1 0.980 (0.472) SE too large
400 1 0.972 (0.411) SE too large
800 1 0.974 (0.288) SE too large
1600 1 0.987 (0.165) 0.993 (0.309)
Under N(0,1) with censoring rate 0.614
with q = 0.2
100 1 1.035 (0.385) SE too large
200 1 1.008 (0.262) SE too large
400 1 0.994 (0.178) 1.000 (0.296)
800 1 0.993 (0.126) 0.997 (0.198)
with q = 0.5
100 1 1.002 (0.288) 0.991 (0.380)
200 1 0.999 (0.207) 0.997 (0.259)
400 1 0.994 (0.142) 0.993 (0.180)
800 1 0.995 (0.103) 0.996 (0.129)

Table 2 Comparison on two
BJE methods

n β GMLE (SE) Subcohort (SE)

Under exp(0.9,1) with censoring rate 0.937
with q = 0.2
100 1 1.522 (0.501) SE too large
200 1 1.235 (0.358) SE too large
400 1 1.017 (0.109) SE too large
800 1 1.002 (0.034) SE too large
with q = 0.5
100 1 0.999 (0.091) SE too large
200 1 0.993 (0.043) SE too large
400 1 0.998 (0.010) SE too large
800 1 0.998 (0.008) 1.000 (0.024)
Under exp(0,1) with censoring rate 0.579
with q = 0.2
100 1 1.062 (0.194) SE too large
200 1 1.033 (0.134) 1.008 (0.229)
400 1 1.016 (0.087) 1.006 (0.156)
800 1 1.010 (0.060) 1.006 (0.105)
with q = 0.5
100 1 1.020 (0.171) 1.010 (0.198)
200 1 1.014 (0.119) 1.007 (0.135)
400 1 1.009 (0.086) 1.004 (0.093)
800 1 1.007 (0.062) 1.005 (0.063)
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the censoring rate is quite high. Also, in a typical data analysis with case cohort
design the proportion of subcohort q is chosen to be 0.2 (see, e.g., Lin and Ying
1993). This is the motivation we choose those parameters. The case that q > 0.5
and the censoring rate is greater than 0.5 is not that interesting in applications
of case cohort designs. Thus we do not present any simulation results in such
cases.

In both tables, the column corresponding to GMLE is the average of 1000
BJE estimates based on the GMLE method and SE is the sample standard
deviation of these 1000 estimates. The column corresponding to Subcohort is
the average of 1000 BJE estimates based on subcohort alone. In the tables, the
phrase “SE too large” means that the sample standard deviation is larger than
1,000. The advantage is not that significant when the censoring rate decreases.

The simulation results in Table 1 suggest that the BJE β̂ is consistent under
both the normal distribution and the exponential distribution, as β is within the

interval ( ¯̂
β − 2SE, ¯̂

β + 2SE) and the SE decreases, as n increases.
Furthermore, they confirm that the BJE β̂ with the full likelihood is better

than the subcohort BJE under the normal assumption and under the exponen-
tial distribution, in the sense that the SE of the BJE based on the GMLE is
smaller than that of the BJE based on subcohort. Our simulation results suggest
that the BJE based on subcohort alone is very unstable as we expect, because
there are not much events taken place within the subcohort. From Table 1 and
the first half of Table 2, it is seen that our new methodology has an obvious
advantage over the naive method, especially when the censoring rate is high
and the size of subcohort is small.

7 A real example

In this section, we carry out data analysis on the Welsh Nickel Refinery Study
which has been used frequently in the literature to illustrate case-cohort stud-
ies (see e.g., Lin and Ying 1993; Barlow et al. 1999). In this study, employees
in a nickel refinery in South Wales were investigated to determine the risk of
developing nasal cancer. There were 56 cancer cases among the 679 workers
employed before 1925. The variables used in our analysis are exposure (EXP)
level and age at first employment (AFE). Exposure level is log transformed
to log(EXP +1) and age at first employment is transformed to log(AFE-10).
We chose exactly the same subcohort as in Barlow et al. (1999) which has 135
subjects including 9 cases. The remaining 47 cases are outside the subcohort.

