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Abstract In the common Fourier regression model we determine the optimal
designs for estimating the coefficients corresponding to the lower frequencies.
An analytical solution is provided which is found by an alternative characteriza-
tion of c-optimal designs. Several examples are provided and the performance of
the D-optimal design with respect to the estimation of the lower order coefficients
is investigated. The results give a complete answer to an open question which was
recently raised in the literature.

Keywords Trigonometric regression model · c-Optimal design · Chebyshev
approximation · Two dimensional shape analysis

1 Introduction

Fourier regression models are widely used to describe periodic phenomena in
applications. Typical subject areas include engineering (see e.g. McCool, 1979),
medicine (see e.g. Kitsos, et al. 1988), agronomy (see e.g. Weber and Liebig, 1981)
or more generally biology [see the recent collection of research papers edited by
Lestrel (1997)]. Recent applications of trigonometric regression models appear
also in two dimensional shape analysis, where the coefficients of lower order are
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of particular importance, because they have a specific meaning in the biological
context (see e.g. Young and Ehrlich, 1977; Currie, et al. 2000 among many others);

It is well known that the application of an appropriate design can improve
the performance of the statistical analysis in a regression model substantially and
several authors have considered the problem of determining optimal designs for
least squares estimation of the parameters in Fourier regression models (see e.g.
Karlin and Studden, 1966, p. 347; Hill, 1978; Lau and Studden, 1985; Wu, 2002).
Most authors concentrate on the estimation of the full vector of parameters and
use Kiefer’s φp-optimality criteria to find efficient designs for this purpose (see
e.g. Pukelsheim, 1993, p. 241). Recently Dette and Melas (2003) determined opti-
mal designs for estimating the individual coefficients corresponding to the higher
frequencies in trigonometric regression models but the design problem for the esti-
mation of the coefficients corresponding to the lower frequencies was left open.
However, in many biological applications, such as two dimensional shape analysis,
the coefficients corresponding to lower frequencies are usually more important,
because of their concrete biological interpretation (see e.g. Young and Ehrlich,
1977). It is the purpose of the present paper to derive an explicit solution of this
problem.

The model is introduced in Sect. 2, where we also state some basic facts about
optimal design theory. In particular a reformulation of the equivalence theorem
for c-optimal designs (see e.g. Pukelsheim, 1993) is presented, which turns out to
be a particularly useful tool for the solution of the optimal design problem in the
present context. Our main results are stated in Sect. 3, where we present an explicit
solution of the optimal design problem for estimating the individual coefficients
corresponding to the lower frequencies in a Fourier regression model. In contrast to
the designs for estimating the coefficients corresponding to the higher frequencies
the optimal designs for estimating the lower order coefficients are not necessarily
uniform designs. The proof of our main results is based on an explicit construction
of a generalization of the classical Chebyshev polynomial, which is of own inter-
est and can be used to solve other design problems. In Sect. 4 we present several
examples illustrating our approach, while some of the technical details are deferred
to an Appendix.

The optimal designs for estimating the individual coefficients advise the exper-
imenter to take observations at a number of different locations which is smaller
than the number of parameters in the model. For this reason the optimal designs
derived in this paper can not be directly recommended for applications. However,
we recommend to use these designs as benchmarks in evaluating the performance
of commonly applied designs. Our results therefore provide an important tool for
identifying efficient designs for the statistical analysis in trigonometric regres-
sion models. We illustrate this by analyzing the optimal designs in the sense of
Kiefer (1974) with respect to its performance in the estimation of the individual
coefficients corresponding to the lower frequencies in the trigonometric regression
model. In particular it is shown that for large degree trigonometric models [as they
are used in series estimation, see Eubank (1999)] these designs are rather efficient,
but the loss of efficiency in lower order trigonometric regression models [as they
are used in two dimensional shape analysis in biology – see Young and Ehrlich
(1977) and Currie et al. (2000)] may be substantial.



Optimal designs for trigonometric regression 657

2 Optimal designs for estimating individual coefficients

The Fourier regression model is usually represented in the form

y = β0 +
m∑

j=1

β2 j−1 sin( j t) +
m∑

j=1

β2 j cos( j t) + ε, t ∈ [−π, π], (1)

where ε denotes a random variable with zero mean and positive variance, say
σ 2 > 0, and different observations are assumed to be independent. We define
β = (β0, β1, . . . , β2m)T as the vector of parameters and

f (t) = (1, sin t, cos t, . . . , sin(mt), cos(mt))T = ( f0(t), . . . , f2m(t))T (2)

as the vector of regression functions in the model (1). Following Kiefer (1974) we
call any probability measure ξ on the design space [−π, π] with finite support an
(approximate) design. The support points of the design ξ give the locations, where
observations are taken, while the weights give the corresponding proportions of the
total number of observations to be taken at these points. For uncorrelated observa-
tions [obtained from an approximate design by some rounding procedure – see e.g.
Pukelsheim and Rieder (1992)] the covariance matrix of the least squares estimator
for the parameter β is approximately given by

