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Abstract Knowledge of the probability distribution of error in a regression
problem plays an important role in verification of an assumed regression model,
making inference about predictions, finding optimal regression estimates, suggest-
ing confidence bands and goodness of fit tests as well as in many other issues of
the regression analysis. This article is devoted to an optimal estimation of the error
probability density in a general heteroscedastic regression model with possibly
dependent predictors and regression errors. Neither the design density nor regres-
sion function nor scale function is assumed to be known, but they are suppose to be
differentiable and an estimated error density is suppose to have a finite support and
to be at least twice differentiable. Under this assumption the article proves, for the
first time in the literature, that it is possible to estimate the regression error density
with the accuracy of an oracle that knows “true” underlying regression errors. Real
and simulated examples illustrate importance of the error density estimation as
well as the suggested oracle methodology and the method of estimation.

Keywords and phrases Adaptation · Error depending on predictor · Heterosce-
dasticity · Minimax · Pinsker oracle

1 Introduction

Let n identical and independently distributed (iid) observations (X1, Y1), . . . , (Xn,
Yn) of the pair of random variables (X, Y ) be available. The classical (and sim-
plest) regression problem is to find and then infer about the regression function
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m(x) := E(Y |X = x) in the model

Y = m(X)+ ξ, (1)

where X is uniformly distributed on [0, 1] predictor and ξ is independent of the
predictor regression error. See a discussion of this homoscedastic nonparamet-
ric regression model in Fan and Gijbels (1996), Hart (1997), Eubank (1999) and
Efromovich (1999).

Suppose that the statistician uses a regression estimator m̃(x), then Rl :=
Yl − m̃(Xl), l = 1, . . . , n are called residuals, and they are traditionally used as
proxies for corresponding unobserved regression errors. The latter is the founda-
tion of the classical residual analysis used for model validation, hypothesis testing
and prediction (Neter et al., 1996; Fan and Gijbels, 1996).

Interestingly, despite the fact that the residual analysis is widely used in applied
nonparametric statistic, so far no mathematically rigorous result about a possibility
to use residuals for an optimal (in any sense) error density estimation is known.
The available literature is practically next to none with just several known arti-
cles devoted to consistent estimation of the regression error density (Cheng, 2002,
2004). At the same time, there is a vast literature devoted to the estimation and
application of functionals of the error density (Akritas and Van Keilegom, 2001;
Müller et al., 2004).

It has been conjectured (with outlined ideas of a possible proof) in Efromovich
(2005) that under a mild assumption on smoothness of the regression function and
the error density, residuals can proxy underlying regression errors in the follow-
ing optimal sense. Consider an oracle, which is a traditional density estimator with
best known properties under the mean integrated squared error (MISE) criteria, that
knows underlying regression errors. Then, it is possible to suggest a data-driven
regression estimator whose residuals can be plugged in the oracle in place of regres-
sion errors and the obtained data-driven error density estimator will have the same
MISE convergence as the oracle based on “true” regression errors. In other words,
the conjecture is that error density estimation based on either residuals or underly-
ing regression errors imply the same asymptotic MISE. It has been recommended
to use a Pinsker oracle, which is a classical blockwise-shrinkage orthogonal series
density estimator for the case of known errors with a finite support. This choice
is justified by the fact that this series estimator is sharp-minimax over a vast class
of densities including both Sobolev and analytic ones, superefficient and also an
excellent plug-in estimate for many traditionally studied functionals (Brown et al.,
1997; Efromovich, 1998, 1999, 2001; Bickel and Ritov, 2003; Wasserman, 2005).
Let us note that while regression errors with a finite support dominate applied
settings, theoretical residual analysis is also interested in errors with infinite sup-
port (like normal errors); this important setting will be considered in a separate
publication because proofs are too lengthy for a single paper.

The main aim of this article is to prove the above-described conjecture for
the case of regression errors with a finite support. Also, we shall consider a more
general heteroscedastic regression model

Y = m(X)+ σ(X)ξ, (2)

where X is the predictor with the design density p(x) supported on [0, 1], σ(x) > 0
is the scale function, and ξ is a regression error which may depend on the predictor
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such that E{ξ |X} = 0 and Var{ξ |X} = 1. Neither the regression function m(x) nor
the scale function σ(x) nor the design density p(x) is suppose to be known. Let us
also note that the information about dependence or independence of the predictor
and error is unavailable to the statistician, thus in general a corresponding marginal
error density is the estimand. Of course, in the case of the dependency the condition
density of the error may be of interest; this problem will be considered in a separate
paper.

The context of the article is as follows. Section 2 formally describes the prob-
lem and its solution. It also presents the analysis of a real dataset and a simulated
example which shed light on the problem and the proposed method of estimation.
Sections 3–5 contain proofs.

2 Estimation of the error density

We begin with describing the considered regression model, then describe Pins-
ker oracle, define plugged-in residuals, present a proposition about optimal error
density estimation based on the residuals and finish with examples.

2.1 Nonparametric regression model

We are considering a general heteroscedastic regression model (2) where obser-
vations are n iid realizations (X1, Y1), . . . , (Xn, Yn) from the pair (X, Y ) of the
predictor and the response. The predictor X is distributed according to an unknown
design density p(x) supported on [0, 1]. Neither the regression function m(x) nor
the scale function σ(x) nor the design density p(x) is assumed to be known. The
regression error ξ satisfies E{ξ |X} = 0 and Var(ξ |X) = 1, it does not take val-
ues beyond a known finite interval [a, a + b], and it may depend on the predictor
according to an unknown conditional density b−1ψ([ν − a]/b|x), ν ∈ [a, a + b].

The problem of interest is to estimate the (in general marginal) probability
density of the regression error ξ and to show that, under a mild assumption, appro-
priately calculated residuals can proxy underlying regression errors unavailable
to the statistician. Without any loss of generality, from now on we shall con-
sider a transformed error ε := (ξ − a)/b as the object of interest, refer to ε as
the error and be interested in the estimation of its (marginal) density f (u) =∫ 1

0 ψ(u|x)p(x)dx, u ∈ [0, 1]. (Let us note that due to the zero mean of ξ , we
cannot assume that it is supported on [0, 1].)

2.2 Pinsker oracle

The statistician needs to estimate the error density f based solely on n pairs of
observations (Xl , Yl), l = 1, . . . , n. If we look one more time at (2), then it becomes
clear that the problem is indirect and it involves nuisance functions. In such a com-
plicated indirect setting, it is reasonable to employ a popular in the nonparametric
literature oracle approach where an estimator is compared with an oracle (guru,
pseudo-estimator) that knows underlying regression errors. Note that, formally the
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latter means that an oracle knows the regression and scale functions. Then the oracle
becomes a natural benchmark for any data-driven estimator of the error density.