One can group Oi’s according to the following three forms: (1) Oi’s with
δi = ηi = 0, (2) Ok’s of the form [Mk, ∞)× {Xk}. (3) Oj’s of form {Mj} × {Xj}.
There are 497, 56 and 126 Oi’s in Groups 1, 2 and 3, respectively. All obser-
vations Mis in Groups 2 and 3 are distinct. Thus all observations in Group 2
correspond to distinct MIs induced by observations on (C, X). Most but not all
observations in Group 3 correspond to MIs as well. This is different from the
cases in our simulation studies, due to the simple assumption on (C, X) there.
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Thus there are 236 parameters in searching for the GMLE of FC,X, in addition
to the parameters for estimating Fo and the BJE.

The analysis using our procedure results in estimates of (−0.30, −1.15) for
(log(EXP +1), log(AFE-10)) with standard error (0.01, 0.01). The negative esti-
mates make sense since both are believed to reduce the time to cancer occur-
rence. We see that both effect are significant.

In comparison to the data analysis based on the Cox regression model carried
out by Lin and Ying (1993), our estimates are more significant than theirs. Their
z-scores are 3 and 4, respectively, while ours z-scores are much higher.

In our data analysis, we actually replace X̄ in Sect. 2 by another simpler
estimator

X̄ = 1
n

∑
i/∈K

wiXi,

where wi = δi + n4(1 − δi)ηi/n3, n3 = ∑n
i=1 ηi(1 − δi) is the number of censored

subjects in the subcohort and n4 = n −∑n
i=1 δi is the total number of censored

subjects. It does not need to be computed in each iteration.

Appendices

We shall prove Eqs. (6) and (7) and Proposition 1 in Appendix 1, and the con-
sistency and asymptotic normality of the GMLE under a simple assumption in
Appendix 2. Hereafter, let Df be the set of the probability mass (f2, . . . , fmf ),

where fi ≥ 0 and
∑mf

i=1 fi = 1; let Dg be the convex set of the probability mass
(g2, . . . , gmg), where gi ≥ 0 and

∑mg

j=1 gj = 1. Let D be the product set Df × Dg.

Appendix 1

In this appendix, we shall prove Proposition 1 and Eqs. (6) and (7). We shall
first prove a lemma.

Lemma 1 Under the model assumptions, we have

(1) for each (g2, . . . , gmg), −lnL is strictly convex on Df ;
(2) for each (f2, . . . , fmf ), −lnL is strictly convex on Dg;
(3) there is a unique maximum point of L on D and it is an interior point of D.

Proof By (5), it is obvious that statements (1) and (2) hold.
We shall assume that statement (3) is false and reach a contradiction. Notice

that D is close. Thus the maximum point is on the boundary of D, with fk = 0
or gk = 0 for some k.

If fk = 0, then either the MI induced by Bi’s is {tk} and tk = Ti for some i
with δi = 1, or the MI is (Ti, ∞) with δi = 0 and Ti is the largest observation

among Th’s. In either case, ψij =
{

1 if j = k,
0 otherwise

. Hence, 0 ≤ L ≤ fk = 0. Note
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that L > 0 if fj = 1/mf and gj = 1/mg for each possible j. It contradicts the
assumption that L reaches its maximum value at a point with fk = 0.

If gk = 0, then the corresponding MI induced by Ih’s is either Aj = {Mi}×{Xi},
or Aj = [Mi, ∞)×{Xi}, Thus, there is always an i such that φij =

{
1 if j = k,
0 otherwise.

As a consequence, 0 ≤ L ≤ gk = 0. On the other hand, L > 0 if fj = 1/mf
and gj = 1/mg for each possible j. It contradicts the assumption that L reaches
its maximum value at a point with gk = 0. This completes the proof of the
lemma. ��

Proof of the self-consistent equations in (6) and (7) Fix a k. For each j, replace
fj in L (see (5)) by

f w
j =

⎧⎨
⎩

fk+w
1+w

(
= fk−1

1+w + 1
)

if j = k
fj

1+w otherwise
= fj

1 + w
+ 1(j=k)

(
1 − 1

1 + w

)
. (13)

Then L is a function of fw and g, denoted by L(fw, g), where fw = (f w
1 , . . . , f w

mf
)

and g = (g1, . . . , gmg). It suffices to take derivative of L(fw, g) with respect to w.
Note that

∂f w
j

dw
= 1(j=k) − fj

(1 + w)2
.