σ 2

n
M−1(ξ),

where n denotes the sample size and the matrix

M(ξ) =
π∫

−π

f (t)f T(t)dξ(t) ∈ R
2m+1×2m+1 (3)

is called information matrix in the design literature. An optimal design minimizes
(or maximizes) an appropriate convex (or concave) function of the information
matrix and there are numerous criteria proposed in the literature, which can be
used for the discrimination between competing designs (see e.g. Silvey, 1980;
Pukelsheim, 1993). In many cases equispaced designs are optimal for estimating
the full parameter vector and we begin our discussion adding a further optimality
property of these designs. For this let A− be a generalized inverse of the matrix
A ∈ R

2m+1×2m+1 and consider a 2m + 1 × s matrix K of full rank s ≤ 2m + 1.
Recall that for −∞ ≤ p ≤ 1 a φp-optimal design for the estimation of the param-
eter K Tβ maximizes the function

φp(η) = (trace (K T M−(η)K )−p)1/p (4)

among all design for which K Tβ is estimable, that is K ⊂ Range(M(ξ)) (see
Pukelsheim, 1993). In what follows ek ∈ R

2m+1 denotes the (k + 1)th unit vector
(k = 0, . . . , 2m).
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Lemma 1 Assume that Ki1,...,ir = (e2i1−1, e2i1 , . . . , e2ir −1, e2ir ) ∈ R
2m+1×2r for

indices 1 ≤ i1 < · · · < ir ≤ m, then any design η∗ with information matrix
satisfying

M(η∗) =
(

1 0
0 1

2 I2m

)

is φp-optimal for the estimation of the parameter K T
i1,...,ir

β in the trigonometric
regression model (1).

Proof According to Theorem 7.20 in Pukelsheim (1993) we obtain that the mea-
sure η∗ is φp-optimal for the estimation of the parameter K T

i1,...,ir
β if and only if

the inequality

f T(t)21−p Ki1,...,ir (K T
i1,...,ir Ki1,...,ir )

−p−1 K T
i1,...,ir f (t)

≤ 2−ptrace(K T
i1,...,ir , Ki1,...,ir )

−p

holds for all t ∈ [0, 2π]. Obviously K T
i1,...,ir

Ki1,...,ir = I2r and we obtain for both

sides of the inequality the value r21−p, which proves the assertion of the Lemma.
��

Note that equispaced designs with masses 1/n at n ≥ 2m + 1 points

(α + 2 jπ/n) mod 2π, j = 1, . . . , n

with α ∈ [0, 2π) satisfy the assumption of Lemma 1 (see Pukelsheim, 1993,
p. 241). In particular Lemma 1 provides a solution of the optimal design problem
for the estimation of the pair {β2 j−1, β2 j }, where 1 ≤ j ≤ m. For the estimation
of such a pair of parameters any equispaced design with at least 2m + 1 points is
optimal with respect to all φp-criteria.

The problem of determining optimal designs for the estimation of the individual
coefficients βk is substantially harder and will be the main topic of this paper. In
particular we are interested in optimal designs for the estimation of the individual
coefficients βk corresponding to the lower frequencies in the trigonometric regres-
sion model (1). To be precise we call a design ξ ek-optimal or optimal for estimating
the coefficient βk, if βk is estimable by the design ξ [i.e. ek ∈ Range(M(ξ))] and
ξ minimizes the function

	k(η) = eT
k M−(η)ek (5)

in the set of all designs η such that the parameter βk is estimable by the design η.
It follows by similar arguments as given in Dette et al. (2002) that in trigonometric
regression models ek-optimal designs are invariant with respect to rotations, that
is t → (α + t) mod 2π , α ∈ [0, 2π).

ek-optimal designs have been discussed by several authors, mainly for the case
of polynomial regression on the interval [−1, 1] (see e.g. Studden, 1968: Spruill,
1990; Dette and Melas (2003)) solved the ek-optimal design problem for the case
k = 2
, k = 2
 − 1, where 
 > m/3, and for the sake of completeness we restate
this result here.
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Theorem 1 Dette and Melas 2003 Consider the trigonometric regression model
(1) on the design space [−π, π].
(a) For any 
 such that m/3 < 
 ≤ m and any δ ∈ [0, 1

2

] the design

ξ∗
2
 =

(−π −π + π



. . . −π + 2
−1



π
1
2


1
2


. . . 1
2


)
(6)

is optimal for estimating the parameter β2
. Moreover, in this case 	2
(ξ
∗
2
) =

1.
(b) For any 
 such that m/2 < 
 ≤ m the design ξ∗

2
 defined by (6) is optimal for
the estimation of the intercept β0.