Let us define Pinsker oracle used in this article. Assume that Zn
1 := (Z1, . . . , Zn)

is the vector of n iid observations distributed according to an estimated den-
sity f (z) supported on [0, 1]. Then Pinsker oracle is a data-driven (adaptive)
blockwise-shrinkage orthogonal series density estimate defined as follows. Con-
sider a classical cosine basis {1, ϕ j (z) := 21/2 cos(π j z), j = 1, 2, . . .} on [0, 1],
this is the place where the unit support becomes handy. Introduce an increasing
to infinity sequence of positive integers 1 = q1 < q2 < . . ., which divides fre-
quencies of the basis into blocks Bk := {qk, qk + 1, . . . , qk+1 − 1} having lengths
Lk := qk+1 − qk, k = 1, 2, . . . Also a sequence of corresponding positive and
finite thresholds tk is introduced. To be specific, set Lk = k2 and tk = ln−2(2 + k).
Then Pinsker oracle is

f̂ P(z, Zn
1 ) := 1 +

K∑

k=1

µ̄k

∑

j∈Bk

θ̄ jϕ j (z), z ∈ [0, 1], (3)

where K is a minimal integer such that
∑K

k=1 Lk ≥ n1/5bn , bn := 4 + ln ln(n +
20), {θ̄ j } are empirical Fourier coefficients [estimates of Fourier coefficients θ j :=
∫ 1

0 f (z)ϕ j (z)dz]

θ̄ j := n−1
n∑

l=1

ϕ j (Zl), (4)

and the shrinkage coefficients are

µ̄k := L−1
k

∑
j∈Bk

θ̄2
j − n−1

L−1
k

∑
j∈Bk

θ̄2
j

I
(

L−1
k

∑

j∈Bk

θ̄2
j > (1 + tk)n

−1
)
. (5)

This oracle, as a data-driven (adaptive) estimator based on n direct observations
Zn

1 from the density f , is a sharp-minimax for Sobolev and analytic densities,
superefficient and has a whole bouquet of other excellent statistical properties
(Efromovich, 1985, 1999, 2005; Donoho and Johnstone, 1995; Brown et al., 1997;
Zhang, 2005).

There are two ways to explain why the oracle has such nice properties. The
former is to note that (5) mimics a familiar blockwise Wiener filter, which employs
optimal shrinkage coefficients µ∗

k := 	k/(	k + n−1),	k := L−1
k

∑
j∈Bk

θ2
j ; be-

cause Wiener filter, is based on Fourier coefficients of the estimated (and unknown
to the statistician) density of errors, it is the “ultimate” oracle. The latter is to
realize that if in (5) we replace the used hard thresholding by a soft thresholding,
then (3) is transformed into a classical Stein shrinkage procedure. This point of
view was first expressed in Donoho and Johnstone (1995), and the discussion of
Stein shrinkage in nonparametric curve estimation can be found, for instance, in
Efromovich (1999) and Wasserman (2005).

If we set Zn
1 = εn

1 , then (3) can be referred to as Pinsker oracle for the consid-
ered error density estimation problem. Then Pinsker oracle, which knows “true”
underlying regression errors, becomes a natural benchmark for any data-driven
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error density estimator based on observations (X1, Y1), . . . , (Xn, Yn). (Please note
the following hierarchy among the oracles: Pinsker oracle is less powerful than
Wiener oracle because the latter knows the underlying error density and “true”
regression errors while the former knows only “true” regression errors. At the
same time, under the MISE criteria, these oracles have the same asymptotic mini-
max properties, and this fact justifies the choice of Pinsker oracle as the benchmark
for a data-driven error density estimate.)

2.3 Assumptions

We need one assumption about the regression model and another about smooth-
ness of the conditional densityψ(u|x)which together with the design density p(x)
defines the density of interest f (u) = ∫ 1

0 ψ(u|x)p(x)dx, u ∈ [0, 1].
Assumption A Model (2) is considered where the regression error ξ may depend
on the predictor X, E{ξ |X} = 0,Var(ξ |X) = 1 and P(ξ ∈ [a, a + b]) = 1, where
a < b are two given real numbers. Pairs of observations (X1, Y1), . . . , (Xn, Yn) are
iid. The regression function m(x), the design density p(x) and the scale function
σ(x) are differentiable and their derivatives are bounded and integrable on [0, 1].
Also, minx∈[0,1] min(σ (x), p(x)) > 0 and

∫ 1
0 p(x)dx = 1.

Assumption B The conditional densityψ(u|x) is such that (∂/∂x)(∂2/∂u2)ψ(u|x)
exists and is bounded and integrable on [0, 1]2, andψ(u|x) = 0 for u �∈ (0, 1), x ∈
[0, 1].

2.4 Residuals

Let us explain how to find residuals that can proxy underlying regression errors.
Recall notation bn = 4 + ln ln(n + 20) and define several more sequences in n:
n2 := n − 3n1; n1 is the smallest integer larger than n/bn; S := Sn is the smallest
integer larger than n1/3; o(1) → 0 as n → ∞. In what follows, we always consider
sufficiently large n such that min(n1, n2) > 4, and integrals are taken over [0, 1].

Now we can define the procedure. The first n1 observations are used to estimate
the design density p(x), the next n1 observations are used to estimate the regression
function m(x), the next n1 observations are used to estimate the scale function σ(x)
and the last n2 observations are used to estimate the error density of interest f (u).
Note that n2 ≥ [1 − 3(b−1

n + n−1)]n and thus using either n2 or n observations
implies the same MISE convergence. The three nuisance functions are estimated
using a truncated cosine series estimator. The design density estimator is

p̂(x) = max

(

b−1
n , n−1

1

S∑

s=0

n1∑

l=1

ϕs(Xl)ϕs(x)

)

. (6)

The regression estimator is

m̂(x) =
S∑

s=0

κ̂sϕs(x), (7)
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where

κ̂s = n−1
1

2n1∑

l=n1+1

Yl p̂−1(Xl)ϕs(Xl). (8)

The scale estimator is

σ̂ (x) = [min(max(σ̃ 2(x), b−2
n ), b2

n)
]1/2

, (9)

where σ̃ 2(x) is a regression estimator defined identically to (7) and (8) only with
pairs {(Xl , Yl), l = n1 + 1, . . . , 2n1} being replaced by {(Xl , [Yl − m̂(Xl)]2), l =
2n1 + 1, . . . , 3n1}.

Then transformed onto [0,1] residuals are defined as

ε̂l := Yl − m̂(Xl)

bσ̂ (Xl)
− a

b
, l = n − n2 + 1, . . . , n. (10)

2.5 Assertion

Denote by Ẑ a vector (ε̂n−n2+1, . . . , ε̂n) of residuals and by Z a vector of “true”
errors (ε1, . . . , εn); recall that the errors are known to Pinsker oracle. It is possible
to show that, under the made assumption, the MISE of plugged-in Pinsker oracle
f̂ P(u, Ẑ) asymptotically matches the MISE of Pinsker oracle f̂ P(u,Z).