Taking derivative of lnL with respect to w yields

∂lnL
∂w

∣∣∣∣
w=0

=
∑
i/∈K

ψik −∑mf

j=1 ψijfj∑mf

h=1 ψihfh

+ n1

∑mg

j=1 gj

(
1(tk>cj−βxj) −∑

h: th>cj−βxj
fh

)
∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

=
∑
i/∈K

(
ψik∑mf

h=1 ψihfh

− 1

)
+ n1

⎛
⎝

∑mg

j=1 gj1(tk>cj−βxj)∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

− 1

⎞
⎠ ,

(14)

k = 1, . . . , mf .
It follows from Lemma 1 that there is a unique maximum point of L and it

is an interior point. Thus, if L reaches it maximum at a point u = (f2, . . . , fmf ,

g2, . . . , gmg) then it satisfies ∂lnL(fw
,g)

∂w

∣∣
w=0 = 0 at that point. Setting ∂lnL

∂w

∣∣
w=0 = 0

yields

∑
i/∈K

ψik∑mf

h=1 ψihfh

+ n1

∑mg

j=1 gj1(tk>cj−βxj)∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

= n.
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Multiplying fk/n on both side of the foregoing equation yields the self-consistent
equations in (6):

fk = 1
n

∑
i/∈K

ψikfk∑mf

h=1 ψihfh

+ n1fk

n

∑mg

j=1 gj1(tk>cj−βxj)∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

.

The derivation of (7) is similar. Fix a k and replace gj in L (see (5)) by

gw
j =

{
gk+w
1+w

(
= gk−1

1+w + 1
)

if j = k
gj

1+w otherwise
= gj

1 + w
+ 1(j=k)

(
1 − 1

1 + w

)
. (15)

Let f = (f1, . . . , fmf ) and gw = (gw
1 , . . . , gw

mg
). Taking derivative of ln L with

respect to w yields

∂lnL
∂w

∣∣∣∣
w=0

=
∑
i/∈K

φik −∑mg

j=1 φijgj∑mg

h=1 φihgh
+ n1

−∑mg

j=1(gj − 1(j=k))
∑

h: th>cj−βxj
fh∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

=
∑
i/∈K

φik∑mg

h=1 φihgh
+ n1

∑
h: th>ck−βxk

fh∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

− n. (16)

It follows from Lemma 1 that there is a unique maximum point of L and it is
an interior point. Thus if L reaches it maximum at a point u = (f2, . . . , fmf ,

g2, . . . , gmg), then it satisfies that ∂lnL(f,gw)

∂w

∣∣
w=0 = 0 at that point. Setting

∂lnL(f,gw)

∂w

∣∣
w=0 = 0 yields

1 = 1
n

∑
i/∈K

φik∑mg

h=1 φihgh
+ n1

n

∑
h: th>ck−βxk

fh∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

.

It follows that

gk = 1
n

∑
i/∈K

φikgk∑mg

h=1 φihgh
+ n1gk

n

∑
h: th>ck−βxk

fh∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

.

Proof of Proposition 1 If the self-consistent algorithm converges, the solution
satisfies the self-consistent equations (6) and (7). Thus it is an SCE.

We shall assume that the proposition is false, that is, the L reaches its maxi-
mum point at the boundary of D, that is fk = 0 or gk = 0, and then it leads to a
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contradiction. Verify that

1
n

∑
i/∈K

ψik∑mf

h=1 ψihfh

+ n1

n

∑mg

j=1 gj1(tk>cj−βxj)∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

> 0,

1
n

∑
i/∈K

φik∑mg

h=1 φihgh
+ n1

n

∑
h: th>ck−βxk

fh∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

> 0,

whenever f ∈ Df and g ∈ Dg, as all the coefficients in the expressions are
nonnegative. Since the initial point fk,1 = 1

mf
> 0 and gk,1 = 1

mg
> 0

fk,v−1 > 0 and gk,v−1 > 0 for v ≥ 2. (17)

In view of (5), one can write L = L(f, g), where f = (f1, . . . , fmf ) and g =
(g1, . . . , gmg). By the three statements in Lemma 1 on the boundary of D

∂lnL(fw, g)
∂w

|w=0 > 0 and
∂lnL(f, gw)

∂w
|w=0 > 0,

where fw = (f w
1 , . . . , f w

mf
) (see (13)) and gw = (gw

1 , . . . , gw
mg
)(see (15)). It follows

from the foregoing inequalities, Eqs. (14) and (16) that

1
n

∑
i/∈K

ψik∑mf

h=1 ψihfh

+ n1

n

∑mg

j=1 gj1(tk>cj−βxj)∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

> 1,

1
n

∑
i/∈K

φik∑mg

h=1 φihgh
+ n1

n

∑
h: th>ck−βxk

fh∑mg

j=1 gj
∑

m: tm>cj−βxj
fm

> 1.