(c) For any 
 such that m/3 < 
 ≤ m the design

ξ∗
2
−1 =

(−π + π
2


−π + 3π
2


. . . −π + 2
−3
2


π −π
2


+ π
1
2


1
2


. . . 1
2


1
2


)

is optimal for estimating the coefficient β2
−1. Moreover, in this case 	2
−1
(ξ∗

2
−1) = 1.

The construction of efficient designs for estimating the lower frequencies in the
trigonometric regression model appears to be substantially more difficult. In the
following section we will provide an explicit solution of this problem. The main
tool in our approach is a reformulation of the equivalence theorem for c-optimal
designs as it is presented in Dette et al. (2004) in the case of polynomial models.
Because this result does not depend on a particular regression model, it is presented
here for a general linear regression model of the form

E[y|t] = βT f (t), t ∈ [a, b] (7)

where the βT = (β0, . . . , βd), f (t) = ( f0(t), . . . fd(t))T. The case of the Fourier
regression model (1) is obtained for d = 2m and the choice (2).

Lemma 2 Let f̄k(t) = ( f0(t), f1(t), . . . , fk−1(t), fk+1(t), . . . , fd(t))T denote
the vector obtained from f (t) = ( f0(t), f1(t), . . . , fd(t))T by omitting the func-
tion fk(t). A design ξ∗

k is ek-optimal on the interval [a, b] if and only if there
exists a positive number hk and a vector q∗ ∈ R

d such that the function ϕk(t) =
fk(t) − f̄ T

k (t)q∗ satisfies the following conditions

(1) hkϕ
2
k (t) ≤ 1 ∀ t ∈ [a, b]

(2) supp(ξ∗
k ) ⊂ {t ∈ [a, b] | hkϕ

2
k (t) = 1}

(3)
∫ b

a ϕk(t) f̄k(t)dξ∗
k (t) = 0 ∈ R

d .

Moreover, in this case hk = 	k(ξ
∗
k ).

3 Optimal designs for estimating lower frequencies

Recall from Sect. 2 that Theorem 1 provides a solution of the e2
−1- and e2
-optimal
design problem whenever m/3 < 
 ≤ m. It is also notable that the optimal designs
depend rather weakly on the degree of the Fourier regression (namely only by the
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lastnamed inequality). For example the e9- and e10-optimal design (i.e. the optimal
designs for estimating the coefficients β9 or β10 in the trigonometric regression
model (1)) are the same for m = 5, 6, . . . , 14 and do not depend on m. Both
designs have essentially 10 support points. However, if the degree m exceeds 14
the optimal designs can not be determined by Theorem 1 and the dependency on
the degree of the Fourier regression is more severe. In particular the number of
support points is substantially larger (at least 16) and the weights of the optimal
designs are not necessarily equal any more. The optimal design for this case is
presicely described by the main result of the present section.

Theorem 2 Consider the trigonometric regression model (1), where m ≥ 3 and
assume that 
 ≤ m/3.

(a) If p = �m+3

2


� is odd, then the design

ξ∗
2
 =

(−tn . . . −t1 t1 . . . tn
wn . . . w1 w1 . . . wn

)

with n = 
(p − 1),

ti =
(

2i − 1 + 2
⌊

i−1
p−1 + 1

2

⌋)
π

2p

i = 1, . . . , n (8)

wi = | cos 
ti |
2

∑n
j=1 | cos 
t j | i = 1, . . . , n (9)

is optimal for estimating the coefficient β2
 in the trigonometric regression
model (1). Moreover, the value of the optimality criterion is given by

	2


(
ξ∗

2


)
=

( 2


p

n∑

i=1

| cos 
ti |
)2 =

( 2

p
cot

( π

2p

))2
(10)

(b) If p = �m+3

2


� is even, then any design of the form

ξ∗
2
 =

(−π −tn . . . −t2 0 t2 . . . tn π
µ wn . . . w2 w1 w2 . . . wn w1 − µ

)

with n = 
(p − 1),

ti =
(

2(i − 1) + 2
⌊

i−1
p−1 + 1

2

⌋)
π

2p

i = 1, . . . , n (11)

wi = | cos 
ti |
2

∑n
j=1 | cos 
t j | i = 1, . . . , n (12)

µ ∈ [0, w1] (13)

is optimal for estimating the coefficient β2
 in the trigonometric regression
model (1). Moreover, the value of the optimality criterion is given by (10).
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(c) Define p = �m+3