Theorem 1 Suppose that Assumptions A and B hold. Then, for all sufficiently
large samples such that min(n1, n2) > 4, there exists a finite constant P∗ such
that the MISE of plugged-in Pinsker oracle f̂P(u, Ẑ) satisfies the following oracle
inequality:

E
∫
( f̂ P(u, Ẑ)− f (u))2du

≤ (1 + P∗ ln−1(bn))E
∫
( f̂ P(u,Z)− f (u))2du + P∗b3

nn−1. (11)

Let us make several comments about the result. First of all, the oracle inequality
(11) is not asymptotic. Second, plainly P∗b3

nn−1 < C[ln ln(n)]3n−1,C < ∞. Also
recall that the fastest nonparametric rate of the MISE convergence, traditionally
considered in the minimax nonparametric density estimation literature, is ln(n)n−1

for analytic densities, and for a Sobolev class of order α the rate is n−2α/(2α+1).
Thus we may conclude that the suggested data-driven error density estimator is
simultaneously sharp-minimax over analytic and Sobolev density classes. Third,
the inequality (11) verifies that the data-driven error density estimator matches
Pinsker oracle under the MISE criteria for large sample sizes. Fourth, we con-
clude that residuals (10) do proxy underlying errors in the above-defined optimal
sense. Fifth, it is important to stress that the made assumptions involve no interplay
between smoothness of the conditional error density and smoothness of the triplet
of nuisance functions (design density, regression and scale). In particular, even if
the error density is analytic (infinitely differentiable), then it suffices for the design
density, regression and scale functions to be only differentiable for preserving the
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very fast ln(n)n−1 rate of the error density estimator’s MISE convergence. This
allows us to conclude that, under a mild assumption, residuals can be robust and
optimal proxies for unobserved regression errors, and this conclusion supports the
customary methodology of the applied residual analysis. Sixth, following Neter et
al. (1996), Hart (1999), Cheng (2002, 2004) and Müller et al. (2004), we can con-
clude that the proposed error density estimator allows one to solve many classical
applied regression problems like prediction, change-point inference, goodness-of-
fit testing, estimation of functionals of the error density, etc. Finally, let us recall
that Akritas and Van Keilegom (2001) estimated the cdf of an (independent of pre-
dictor) regression error, and then the suggested estimate was used for prediction
and goodness-of-fit tests. Following Efromovich (2004), it is reasonable to con-
jecture that, by taking a corresponding integral of the error density estimator, it is
possible to obtain a second-order efficient estimator of the cdf, and then establish
corresponding optimal properties for goodness-of-fit tests. This along with other
natural applications of the error density estimator will be presented elsewhere.

2.6 Examples

We begin with the analysis of a real dataset. The top diagram in Fig. 1 exhibits
results of a controlled experiment conducted by BIFAR, a company with businesses
in equipment and chemicals for wastewater treatment plants. The regression curve
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Fig. 1 BIFAR’s experiment of centrifuging a mixture of several wastes with the controlled var-
iable being the quantity of used flocculant. The data is rescaled by BIFAR. Observations and
estimated regression errors are shown by triangles and crosses in the top and bottom diagrams,
respectively. The nonparametric regression and the error density estimates are shown by the solid
lines
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indicates that the process of centrifuging is improved as more flocculant is added;
here software of Efromovich (1999) is used. It is difficult to see something unusual
in this scattergram, but the estimated error density, exhibited in the bottom diagram,
clearly tells us that there are two pronounced clusters of sludges which are affected
differently by the centrifuging. This shows us that the error density estimation is
an important univariate characteristic on its own, which can shed a new light on
the association between the predictor and response.

Figure 2 helps us to understand how the error density estimator works because a
simulated example is considered. The left column of the diagram exhibits a classi-
cal regression analysis: we can visualize the regression and scale estimates as well
as the rescaled residuals. Note that the estimates are far from being perfect, and this
is typical for the considered sample size n = 50. At the same time, the estimates do
a good job for the data at hand because the rescaled residuals look homogeneous.
Then it is of special interest to look at how the suggested error density estimate
will perform for such a complicated case with relatively large measurement errors
caused by the poor estimation of the regression and scale functions. The right
column of the diagram shows us the error density analysis. First of all, the top
diagram exhibits the “true” errors, which are available to the oracle but not to the
statistician. The middle diagram exhibits the estimated errors, which are the same
as is in the left-bottom diagram. The bottom diagram shows that the shape of the
error density estimate, which is not as bad as one could expect (after visualization
of the regression and scale estimates), but it is definitely worse than the oracle’s
estimate based on the “true” errors. Here the estimate and the oracle are based on
the same density estimator of Efromovich (1999, s.3.1) with the only difference
being the used errors. The interested reader can find more simulations as well as
results of an intensive Monte Carlo study in Efromovich (2006).

3 Several technical results

This section presents several results needed for the proof of Theorem 1; they will
also allow us to shed light on the assumptions.

In what follows C’s and Ck’s denote generic positive and finite constants,
g(l)(x) denotes the lth derivative, if the interval of integration is not indicated
then it is assumed to be [0, 1], and J := ∑K

k=1 Lk . Similarly to (4), denote by
θ̂ j := n−1

2

∑n
l=n−n2+1 ϕ j (ε̂l) the j th plugged-in estimate of Fourier coefficient θ j

and then by µ̂k a shrinkage coefficient defined in (5) with θ̄ j replaced by θ̂ j and n
by n2.

Lemma 1 (a) Suppose that X1, X2, . . . , Xn are iid according to the probability
density p(x) satisfying Assumption A. Then for any positive integer k the design
density estimator p̂(x), defined in (6), satisfies

max
x∈[0,1] E(p(x)− p̂(x))2k ≤ Ck ln2k(n)n−2k/3. (12)

(b) Suppose that Assumption A holds, then for any positive integer k the regression
estimator m̂(x), defined in (7), satisfies

max
x∈[0,1] E(m(x)− m̂(x))2k ≤ Ck ln4k+1(n)n−2k/3, (13)
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and the scale estimator σ̂ (x), defined in (9), satisfies

max
x∈[0,1] E(σ 2(x)− σ̂ 2(x))2k ≤ Ck ln4k+1(n)n−2k/3. (14)

Further, let us consider, as defined in (8), estimate κ̂s of Fourier coefficients
κs = ∫ m(x)ϕs(x)dx as well an estimate ν̂s of Fourier coefficients νs of the squared
scale function where

νs :=
∫
σ 2(x)ϕs(x)dx, ν̂s :=

∫
σ̂ 2(x)ϕs(x)dx . (15)

Lemma 2 Suppose that Assumption A holds. Then for any s ∈ {0, 1, . . . , S}

max
(

E(κs − κ̂s)
4, E(νs − ν̂s)

4
)

≤ C
[
n−2

1 + S−4(1 + S − s)−4
]
. (16)

Denote

Hl := H(Xl , ξl)

:= m(Xl)− m̂(Xl)

bσ̂ (Xl)
+ ξl

σ(Xl)− σ̂ (Xl)

bσ̂ (Xl)
=: V (Xl)+ ξl W (Xl). (17)

The following proposition describes properties of statistics V and W .

SCATTERGRAM  AND  REGRESSION  FUNCTION

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

3
4

SCALE  FUNCTION

X
0.0 0.2 0.4 0.6 0.8 1.0

0.
7

0.
8

0.
9

1.
0

1.
1

X
0.0 0.2 0.4 0.6 0.8 1.0

-2
-1

0
1

2

UNDERLYING  ERRORS

-1 0 1

ESTIMATED  ERRORS

-2 -1 0 1 2

ERROR DENSITY

n  =  50
-2 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 2 Simulated example. The solid lines show the underlying functions, the dotted lines show
the estimates, and the dashed line shows the oracle’s error density estimate
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Lemma 3 Suppose that Assumptions A and B hold. Then for any positive integer k

E(V (Xn))
2k + E(W (Xn))

2k ≤ Ck ln4k+1(n)n−2k/3, (18)

and for a differentiable on [0, 1] function g(x), whose derivative is square inte-
grable,

E

⎡

⎣
1∫

0

g(x)V (x)dx

⎤

⎦

4

+ E

⎡

⎣
1∫

0

g(x)W (x)dx

⎤

⎦

4

≤ Cn−2
1 . (19)

Our final result describes properties of Fourier coefficients of differentiable
functions as well as an important properties of Hl defined in (17).