Thus if (f2,v−1, . . . , fmf ,v−1, g2,v−1, . . . , gmg,v−1) belongs to the neighborhood of
the boundary of D, then the foregoing inequalities together with (9) and (10)
yield

fk,v = 1
n

∑
i/∈K

ψikfk,v−1∑mf

h=1 ψihfh,v−1

+n1

n

∑mg

j=1 gj,v−11(tk>cj−bxj)
fk,v−1∑mg

j=1 gj,v−1
∑

m: tm>cj−bxj
fm,v−1

> fk,v−1 > 0,

by (17);

gk,v = 1
n

∑
i/∈K

φikgk,v−1∑mg

h=1 φihgh,v−1
+ n1

n

∑
h: th>ck−bxk

fh,v−1gk,v−1∑mg

j=1 gj,v−1
∑

m: tm>cj−bxj
fm,v−1

> gk,v−1 > 0



692 Q. Yu et al.

by (17). Thus it will not converge to 0, contradicting the assumption that it
converges to 0. It follows that the SCE must be the GMLE too. Moreover, the
GMLE f̂k, ĝk > 0 for each k. ��
Remark 2 We’d like to point out that if the initial step in the self-consistent
algorithm does not satisfy that fk,1 > 0 and gk,1 > 0, then an SCE may not be a
GMLE, that is, the conclusion in the proposition no longer holds.

7.1 Proof of Theorem 1

WLOG, we can assume that Fo = F∗ and FC,X = F∗
C,X.

By assumption A3 there are finitely many distinct values of O. By taking n
large enough, without loss of generality (WLOG), we can assume that the first
m Oi’s are all the possible distinct ones, and (η1, δ1) = (0, 0) (i.e., 1 ∈ K). Let
Nj = ∑n

i=1 1(Oi = Oj). Let Q(Oj) be the probability of the event O = Oj, cor-
responding to an arbitrary pair (F, G) and Qo(Oj) corresponding to (Fo, FC,X).

Let Q̂ be the GMLE induced by (F̂β , F̂C,X,β). By taking a subsequence and by

A3, WLOG, we can assume that limn→∞ Q̂(Oj) = Q∗(Oj) for each j, where Q∗
is again a probability measure.

The normalized log likelihood is

N (Q) = 1
n

lnL = 1
n

m∑
j=1

NjlnQ(Oj).

By the strong law of large number, with probability one, we have

lim
n→∞ N (Qo) → E(N (Qo)).

Since Q̂ is the GMLE,

N (Q̂) ≥ N (Qo).

It follows that

lim
n→∞

N (Q̂) ≥ lim
n→∞ N (Qo) = E(N (Qo)).

By Fatou’s lemma, with probability one,

lim
n→∞ N (Q̂) ≤

m∑
i=1

Qo(Oj)ln lim
n→∞ Q̂(Oj)

(
= E

(
N
(

lim
n→∞ Q̂

)))
.

That is, with probability one,

E(N (Qo)) ≤ E
(
N
(

lim
n→∞ Q̂

))
.
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By our assumption in the first paragraph, Q∗ = lim
n→∞ Q̂ is again a probability

measure. As a consequence, with probability one,

E(N (Qo)) ≤ E
(
N
(

lim
n→∞ Q̂

))
= E(N (Q∗)).

It follows from the Shannon–Kolmogorov inequality that E(N (Q)) <

E(N (Qo)) for all probability measure Q �= Qo. As a consequence

lim
n→∞ Q̂ = Q∗ = Qo.

Let Q be the probability measure corresponding to s (= (f2, . . . , fmf , g2, . . . , gmg).
We shall show in Lemma 2 that so = (f o

2 , . . . , f o
mf

, go
2 , . . . , go

mg
) uniquely maxi-

mizes E(N (Q)) over all s. Thus Q∗ = Qo implies that s = so. This completes
the proof of the theorem. ��
Lemma 2 so = (f o

2 , . . . , f o
mf

, go
2 , . . . , go

mg
) uniquely maximizes E(N (Q)) over all s.