2


�, n = 
(p − 1), then the design

ξ∗
2
−1 =

(−tn . . . −t1 t1 . . . tn
wn . . . w1 w1 . . . wn

)

with

ti =
(

i + � i − 1

p − 1

⌋)
π

p

i = 1, . . . , n (14)

wi = | sin 
ti |
2

∑n
j=1 | sin 
t j | i = 1, . . . , n (15)

is optimal for estimating the coefficient β2
−1 in the trigonometric regression
model (1). Moreover, the value of the optimality criterion for this design is
given by

	(ξ∗
2
−1) =

(
2

p


n∑

i=1

| sin 
ti |
)2

=
( 2

p
cot

π

2p

)2
.

Proof All cases are proved similarly and for this reason we restrict ourselves to the
case (a) where p = �m+3


2

� is assumed to be odd. In other words we are interested

in the optimal design for estimating the coefficient β2
 of the function cos(
t)
where 
 ≤ m

3 . The proof of Theorem 2 is based on an explicit construction of the
function ϕ
 in Lemma 2. For this note that p ≥ 3 (because 
 ≤ m/3) and consider
the trigonometric polynomial

L(t, a) =
p−1∑

j=1

a j cos((2 j − 1)
t), (16)

where (a1, . . . , ap−1)
T ∈ R

p−1 is a given vector. We determine this vector such
that the function L satisfies

L(ti , a) = cos(
ti )

| cos 
ti | i = 1, . . . ,
p − 1

2
(17)

L ′(ti , a) = 0 i = 1, . . . ,
p − 1

2

where the points t1, . . . , t p−1
2

are defined by (8). It is easy to see that the system of

equations in (17) is equivalent to the system

Ba = e, (18)

where the vector e ∈ R
p−1 is given by

e =
(

cos(
t1)

| cos(
t1)| , . . . ,
cos(
t p−1

2
)

| cos(
t p−1
2

)| , 0, . . . , 0

)T

(19)

and the (p − 1) × (p − 1) matrix B is defined as
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B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(
t1) cos(3
t1) . . . cos((2p − 3)
t1)
...

...
...

...
cos(
t p−1

2
) cos(3
t p−1

2
) · · · cos((2p − 3)
t p−1

2
)

−
 sin(
t1) −3
 sin(3
t1) · · · −(2p − 3)
 sin((2p − 3)
t1)
...

...
...

...
−
 sin(
t p−1

2
) −3
 sin(3
t p−1

2
) · · · −(2p − 3)
 sin((2p − 3)
t p−1

2
)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)

It follows from Lemma 3 in the Appendix that det B �= 0. Therefore the sys-
tem of equation in (18) or equivalently in (17) has a unique solution, say â =
(â1, . . . , âp−1)

T. In the following we investigate the properties of the function
L(t, â) corresponding to this solution. In order to simplify the notation we assume

 = 1 throughout the remaining part of the proof. The general case can be proved
exactly in the same way and the (minor) differences will be briefly mentioned at
the corresponding places.

We will show in Lemma 4 in the Appendix that the function L(t, â) satisfies

|L(t, â)| ≤ 1 ∀ t ∈ [−π, π]. (21)

From the orthonormality conditions

2

π

π∫

0

cos(i t) cos( j t)dt =
{

1 if i = j �= 0
0 if i �= j

we obtain that the coefficient of cos t in the function L(t, â) has the representation

â1 = 2

π

π∫

0

L(t, â) cos tdt. (22)

In order to calculate this expression explicitly we will use the fact that the points

xi = cos ui = cos
(2i − 1

2p
π

)
, i = 1, . . . , p (23)

and weights αi = 1
p (i = 1, . . . , p) define a quadrature formula of degree 2p − 1

on the interval with respect to the arcsine distribution, that is

1

π

1∫

−1

Pk(x)
dx√

1 − x2
= 1

π

π∫

0

Pk(cos t)dt (24)

=
p∑

i=1

Pk(xi )αi =
p∑

i=1

αi Pk(cos ui )
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for all polynomials Pk of degree k ≤ 2p − 1. The formula (24) can be found, for
example, in Stroud and Secrest (1966). Since

2p − 1 = 2

⌊
m + 3

2

⌋
− 1 = 2

⌊
m + 1

2

⌋
+ 1 ≥ m + 1

and the function L(t, α̂) cos t can be represented in the form Pm+1(cos t), where
the degree of Pm+1 is at most m + 1, we can use the quadrature formula (24) to
evaluate the expression in (22). For this we note that by the definition of the points
ti and ui in (8) and (23), respectively, we have

ui = 2i−1
2p π = ti if i = 1, . . . ,

p−1
2 ,

ui = π
2 if i = p+1

2 ,

ui = ti−1 if i = p+3
2 , . . . , p,

(25)

which yields, by the definition of L(t, â),

L(ui , â) =

⎧
⎪⎨

⎪⎩

cos ui

| cos ui | if i �= p+1
2

0 if i = p+1
2 .