Lemma 4 (a) Let a function g(u) be differentiable on [0, 1] and
∫ 1

0 [g(1)(u)]2du <
∞. Then

∞∑

j=1

(π j)2

⎡

⎣
1∫

0

g(u)ϕ j (u)du

⎤

⎦

2

=
1∫

0

[
g(1)(u)

]2
du. (20)

If additionally g(0) = g(1) = 0, then

∞∑

j=0

(π j)2

⎡

⎣
1∫

0

g(u)21/2 sin(π ju)du

⎤

⎦

2

=
1∫

0

[
g(1)(u)

]2
du, (21)

and if also the function g is twice differentiable and
∫ 1

0

[
g(2)(u

)]2dx < ∞, then

∞∑

j=0

(π j)4

⎡

⎣
1∫

0

g(u)21/2 sin(π ju)du

⎤

⎦

2

=
1∫

0

[
g(2)(u)

]2
du, (22)

and

max
j
(1 + j)4

[∫
g(u)ϕ j (u)du

]2

≤ C. (23)

(b) Let g(x), x ∈ [0, 1] be a function with a square integrable derivative. Then
under Assumption B for any natural k

∞∑

j=0

∞∑

s=0

(1+ j)4(1+s)2

⎡

⎣
1∫

0

1∫

0

ϕs(x)g(x)u
kψ(u|x) sin(π ju)dudx

⎤

⎦

2

≤ Ck,

(24)

and

max
x∈[0,1]

∞∑

j=0

(1 + j)4

⎡

⎣
1∫

0

ukψ(u|x) sin(π ju)du

⎤

⎦

2

≤ Ck . (25)
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(c) Under assumption B for any natural k

max
x∈[0,1] max

⎛

⎜
⎝

⎡

⎣
1∫

0

ukψ(u|x) sin(π ju)du

⎤

⎦

2

,

⎡

⎣
1∫

0

ukψ(u|x) cos(π ju)du

⎤

⎦

2⎞

⎟
⎠

≤ (1 + j)−4Ck . (26)

(d) Let Assumptions A and B hold. Then

E

⎛

⎜
⎝
∑

j∈Bk

j2

⎡

⎣
1∫

0

1∫

0

p(x)H(x, a + bu)ψ(u|x) sin(π ju)dudx

⎤

⎦

2⎞

⎟
⎠

2

≤ Cn−2
1 k−6. (27)

Let us comment on these results and assumptions.

Remark 1 All traditional trigonometric approximation theorems, that imply ei-
ther the above-mentioned or any other approximation results, are established for
periodic/circular functions on [−1, 1] and a classical sine–cosine basis (Butzer
and Nessel, 1971; Efromovich, 1999). In this article only cosine elements of the
classical basis are used, the considered interval is [0, 1], and no periodicity/circu-
larity is assumed. Let us explain the approach taken via the regression function
example. Consider in place of m(x) a corresponding periodic and even func-
tion m∗(x) := m(−x), x ∈ [−1, 0),m∗(x) = m(x), x ∈ [0, 1] and m∗(x) =
m∗(x + 2), x ∈ (−∞,∞). Then all sine Fourier coefficients vanish and we are
left with only cosine elements. Under Assumption A the function m∗(x) is Lips-
chitz of order 1 on a real line [or equivalently on the circumference of a cir-
cle of radius (2π)−1] and thus all corresponding results for such functions and
their cosine Fourier coefficients hold. There is also another way to look at the
issue via a direct analysis of m(x), x ∈ [0, 1]. Neither the considered regression
function m(x), x ∈ [0, 1] nor its derivative is assumed to be periodic/circular on
[0, 1], that is, it is not assumed that m(0) = m(1) and/or m(1)(0) = m(1)(1).
This prevents us from employing the classical approximation theory. On the other
hand, one can define a new function g(x) := m(x) + a1x + a2x2 where, a1
and a2 are such that g(x) and g(1)(x) are periodic, namely g(0) = g(1) and
g(1)(0) = g(1)(1). Then Assumption A immediately implies that a1 and a2 are
finite. Denote by λ j := ∫

g(x)ϕ j (x)dx Fourier coefficients of the new function
g(x) and by ν j := ∫

(a1x + a2x2)ϕ j (x)dx Fourier coefficients of a1x + a2x2.
Note that Fourier coefficients of m(x) satisfy κ j = λ j − ν j and then, for instance,
|∑s>S κsϕs(x)| ≤ |∑s>S λsϕs(x)| + |∑s>S νsϕs(x)|. The first sum is at most
C ln(S)S−1 uniformly over x ∈ [0, 1] because g and g(1) are periodic and bounded
on [0, 1] (Butzer and Nessel, 1971, s.2.4). For the second sum we note that accord-
ing to Efromovich (1999, p.32), νs = 21/2(πs)−2[(a1 + 2a2) cos(πs)− a1]. This
implies that maxx∈[0,1] |∑s>S νsϕs(x)| ≤ C S−1. Combining the results we get a
sufficient for this article upper bound maxx∈[0,1] |∑s>S κsϕs(x)| ≤ C ln(S)S−1.
In a similar manner other known approximation results can be employed whenever
a function and its derivative are involved. A word of caution: a boundary condition



628 S. Efromovich

may be needed if second and/or higher derivatives are involved; see examples in
Efromovich (1999, s.2.2).

Remark 2 Let us explain how the suggested estimation of the scale function can
be viewed as a special regression problem. Remember that estimation of σ 2(x) is
based on n1 pairs {(Xl , Y ∗

l ), l = 2n1 + 1, . . . , 3n1} where,

Y ∗
l := [Yl − m̂(Xl)]2 = [m(Xl)+ σ(Xl)ξl − m̂(Xl)]2

= σ 2(Xl)+ {(ξ2
l − 1)σ 2(Xl)+ 2ξl(m(Xl)− m̂(Xl))σ (Xl)

+[m(Xl)− m̂(Xl)]2}
=: σ 2(Xl)+ ζl , l = 2n1 + 1, . . . , 3n1.

If we formally compare these observations with the regression ones {(Xl , Yl =
m(Xl)+σ(Xl)ξl), ł = n1 +1, . . . , 2n1}, then Y ∗

l plays the role of Yl , σ
2(Xl) plays

the role of m(Xl), and ζl plays the role of σ(Xl)ξl . The main difference between the
two regressions is that ζl is no longer zero mean but, as we shall see shortly, its mean
is sufficiently (for our purposes) close to zero. To explain this, let us introduce a
new notation µ̂(Xl)+v̂(Xl)ηl := ζl , where µ̂(Xl) := [m(Xl)−m̂(Xl)]2, v̂(Xl) :=
[Var(ζl |Xl , (X, Y )2n1

1 )]1/2, and (X, Y )2n1
1 := {(X1, Y1), . . . , (X2n1, Y2n1)}. Then

E(ηl |Xl , (X, Y )2n1
1 ) = 0 and we can write

Y ∗
l = σ 2(Xl)+ [µ̂(Xl)+ v̂(Xl)ηl ], l = 2n1 + 1, . . . , 3n1. (28)

It is plainly verified via using (13) that for any positive integer k

max
x

E{µ̂2k(x)} ≤ Ck ln8k+1(n)n−4k/3, (29)

and for any l = 2n1 + 1, . . . , 3n1 we get

v̂2(x) = E
{
[(ξ2

l − 1)σ 2(x)+ 2ξl(m(x)− m̂(x))σ (x)]2|Xl = x, (X, Y )2n1
1

}

= σ 4(x)E
{
(ξ4

l − 1)|Xl = x
}

+ 4σ 2(x)E
{
(m(x)− m̂(x))2|Xl = x, (X, Y )2n1

1

}

+ 4σ 3(x)E
{
ξ3

l |Xl = x
}

E
{
(m(x)− m̂(x))|(X, Y )2n1

1

}
.