Let Df , Dg and D be defined as in the proof of Proposition 1. Verify that

E(N (Q)) =
∑

i/∈K,i≤m

Qo(Oi)ln
mf∑
j=1

ψijfj + Qo(O1)ln
mg∑
j=1

gj

∑
k:tk>cj−βxj

fk

+
∑

i/∈K,i≤m

Qo(Oi)ln
mg∑
j=1

φijgj.

Moreover, verify that (1) for each fixed (g2, . . . , gmg), −E(N (Q)) is strictly con-
vex on Df ; (2) for each fixed (f2, . . . , fmf ), −E(N (Q)) is strictly convex on Dg.
Thus either (a) there is unique maximum point of E(N (Q)) and it is an interior
point, or (b) the maximum point is on the boundary of D, with fk = 0 or gk = 0
for some k.

However, case (b) is impossible, otherwise, E(N (Q)) = −∞, which can be
viewed as follows. For each k, there is an observation Bi such that either δi = 1
and Ti(β) = tk or δi = 0 and (Ti(β), ∞) is an MI induced by B1, …, Bn. In either

case, there is an i such that ψij =
{

1 if j = k
0 otherwise

. Similarly, one can verify that

there is always an i such that φij =
{

1 if j = k
0 otherwise

. As a consequence,

−∞ ≤ E(N (Q)) ≤ Qo(Oi)ln fk = −∞ (here we define ln 0 = −∞), or
−∞ ≤ E(N (Q)) ≤ Qo(Oi)ln gk = −∞.

It follows that E(N (Q)) = −∞. On the other hand, since Qo(Oj) > 0 for each
j by A3, E(N (Qo)) > −∞. Thus a point on the boundary of D cannot be a
maximum point of E(N (Q)). ��
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Remark 3 The consistency proof actually can be extended to the case that
(T(β), X) takes on countably many values. However, under assumption A3, the
proof is shorter.

7.2 Proof of Theorem 2

WLOG, we can assume that Fo = F∗ and FC,X = F∗
C,X.

Recall N = 1
n lnL(Q). For convenience, denote f o

k = fo(tk) and go
k = fC,X(ck,

xk). Let s = (s1, . . . , smf +mg−2)
′ = (g2, . . . , gmg , f2, . . . , fmf )

′, corresponding to
a probability measure Q, so = (so

1, . . . , so
mf +mg−2)

′ = (go
2 , . . . , go

mg
, f o

2 , . . . , f o
mf
)′,

corresponding to the probability measure Qo. Verify that E(N (Q)) is a function
of s, say l(s) = E(N (Q)). Let

J =
(
∂2E(N (Q))

∂s∂s′

) ∣∣∣∣
s=so

.

Under A3, the estimation problem is essentially a multinomial distribution
problem and thus it can be verified that

(
∂2E(N (Q))

∂s∂s′

) ∣∣∣∣
s=so

= E
(
∂2N (Q)
∂s∂s′

) ∣∣∣∣
s=so

.

In view of (5), it can be verified that ∂2ln L
∂si∂sj

is continuous in s and thus
∂2ln L
∂sj∂si

= ∂2ln L
∂si∂sj

for each pair (i, j). As a consequence, ∂2E(ln L)
∂s∂s′ is symmetric.

That is, −J = U′Diag(λi)U, where Diag(λi) is a d × d dimensional diagonal
matrix with d = mf + mg − 2 and diagonal elements λ1 ≥ · · · ≥ λd, and
U′ = U−1.

It can be shown by a similar arguement as in Wong and Yu (1999) that −J is
actually positive definite. For simplicity, we skip the details.

It is easy to verify that

∂2N (Q̂)
∂s∂s′ → E

(
∂2N (Q̂)
∂s∂s′

)
= −J.

It thus follows that

∂N (Q̂)
∂s

= ∂N (Qo)

∂s
+ J�n + op(||�n||),
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where �n is the d-dimensional column vector with entries ŝi − so
i . Let �n =

{inf i≤d ŝi = 0}, Verify that

0 = ∂N (Q̂)
∂s

except on the event �n,

and by Theorem 1, P(�n) → 0 as n → ∞. It follows from the central limit theo-

rem that
√

n ∂N (Q̂)
∂s is asymptotically normal with mean 0 and dispersion matrix

J. This shows that �n = J−1 ∂N (Qo)
∂s + op(n−1/2) and the theorem is proved. ��
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