This gives for the coefficient â1 in (22)

â1 = 2

π

π∫

0

L(t, â) cos tdt = 2

p

p∑

i=1

L(ui , â) cos ui (26)

= 2

p

p∑

i=1

| cos ui | = 2

p

p−1∑

i=1

| cos ti |.

Consider now the function

ϕ(t) = L(t, â)

â1
(27)

and note that the coefficient of cos t is 1. Therefore the function ϕ can be represented
as

ϕ(t) = cos t − ãT f̄2(t) (28)

with a suitable vector ã and

f̄2(t) = (1, sin t, sin 2t, cos 2t, . . . , sin(mt), cos(mt))T. (29)

We will now show that the conditions of Lemma 2 are satisfied for the function ϕ.
For this we define h = â2

1 and obtain from (21) and (27)

hϕ2(t) ≤ 1 (30)

for all t ∈ [−π, π]. Moreover, it follows from the construction of the function L
that there is equality in (30) if t = ti or t = −ti for i = 1, . . . , n. Therefore the
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function ϕ satisfies the conditions (1) and (2) of Lemma 2. In order to prove the
remaining condition (3) of this Lemma we note ϕ(ti ) = ϕ(−ti ), i = 1, . . . , n,
which implies

π∫

−π

ϕ(t) sin( j t)dξ∗
2 (t) =

n∑

i=1

{
ϕ(ti ) sin( j ti ) + ϕ(−ti ) sin(− j ti )

}

wi = 0 (31)

for j = 1, . . . , m. Moreover, from (24) we derive the well known relation

p∑

i=1

cos
(

k
2i − 1

2p
π

)
= 0, k = 1, 2, . . . , 2p − 1,

which imply [note that n = p − 1 and observe the relation (17), (25) and (26)]

π∫

−π

ϕ(t) cos( j t)dξ∗
2 (t) = 2

n∑

i=1

ϕ(ti ) cos( j ti )wi

=
n∑

i=1

L(ti , â)

â1
cos( j ti )

| cos ti |∑n
j=1 | cos t j |

= 2

pâ2
1

p∑

i=1

cos
(2i − 1

2p
π

)
cos

(
jπ

2i − 1

2p

)

= 1

pâ2
1

p∑

i=1

{
cos

(
( j − 1)

2i − 1

2p
π

)

+ cos

(
( j + 1)

2i − 1

2p
π

)}
= 0

for j = 2, 3, . . . , 2p − 2. Since m ≤ 2p − 2 it therefore follows from these
relations that

∫
ϕ(t) f̄2(t)dξ∗

2 (t) = 0 ∈ R
2m,

which proves the remaining assumption (3) of Lemma 2. By this result it now
follows that the design ξ∗

2 is optimal for estimating the coefficient β2 in the trig-
onometric regression model (6). For a proof of the identity in (10) we note that it
follows from formula 420 in Jolley (1961) that

n∑

i=1

| cos ti | = 2

� p−1
2 �∑

i=1

cos ti = 2

� p−1
2 �∑

i=1

cos
(2i − 1

2p
π

)

=
sin

(
(p−1)π

2p

)

sin
(

π
2p

) = cot
( π

2p

)
.
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This proves part (a) of Theorem 2 in the case 
 = 1. The general case 
 ≥ 2
follows by exactly the same arguments with an additional amount of notation in
this proof. Finally, the cases (b) and (c) are shown similarly and the proof is there-
fore omitted. ��

4 Examples

In this section we briefly illustrate the results of Sect. 3 by calculating explic-
itly the optimal designs for estimating the coefficients corresponding to the lower
frequencies in a Fourier regression model (1) of degree m = 3, 4, 5, 6.

Example 1 Consider a Fourier regression model of degree m = 3 or m = 4. The
optimal designs for estimating the coefficients β0 and βi (i ≥ 3) can be directly
obtained from Theorem 1 and are not given here for the sake of brevity. For the con-
struction of the two remaining optimal designs we begin with the optimal design
for estimating the coefficient β1 (that is 
 = 1) and note that in this case

p =
⌊

m + 3


2


⌋
=

⌊
m + 3

2

⌋
= 3

for m = 3, 4. By Theorem 2(c) the points t1, t2 are given by t1 = π/3, t2 = 2π/3
which gives sin t1 = sin t2 = √

3/2. Therefore the optimal design for estimating
the coefficient β1 in the trigonometric regression model (6) with degree m = 3, 4
is given by

ξ∗
1 =

(− 2π
3 −π

3
π
3

2π
3

1
4

1
4

1
4

1
4

)
,

and the value of the optimality criterion is 	1(ξ
∗
1 ) = 4

3 . Finally, the function ϕ
required for the application of Lemma 2 is given by

ϕ(t) = sin t + 1

6
sin(3t).