The latter, together with Assumption A, implies that for any positive integer k

max
x

E{v̂2k(x)} < Ck . (30)

As a result, for all our purposes the artificial scale regression model (28) can be
treated similarly to the “true” regression model (2).

Remark 3 The proof of Lemma 1 in Sect. 5 indicates that the factor ln4k+1(n) in
(13)–(14) can be replaced by bck

n ln4k(n) with some ck < ∞.

Remark 4 It follows from the proof of Lemma 2 in Sect. 5 that if the design density
estimator is based on (1+q)S, q > 0 estimated Fourier coefficients instead of just
S, then the right hand side of (16) is simplified into Cn−2

1 and we get the classical
parametric rate of convergence.
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4 Proof of Theorem 1

Let us assume that Lemmas 1–4 are valid; they will be verified in Sect. 5. Parseval
identity implies that

E
∫
( f̂ P(u, Ẑ)− f (u))2du = E

K∑

k=1

∑

j∈Bk

(µ̂k θ̂ j − θ j )
2 +

∑

k>K

∑

j∈Bk

θ2
j . (31)

Because Pinsker oracle uses n observations and only n2 residuals are plugged in,
it is convenient to consider a modified Pinsker oracle based only on last n2 errors
Z∗ := (εn−n2+1, . . . , εn). Using oracle inequalities of Efromovich (1985) and the
plain n2 ≥ [1 − 3(b−1

n + n−1)]n we get

E
∫
( f̂ P(u,Z∗)− f (u))2du ≤(1 + Cb−1

n )E
∫
( f̂ P(u,Z)− f (u))2du. (32)

If we use (32) in (11) then it becomes clear that it suffices to compare the data-
driven error density estimate with Pinsker oracle based on Z∗. As a result, from
now on we denote by θ̄ j and µ̄k the corresponding oracle’s component defined in
(4)–(5) and based on Z∗ in place of Z; note that now n2 is used in those formulae
in place of n.

Keeping the new notation in mind, we continue the analysis of MISE of the
estimator. Using Cauchy inequality and a plain algebra we get

E
∫
( f̂ P(u, Ẑ)− f (u))2du ≤ (1 + ln−1(bn))E

∫
( f̂ P(u,Z∗)− f (u))2du

+ 2(1 + ln(bn))

⎡

⎣
K∑

k=1

∑

j∈Bk

E

{

µ̄2
k

(
θ̂ j − θ̄ j

)2
}

+
K∑

k=1

E

⎧
⎨

⎩

(
µ̂k − µ̄k

)2 ∑

j∈Bk

θ̂2
j

⎫
⎬

⎭

⎤

⎦ . (33)

Now we are evaluating the terms in (33) in turn. Write

θ̂ j − θ̄ j = n−1
2

n∑

l=3n1+1

[
ϕ j

(
[Yl − m̂(Xl)]/bσ̂ (Xl)− a/b

)
− ϕ j (εl)

]

= n−1
2

n∑

l=3n1+1

[

ϕ j

(

εl + m(Xl)− m̂(Xl)

bσ̂ (Xl)
+ξl σ(Xl)−σ̂ (Xl)

bσ̂ (Xl)

)

−ϕ j (εl)

]

.

(34)
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Then Taylor’s expansion (17) and a simple algebra yield

(θ̂ j − θ̄ j )
2 ≤ C

⎡

⎢
⎣ j2n−2

2

⎧
⎨

⎩

n∑

l=3n1+1

Hl sin(π jεl)

⎫
⎬

⎭

2

+ j4n−2
2

⎧
⎨

⎩

n∑

l=3n1+1

H2
l cos(π jεl)

⎫
⎬

⎭

2

+ j6n−2
2

⎧
⎨

⎩

n∑

l=3n1+1

H3
l sin(π jεl)

⎫
⎬

⎭

2

+ j8n−2
2

⎧
⎨

⎩

n∑

l=3n1+1

H4
l cos(π jεl)

⎫
⎬

⎭

2

+ j10n−2
2

⎧
⎨

⎩

n∑

l=3n1+1

|Hl |5
⎫
⎬

⎭

2
⎤

⎥
⎦

=: C
[

j2 Ã1( j)+ j4 Ã2( j)+ j6 Ã3( j)+ j8 Ã4( j)+ j10 Ã5( j)
]
.

(35)

Let us consider in turn the five terms on the right side of (35). Remember that we
are assuming that n is large enough so min(n1, n2) > 4. We begin with the anal-
ysis of Ã1( j). Write E Ã1( j) = n−2

2

∑n
l,t=3n1+1 E{Hl Ht sin(π jεl) sin(π jεt )} ≤

n−1
2 E{H2

n } + |E{Hn Hn−1 sin(π jεn) sin(π jεn−1)}|. Because pairs (Xn−1, εn−1)
and (Xn, εn) are independent, the second expectation can be written in the follow-
ing form [remember notation (17)]:

E {Hn Hn−1 sin(π jεn) sin(π jεn−1)}
= E

[∫ ∫
p(x)H(x, bu + a)ψ(u|x) sin(π ju)dudx

]2

= E

[∫
p(x)V (x)

∫
ψ(u|x) sin(π ju)dudx

+
∫

p(x)W (x)
∫
(bu + a)ψ(u|x) sin(π ju)dudx

]2

≤ 2E

[∫
p(x)V (x)

∫
ψ(u|x) sin(π ju)dudx

]2

+ 2E

[∫
p(x)W (x)

∫
(bu + a)ψ(u|x) sin(π ju)dudx

]2

=: 2A11( j)+ 2A12( j).
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We begin with the evaluation of A11( j). Denote
∫
ψ(u|x) sin(π ju)du =: v j (x)

and write

A11( j) = E

[∫
p(x)V (x)v j (x)dx

]2

= E

[∫
(m(x)− m̂(x))p(x)v j (x)

bσ̂ (x)
dx

]2

= E

[∫ (
(m(x)− m̂(x))p(x)v j (x)

bσ(x)

+ (m(x)− m̂(x))(σ (x)− σ̂ (x))p(x)v j (x)

bσ(x)σ̂ (x)

)

dx

]2

≤ 2E

[∫
(m(x)− m̂(x))p(x)v j (x)

bσ(x)
dx

]2

+ 2E

[∫
(m(x)− m̂(x))(σ (x)− σ̂ (x))p(x)v j (x)

bσ(x)σ̂ (x)
dx

]2

=: 2A111( j)+ 2A112( j).