In order to determine the optimal design for estimating the coefficient β2 we use
the first part of Theorem 2 and obtain t1 = π/6, t2 = 5π/6. Observing that
cos t1 = − cos t2 = √

3/2 it follows that

ξ∗
2 =

(− 5
6π −π

6
π
6

5
6π

1
4

1
4

1
4

1
4

)

is an optimal design for estimating the coefficient β2 in the trigonometric regres-
sion of degree m = 3, 4. The value of the optimality criterion is again 	2(ξ

∗
2 ) = 4

3
and the function required for the application of in Lemma 2 is given by

ϕ(t) = cos t − 1

6
cos 3t.

For a better illustration the support points of the two optimal designs are depicted
in Fig. 1, where the points of the design ξ∗

1 and ξ∗
2 are denoted as a j and b j ,

respectively.
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a1 a2

a3a4

b4 b3

b2b1

Fig. 1 The support points of the two optimal designs ξ∗
1 and ξ∗

2 in the Fourier regression model
of degree m = 3 and m = 4. The points of the designs ξ∗

1 and ξ∗
2 are denoted as a j and b j ,

respectively

Example 2 Consider the Fourier regression model (6) of degree m = 5 and 6. If
m = 5 only the designs for estimating the individual coefficients β1 and β2 cannot
be obtained from Theorem 1. The optimal design for estimating the coefficient β1
in the trigonometric regression model (6) with m = 5 is given by

ξ∗
1 =

( − 3π
4 −π

2 −π
4

π
4

π
2

3π
4

1
4+2

√
2

√
2

4+2
√

2
1

4+2
√

2
1

4+2
√

2

√
2

4+2
√

2
1

4+2
√

2

)
(32)

and the function required for the application of Lemma 2 is

ϕ(t) = sin t + 8 − 5
√

2

4
sin(3t) + 3

√
2 − 4

4
sin(5t). (33)

The value of the optimality criterion is obtained as 	(ξ∗
1 ) = 3+2

√
2

4 . The optimal
design for estimating the coefficient β2 is given by

ξ∗
2 =

(−π − 3π
4 −π

4 0 π
4

3π
4 π

µ
√

2
4+4

√
2

√
2

4+4
√

2
2

4+4
√

2

√
2

4+4
√

2

√
2

4+4
√

2
2

4+4
√

2
− µ

)
, (34)

where µ ∈ [0, 2/(4 + 4
√

2)] is arbitrary. The corresponding function in Lemma 2
is given by

ϕ(t) = cos(t) −
(

8 − 5
√

2

4

)
cos(3t) +

(
3
√

2 − 4

4

)
cos(5t). (35)

The polynomials in (33) and (35) are depicted in Fig. 2, while the location of the
support points on the circle is shown in Fig. 3.

In the trigonometric regression model of degree m = 6, the optimal designs
for estimating the coefficients β1, β2, β3, β4 cannot be found by an application of
Theorem 1, and Theorem 2 has to be used for this purpose. The optimal designs
for estimating the coefficients β1 and β2 are given by (32) and (34), respectively.
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Fig. 2 The functions defined in Lemma 2 corresponding to the estimation of the coefficients β1
and β2 in a Fourier regression model of degree m = 5, respectively. The functions are defined
explicitly by (33) (solid line) and (35) (dotted line)

Fig. 3 The support points of the two optimal designs ξ∗
1 (left panel) and ξ∗

2 (right panel) in the
Fourier regression model of degree m = 5

The optimal design for estimating the coefficient β3 is a uniform distribution at the
eight points

±π

6
, ±2π

6
, ±4π

6
, ±5π

6
,

while the corresponding function in Lemma 2 is given by

ϕ(t) = sin(2t) + 1

6
sin(6t), (36)

and the value of the optimality criterion is 	(ξ∗
3 ) = 4

3 . Finally, the design for
estimating the coefficient β4 is given by a uniform distribution at the points

±11π

12
, ±7π

12
, ±5π

12
, ± π

12
,
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the corresponding function in Lemma 2 is ϕ(t) = cos(2t)− 1
6 cos(6t) and the value

of the optimality criterion is again 	(ξ∗
4 ) = 4

3 . The support points of the designs
ξ∗

3 and ξ∗
4 are depicted in Fig. 4.