To evaluate A111( j) we note that m(x) − m̂(x) = ∑S
s=0(κs − κ̂s)ϕs(x) +∑

s>S κsϕs(x), where κs := ∫ m(x)ϕs(x)dx . Denote v js := ∫ ϕs(x)b−1σ−1(x)p
(x)v j (x)dx and write using Hölder inequality:

A111( j) = E

[
S∑

s=0

(κs − κ̂s)v js +
∑

s>S

κsv js

]2

≤ 2E

{
S∑

s=0

(κs − κ̂s)
2(1 + s)−2

}
S∑

s=0

(1 + s)2v2
js

+ 2

[
∑

s>S

s−2κ2
s

][
∑

s>S

s2v2
js

]

≤ C

[

n−1
1

S∑

s=0

(1 + s)2v2
js + S−4

∑

s>S

s2v2
js

]

≤ Cn−1
1

∞∑

s=0

(1 + s)2v2
js .

In the next to last inequality we used Lemma 2 and based on Lemma 3 rela-
tion

∑
s>S s−2κ2

s ≤ C S−4∑
s>S s2κ2

s ≤ S−4
∫
(m(1)(x))2dx < C S−4. Then (24)

allows us to conclude that
∑J

j=1 j2 A111( j) ≤ Cn−1∑J
j=1
∑∞

s=0 j2(1+s)2v2
js ≤

Cn−1
1 ≤ Cbnn−1. Consider A112( j),
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A112( j) = E

[∫
(m(x)− m̂(x))(σ (x)− σ̂ (x))

bσ 2(x)
p(x)v j (x)dx

+
∫
(m(x)− m̂(x))(σ (x)− σ̂ (x))2

bσ 2(x)σ̂ (x)
p(x)v j (x)dx

]2

≤ 2E

[∫
(m(x)− m̂(x))(σ (x)− σ̂ (x))

bσ 2(x)
p(x)v j (x)dx

]2

+ 2E

[∫
(m(x)− m̂(x))(σ (x)− σ̂ (x))2

bσ 2(x)σ̂ (x)
p(x)v j (x)dx

]2

=: 2A1121( j)+ 2A1122( j).

Using Cauchy–Schwarz inequality and Lemma 1 we get

A1121( j) = E

[∫
(m(x)− m̂(x))(σ 2(x)− σ̂ 2(x))

bσ 2(x)(σ (x)+ σ̂ (x))
p(x)v j (x)dx

]2

≤ C E1/2
{∫

(m(x)−m̂(x))4dx

}

E1/2
{∫
(
σ 2(x)−σ̂ 2(x)

)4
dx

}∫
v2

j (x)dx

≤ C ln10(n)n−4/3
∫
v2

j (x)dx .

According to (26) we have
∑J

j=1 j2
∫
v2

j (x)dx < C and then
∑J

j=1 j2 A1121

( j) ≤ Cn−1. Using σ̂ (x) > b−1
n and |v j (x)| ≤ ∫

ψ(u|x)| sin(π ju)|du ≤ 1, we
get A1122( j) ≤ Cb2

n E1/2{∫ (m(x) − m̂(x))4dx}E1/2{∫ (σ 2(x) − σ̂ 2(x))8dx} ≤
C ln14(n)n−2. This implies

∑J
j=1 j2 A1122( j) ≤ Cn−1. Combining the obtained

results we get
∑J

j=1 j2 A11( j) ≤ Cbnn−1. Then, to evaluate A12( j), we make a
preliminary calculation:

σ(x)− σ̂ (x)

σ̂ (x)
= σ 2(x)− σ̂ 2(x)

(σ (x)+ σ̂ (x))σ̂ (x)

= σ 2(x)− σ̂ 2(x)

(σ (x)+ σ̂ (x))σ (x)
+ (σ 2(x)− σ̂ 2(x))(σ (x)− σ̂ (x))

(σ (x)+ σ̂ (x))σ̂ (x)σ (x)

= σ 2(x)− σ̂ 2(x)

2σ 2(x)
+ (σ 2(x)− σ̂ 2(x))(σ (x)− σ̂ (x))

2σ 2(x)(σ (x)+ σ̂ (x))

+ (σ 2(x)− σ̂ 2(x))(σ (x)− σ̂ (x))

(σ (x)+ σ̂ (x))σ̂ (x)σ (x)

= σ 2(x)− σ̂ 2(x)

2σ 2(x)
+ (σ 2(x)− σ̂ 2(x))2

2σ 2(x)(σ (x)+ σ̂ (x))2

+ (σ 2(x)− σ̂ 2(x))2

(σ (x)+ σ̂ (x))2σ̂ (x)σ (x)
.

Using this result, the term A12( j) is evaluated similarly to the above-presented
evaluation of A11( j), and we get

∑J
j=1 j2[A11( j) + A12( j)] ≤ Cbnn−1. This,

together with Lemma 3, yields
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J∑

j=1

j2 E
{

Ã1( j)
}

≤ n−1
2 E

{
H2

n

} J∑

j=1

j2 +
J∑

j=1

j2(A11( j)+ A12( j))

≤ Cn−1 ln5(n)n−2/3
(

bnn1/5
)3 + Cbnn−1 ≤ Cbnn−1.

Let us evaluate E{ Ã2( j)}. We have E{ Ã2( j)} = n−2
2

∑n
l,t=3n1+1 E{H2

l H2
t cos

(π jεl) cos(π jεt )} ≤ n−1
2 E{H4

n } + |E{H2
n H2

n−1 cos(π jεn) cos(π jεn−1)}|.
Equation (26) allows us to write

E
{

H2
n H2

n−1 cos(π jεn) cos(π jεn−1)
}

= E

[∫ ∫
H2(x, a + bu)p(x)ψ(u|x) cos(π ju)dudx

]2

≤ C j−4b4
n E

{∫
(m(x)− m̂(x))4dx +

∫
(σ (x)− σ̂ (x))4dx

}

.

We conclude, with the help of Lemma 1, that
∑J

j=1 j4 E{ Ã2( j)} ≤ Cn−1.

Now we are considering E{ Ã3( j)}. Write

E{ Ã3( j)} = n−2
2 E

⎡

⎣
n∑

l=3n1+1

H3
l sin(π jεl)

⎤

⎦

2

≤ n−1
2 E{H6

n } + |E{H3
n H3

n−1 sin(π jεn) sin(π jεn−1)}|

= n−1
2 E{H6

n }+E

[∫ ∫
H3(x, a + bu)p(x)ψ(u|x) sin(π ju)dudx

]2

.

Then a simple calculation, based on using Lemma 3, implies
∑J

j=1 j6 E{ Ã3( j)} ≤
C
∑J

j=1 j6 ln14(n)n−6/3[n−1
2 + j−4] ≤ Cn−1. Similarly we get

∑J
j=1 j8 E{ Ã4

( j)} ≤ C
∑J

j=1 j8 ln14(n)n−8/3[n−1
2 + j−4] ≤ Cn−1. To estimate Ã5( j)we note,

using Lemma 3, that E{ Ã5( j)} ≤ C ln21(n)n−10/3, and then
∑J

j=1 j10 E{ Ã5( j)} ≤
C ln21(n)n−10/3 J 11 ≤ C ln21(n)n−10/3

1 n11/5b11
n ≤ Cn−1. Combining the ob-

tained results and utilizing the plain inequality µ̄2
j ≤ 1 we get the following upper

bound for the first sum on the right side of (33)

K∑

k=1

∑

j∈Bk

E

{

µ̄2
k

(
θ̂ j − θ̄ j

)2
}

≤
J∑

j=0

E

{(
θ̂ j − θ̄ j

)2
}

≤ Cbnn−1. (36)