Example 3 Commonly used designs for trigonometric regression models are uni-
form designs with at least n ≥ 2m+1 different points. As pointed out by Pukelsheim
(1993) these designs are optimal with respect to Kiefer’s φp-criteria for the least
squares estimation of the full vector of parameters. It is therefore of interest to
investigate the performance of these designs with respect to the estimation of the
coefficients corresponding to the lower frequencies in the trigonometric regression
model (6). For this purpose we note that the information matrix of a uniform design,
say ξu, in this model is given by

M(ξu) = diag(1, 2, . . . , 2) ∈ R
2m+1×2m+1,

see Pukelsheim, 1993 and therefore the efficiency of the uniform design for esti-
mating the coefficient βk (k ≥ 1) is obtained as

effk(ξu) = 	k(ξ
∗
k )

	k(ξu)
= (2 − δk0)

−1
(

2

p
cot

( π

2p

))2

,

where k = 2
, 2
 − 1, 
 ≤ m/3 and p = �m+3

2


�. For example, if m = 6 and
k = 4(
 = 2) or k = 3(
 = 2) we obtain

eff3(ξu) = eff4(ξu) = 2

3
,

which shows that the loss of efficiency for estimating the coefficients β3 and β4
in a trigonometric regression model of degree m = 6 is 33% if a uniform design
is used. However, if the degree of the trigonometric regression is larger, then the
uniform design has a better efficiency. In particular, if m → ∞ we obtain

lim
p→∞

2

p
cot

( π

2p

)
= 4

π
,

which gives for the efficiency of the uniform design

lim
m→∞ effk(ξu) = 8

π2 ≈ 0.8097, k ≥ 1

(note that asymptotically the limit does not depend on k). In other words if the
uniform design is used in a trigonometric regression with a large degree [as it
appears in series estimation, see Eubank (1999)] the loss of efficiency for estimat-
ing the coefficients corresponding to the lower frequencies is 20%. However, if the
uniform design is used in a trigonometric regression model of lower degree [as it
appears in two dimensional shape analysis, see Young and Ehrlich (1977) or Currie
et al. (2000)] the loss of efficiency is more substantial.
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Fig. 4 The support points of the two optimal designs ξ∗
3 (left panel) and ξ∗

4 (right panel) in the
Fourier regression model of degree m = 6

Appendix: some technical results

Lemma 3 The matrix B defined by (20) is nonsingular.

Proof Let s ∈ N and consider the matrix

A =

⎛

⎜⎜⎝

cos t1 cos(3t1) . . . cos((4s − 1)t1)
cos t2 cos(3t2) . . . cos((4s − 1)t2)

...
...

...
...

cos t2s cos(3t2s) . . . cos((4s − 1)t2s)

⎞

⎟⎟⎠ = (u1, . . . , u2s) ∈ R
2s×2s

where t1 < t2 < · · · < t2s are arbitrary numbers and the vector u
 is defined by

u
 = (cos((2
 − 1)t1), . . . , cos((2
 − 1)t2s))
T 
 = 1, . . . , 2s.

Let U2
−1(x) = sin(2
 arccos x)/ sin(arccos x) denote the Chebyshev polynomial
of the second kind see Szegö, 1959. Observing the identity


∑

j=1

cos((2 j − 1)t) = 1

2

sin(2
t)

sin t
= 1

2
U2
−1(x)

with x = cos t see Jolley, 1961, formula 420, implies

det A = det(u1, u1 + u2, u1 + u2 + u3, . . . , u1 + · · · + u2s)

=
(1

2

)2s
det

(
U2 j−1(xi )

)2s

i, j=1

where xi = cos ti (i = 1, . . . , 2s). It is well known that the leading coefficient of
U j (x) is 2 j see Szegö, 1959, and we obtain (using the Vandermonde determinant
formula)

det A =
(

1

2

)2s

2
∑2s

j=1(2 j−1) det(x2 j−1
i )2s

i, j=1

= 22s(2s−1)

2s∏

i=1

cos ti
∏

1≤k< j≤2s

(cos2 t j − cos2 tk).
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Subtracting the i th row of the matrix A from the (i + s)th row (i = 1, . . . , s) it
follows that the determinant of the matrix B defined by (20) can be obtained as

det B = lim
ti+s→ti ;i=1,...,s

det A∏s
i=1(ti+s − ti )

= −22s(2s−1)

s∏

i=1

(cos2 ti sin 2ti )
∏

1≤k< j≤s

(cos2 tk − cos2 t j )
4.

Finally, if s = p−1
2 and the points t1, . . . , t p−1

2
are given by (8) it follows that

t j ∈ (0, π
2 )( j = 1, . . . ,

p−1
2 ) which implies det B �= 0. ��

Lemma 4 The polynomial L(t, â) defined by (16) and (18) satisfies the inequality
(21).

Proof Recall that p is assumed as odd. Note that the system

{sin t, sin(3t), . . . , sin((2p − 1)t)}
is a Chebyshev system on the interval (0, π

2 ) and consequently the function

L ′(t, â) = −
p−1∑

j=1

(2 j − 1)â j sin((2 j − 1)t) (37)

has at most p − 2 roots in the interval (0, π
2 ) counted with their multiplicities see

Karlin and Studden, 1966. Therefore a careful counting of the multiplicities yields
that the function L(t, â) has exactly one extreme point in each of the intervals
(ti , ti+1); i = 1, . . . ,

p−3
2 .

Moreover, by (17) we have L̂(ti , â) = 1, if i = 1, . . . ,
p−1

2 , and in follows
from the Chebyshev property of the system {cos t, cos(3t), . . . , cos((2p − 3)t)}
on the interval (0, π

2 ) see Karlin and Studden, 1966 that there is exactly one local

minimum in the intervals (ti , ti+1); i = 1, . . . ,
p−3

2 . Now the system

{sin t, sin(2t), . . . , sin((2p − 3)t)}
is a Chebyshev system on the interval (0, π) and therefore the function in (37) has
at most (2p − 4) roots in this interval (counted with their multiplicities). By the
above discussion there remain (p −2) roots (counted with their multiplicities) and
by (17)

L(ti , â) = −1; i = p + 1

2
, . . . , p − 1.

Again a careful counting of the multiplicities of the roots shows that there is exactly
one local maximum in the intervals

(ti , ti+1), i = p + 1

2
, . . . , p − 2.

Note that in the case p < 5 there do not exist such intervals.
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Fig. 5 The functions L(t, â) defined by (17) and the function cos(2pt) in the case p = 5. The
polynomial Q(t) defined by (40) has two roots of multiplicity 2 at t1 = π

10 , t2 = 3π
10 and both

graphs intersect in each of the intervals (( j − 1) π
10 , j π

10 ) j = 5, . . . , 10

Now assume that there exists a point t∗ ∈ [−π, π] such that |L(t∗, â)| > 1.
A direct calculation shows that this is not possible in the case p = 3 and we can
assume p ≥ 5 in the remaining part of the proof. By the discussion of the previous
paragraph there exists a point

t̄ = min{|t∗|, π − |t∗|} ∈
(

0,
π

2

)
(38)

such that

L(t̄, â) < −1 (39)

and t̄ ∈ (ti , ti+1) for some i ∈ {1, . . . ,
p−3

2 }. We now compare the function
L(t, â) with the function − cos(2pt) [in the case 
 > 1 one has to use the function
− cos(2p
t)]. For this purpose we define the trigonometric polynomial

Q(t) = L(t, â) + cos(2pt). (40)

Because the functions

1, cos t, cos(2t), . . . , cos(2pt) (41)

form a Chebyshev system on the interval [0, π], it follows that the function Q(t)
has at most 2p roots in the interval [0, π] counted with their multiplicities. From
the definition of the function L in (17) we obtain that the points t1, . . . , t p−1

2
are

roots of the trigonometric polynomial Q and their multiplicity is at least two.
Moreover, since L(t, â) changes in the interval ((p − 2) π

2p , π
2 ) from +1 to 0 and

− cos(2pt) changes in the intervals ((p − 2) π
2p , (p − 1) π

2p ) and ((p − 1) π
2p , π

2 )

from 1 to −1 and −1 to 1, respectively, the function has a further root in the interval
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((p − 2) π
2p , π

2 ). By a similar argument it follows that the function Q has a root in
each of the p intervals

(π

2
, (p + 1)

π

2p

)
,
(
(p + 1)

π

2p
, (p + 2)

π

2p

)
, . . . ,

(
(2p − 1)

π

2p
, π

)

(note that cos(2pt) attains each value in [−1, 1] in each of these intervals). Con-
sequently, there do not exist any other roots of the trigonometric polynomial Q.
A typical picture of the function L and the function − cos(2pt) is displayed in
Fig. 5 for the case p = 5.

By our assumption the point t̄ defined in (38) satisfies (39) and is located in
one of the intervals (ti , ti+1), where i ∈ {1, . . . ,

p−3
2 }. But this would mean that

the function Q has two additional roots in the interval (ti , ti+1) yielding to a total
number of 2p + 2 roots (counted with their multiplicities). This is a contradition
to the Chebyshev property of the system in (41) and shows that |L(t, â)| ≤ 1 for
all t ∈ [0, π]. By the symmetry of the function L this property also holds for the
interval [−π, 0], which completes the proof of Lemma 4. ��
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