Now let us consider the second sum on the right side of (33). Choose a particular
block with index k, denote 	̄k := L−1

k

∑
j∈Bk

(θ̄2
j −n−1

2 ), 	̂k := L−1
k

∑
j∈Bk

(θ̂2
j −

n−1
2 ) and write
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(µ̂k − µ̄k)
2
∑

j∈Bk

θ̂2
j = Lk

[
	̂k

	̂k + n−1
2

− 	̄k

	̄k + n−1
2

]2 (
	̂k + n−1

2

)

×I
(
	̂k > tkn−1

2

)
I
(
	̄k > tkn−1

2

)

+ 	̄2
k

(
	̄k + n−1

2

)2

∑

j∈Bk

θ̂2
j I
(
	̂k ≤ tkn−1

2

)
I
(
	̄k > tkn−1

2

)

+ Lk	̂
2
k

	̂k + n−1
2

I
(
	̂k > tkn−1

2

)
I
(
	̄k ≤ tkn−1

2

)

=: F1(k)+ F2(k)+ F3(k). (37)

To evaluate F1(k) we begin with the consideration of

F∗
1 (k) := Lk

[
	̂k

	̂k + n−1
2

− 	̄k

	̄k + n−1
2

]2 (
	̂k +n−1

2

)

= Lkn−2
2 (	̂k − 	̄k)

2

(	̂k + n−1
2 )(	̄k + n−1

2 )2
.

Using Cauchy inequality we can write for any ck ≥ 1 that

(	̂k − 	̄k)
2 = L−2

k

⎡

⎣
∑

j∈Bk

(θ̂2
j − θ̄2

j )

⎤

⎦

2

≤ L−2
k

⎡

⎣2ck

∑

j∈Bk

(θ̂ j − θ̄ j )
2 + c−1

k

∑

j∈Bk

θ̄2
j

⎤

⎦

2

≤ 4L−2
k c2

k

⎡

⎣
∑

j∈Bk

(θ̂ j − θ̄ j )
2

⎤

⎦

2

+ 2L−2
k c−2

k

⎡

⎣
∑

j∈Bk

θ̄2
j

⎤

⎦

2

. (38)

Plainly
∑

j∈Bk
θ̄2

j = Lk(	̄k + n−1
2 ), and then

F∗
1 (k)≤4n−2

2

(
c2

k/Lk
)
[
∑

j∈Bk

(
θ̂ j −θ̄ j

)2
]2

(
	̂k + n−1

2

) (
	̄k + n−1

2

)2 +2n−2
2

c−2
k Lk

	̂k +n−1
2

=: F∗
11(k)+F∗

12(k).

Set c2
k := Lkk1+d , 0 < d < 1 and F12(k) := F∗

12(k)I (	̂k > tkn−1
2 )I (	̄k >

tkn−1
2 ). Then

K∑

k=1

F12(k) ≤ 2n−1
2

∞∑

k=1

k−1−dn−1
2 I (	̂k > tkn−1

2 )

	̂k + n−1
2

≤ Cn−1. (39)
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Analysis of F∗
11(k) is more involved. Denote F11(k) := F∗

11(k)I (	̂k > tkn−1
2 )

I (	̄k > tkn−1
2 ) and note that

E {F11(k)} ≤ Cn2k1+d E

⎡

⎣
∑

j∈Bk

(θ̂ j − θ̄ j )
2

⎤

⎦

2

. (40)

Using (35) we can write

⎡

⎣
∑

j∈Bk

(θ̂ j − θ̄ j )
2

⎤

⎦

2

≤ C

⎡

⎣
∑

j∈Bk

( j2 Ã1( j)+ j4 Ã2( j)+ j6 Ã3( j)+ j8 Ã4( j)

+ j10 Ã5( j))

⎤

⎦

2

≤ C

⎡

⎢
⎣

⎛

⎝
∑

j∈Bk

j2 Ã1( j)

⎞

⎠

2

+
⎛

⎝
∑

j∈Bk

j4 Ã j ( j)

⎞

⎠

2

+
⎛

⎝
∑

j∈Bk

j6 Ã3( j)

⎞

⎠

2

+
⎛

⎝
∑

j∈Bk

j8 Ã4( j)

⎞

⎠

2

+
⎛

⎝
∑

j∈Bk

j10 Ã5( j)

⎞

⎠

2
⎤

⎥
⎦

=: C[ Ǎ1(k)+ Ǎ2(k)+ Ǎ3(k)+ Ǎ4(k)+ Ǎ5(k)]. (41)

We are considering these five terms in turn. Recall that Hl was defined in (17)

and write Ǎ1(k)=
[∑

j∈Bk
j2n−2

2 (
∑n

l=3n1+1 Hl sin(π jεl))
2
]2 =n−4

2

∑
j,i∈Bk

j2i2

∑n
l1,l2,l3,l4=3n1+1 Hl1 Hl2 Hl3 Hl4×sin(π jεl1) sin(π jεl2) sin(π iεl3) sin(π iεl4).Then

a direct calculation yields

E{ Ǎ1(k)} ≤ C

⎡

⎢
⎣n−3

2

⎛

⎝
∑

j∈Bk

j2

⎞

⎠

2

E{H4
n }

+n−2
2

∑

j,i∈Bk

j2i2
∣
∣
∣
∣E

{

H3
n V (Xn−1)

∫
ψ(u|Xn−1) sin(π ju)du

}∣∣
∣
∣

+n−2
2

∑

j,i∈Bk

j2i2
∣
∣
∣
∣E

{

H3
n W (Xn−1)

∫
(a+bu)ψ(u|Xn−1)sin(π ju)du

}∣∣
∣
∣

+n−2
2

∑

j,i∈Bk

j2i2 E
{

H2
n H2

n−1

}
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+n−1
2

∑

j,i∈Bk

j2i2
∣
∣
∣
∣E

{

H2
n

∫ ∫
ψ(u|Xn−1)ψ(v|Xn−2)

×H(Xn−1, a + bu)H(Xn−2, a + bv)

× sin(π ju) sin(π iv)dudv

}∣∣
∣
∣

+n−1
2

∑

j,i∈Bk

j2i2
∣
∣
∣
∣E

{

H2
n

∫ ∫
ψ(u|Xn−1)ψ(v|Xn−2)

×H(Xn−1, a + bu)H(Xn−2, a + bv)

× sin(π ju) sin(π jv)dudv

}∣∣
∣
∣

+
∑

j,i∈Bk

j2i2
∣
∣
∣
∣E

{∫ ∫ ∫ ∫
ψ(un |Xn)ψ(un−1|Xn−1)

×ψ(un−2|Xn−2)ψ(un−3|Xn−3)H(Xn, a + bun)

×H(Xn−1, a + bun−1)H(Xn−2, a + bun−2)

×H(Xn−3, a + bun−3)[sin(π jun) sin(π jun−1) sin(π iun−2)

× sin(π iun−3)]dundun−1dun−2dun−3

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣

⎤

⎦

=: C[D1(k)+ D2(k)+ D3(k)+ D4(k)+ D5(k)+ D6(k)+ D7(k)].

We need to evaluate seven terms in the last expression. The first one can be
evaluated with the help of Lemma 1 and the following technical statement.

Remark 5 Recall that we consider k = 1, 2, . . . , K and that the length of kth block
is Lk = k2. This implies the following relations: K ≤ Cbnn1/15; j ≤ Ck3 when-
ever j ∈ Bk ;

∑
j∈Bk

jr ≤ Ck2+3r . Also note that if g(u) is a function whose second
derivative is square integrable on [0,1] and the function is vanishing on the bound-
ary points, then (22) implies that

∑
j∈Bk

j2 maxs∈{0,1}{[
∫

us g(u) sin(π ju)du]2} ≤
Ck−6.

Using Lemma 3 and Remark 5 we get D1(k) ≤ Cn−3
2 (
∑

j∈Bk
j2)2 ln9(n)

n−4/3 ≤ Cn−3. Let us consider D2(k). Recall our notation v j (x) = ∫
ψ(u|x)

sin(π ju)du and write using Remark 5 and Lemmas 3 and 4,

D2(k) ≤ n−2
2

∑

i∈Bk

i2 E

⎧
⎨

⎩

∣
∣H3

n V (Xn−1)
∣
∣
∑

j∈Bk

j2
∣
∣v j (Xn−1)

∣
∣

⎫
⎬

⎭

≤ n−2
2

∑

i∈Bk

i2 E

⎧
⎪⎨

⎪⎩

∣
∣H3

n V (Xn−1)
∣
∣

⎡

⎣
∑

j∈Bk

j4v2
j (Xn−1)

⎤

⎦

1/2

L1/2
k

⎫
⎪⎬

⎪⎭

≤ Cn−2
2 ln9(n)n−4/3L1/2

k

∑

i∈Bk

i2 ≤ Cn−3n−1/3 ln10(n)k9 ≤ Cn−2n−1/3.

The term D3(k) is estimated absolutely similarly and we get D3(k) ≤ Cn−2n−1/3.
To evaluate D4(k) we use Lemma 3, Remark 5 and then get D4(k) ≤ Cn−2

2 ln9(n)
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n−4/3(
∑

i∈Bk
i2)2 ≤ Cn−2n−4/3 ln9(n)k16 ≤ Cn−2n−3/15. Let us consider the

fifth term. Denote v∗
j (x) := ∫

(a + bu)ψ(u|x) sin(π ju)du. Then D5(k) = n−1
2∑

i, j∈Bk
j2i2|E{H2

n [V (Xn−1)V (Xn−2) × v j (Xn−1)vi (Xn−2) + 2V (Xn−1)

W (Xn−2)v j (Xn−1)v
∗
i (Xn−2)+W (Xn−1)W (Xn−2)×v∗

j (Xn−1)v
∗
i (Xn−2)]}|.Then

a simple calculation based on using Lemmas 3 and 4 yields D5(k) ≤ Cn−1
2 ln9(n)

n−4/3∑
i, j∈Bk

j2i2ρ jρi , where {ρ j }’s denote generic sequences satisfying
∑∞

j=1 j4ρ2
j ≤ C . Because

∑
i, j∈Bk

j2i2ρ jρi =
(∑

j∈Bk
j2ρ j

)2≤ Lk
∑

j∈Bk
j4ρ2

j ≤
Ck2, we conclude that D5(k) ≤ Cn−2n−3/15 ln10(n). Absolutely similarly, only
now using the relation

∑
i, j∈Bk

j2i2ρ2
j = (

∑
i∈Bk

i2)(
∑

j∈Bk
j2ρ2

j ) ≤ Ck8k−6

∑
j∈Bk

j4ρ2
j ≤ Ck2, we establish that D6(k) ≤ Cn−2n−3/15 ln10(n). Using

Lemma 4, D7(k) can be evaluated as follows:

D7(k) =
∑

i, j∈Bk

i2 j2 E

{[∫ ∫
p(x)H(x, a + bu)ψ(u|x) sin(π ju)dudx

]2

×
[∫ ∫

p(x)H(x, a + bu)ψ(u|x) sin(π iu)dudx

]2
}

= E

⎛

⎝
∑

j∈Bk

j2
[∫ ∫

p(x)H(x, a + bu)ψ(u|x) sin(π ju)dudx

]2
⎞

⎠

2

≤ Cn−2
1 k−6.

We have evaluated all seven terms, and combining the results we get

E
{

Ǎ1(k)
}

≤ C[n−2n−3/15 ln10(n)+ n−2
1 k−6]. (42)

In the same way it is established that Ǎ2(k), Ǎ3(k) and Ǎ4(k) are also bounded
by the right side of (42). Let us consider Ǎ5(k). Using Lemma 3 and Remark 5 we
can write

E{ Ǎ5(k)} ≤ E

⎡

⎢
⎣
∑

j∈Bk

j10n−2
2

⎛

⎝
n∑

l=3n1+1

|Hl |5
⎞

⎠

2
⎤

⎥
⎦

2

≤
∑

j,i∈Bk

j10i10 E{H20
n }

≤ C ln41(n)n−20/3

⎛

⎝
∑

j∈Bk

j10

⎞

⎠

2

≤ Cn−2 ln41(n)n−14/3k64 ≤Cn−2n−1/3.

Combining the obtained results in (41) we get

E

⎡

⎣
∑

j∈Bk

(θ̂ j − θ̄ j )
2

⎤

⎦

2

≤ C
[
n−2n−3/15 ln10(n)+ n−2

1 k−6
]
. (43)
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Using this result to evaluate E{F11(k)} in (40) implies
∑K

k=1 E{F11(k)} ≤
Cn−1b2

n, and together with (39) we get E
{∑K

k=1 F1(k)
}

≤ Cn−1b2
n .

Now we are considering the second term F2(k) in (37). Write

E{F2(k)} = E

{
	̄2

k

(	̄k + n−1
2 )2

Lk(	̂k + n−1
2 )I (	̂k ≤ tkn−1

2 )I (	̄k > tkn−1
2 )

}

≤ Cn−1
2 Lk E

{
	̄2

k

(	̄k + n−1
2 )2

[
I
(

tkn−1
2 < 	̄k ≤ 2tkn−1

2

)

+I (	̄k > 2tkn−1
2 )I (	̄k − 	̂k > 	̄k/2)

]}

≤ Cn−1
2 Lkt2

k E{I
(

tkn−1
2 < 	̄k ≤ 2tkn−1

2

)
}

+Cn−1
2 Lk E{I (	̄k − 	̂k > 	̄k/2)I (	̄k > 2tkn−1

2 )}
=: G1 + G2.

Note that using (38) and recalling notation c2
k = Lkk1+d , 0 < d < 1 we get

(
	̂k − 	̄k

)2 ≤ C L−2
k

⎡

⎣ck

∑

j∈Bk

(θ̂ j − θ̄ j )
2 + c−1

k

∑

j∈Bk

θ̄2
j

⎤

⎦

2

≤ C L−2
k c2

k

⎡

⎣
∑

j∈Bk

(θ̂ j − θ̄ j )
2

⎤

⎦

2

+ Cc−2
k

(
	̄k + n−1

2

)2
. (44)

This allows us to evaluate G1 and G2. Using Chebyshev inequality and (43)
we get

G2 ≤ Cn−1
2 Lk

⎡

⎣
c2

k E
{
[∑ j∈Bk

(θ̂ j − θ̄ j )
2]2
}

L2
k t2

k n−2
2

+c−2
k E

{
(	̄k + n−1

2 )2

	̄2
k

I (	̄k > 2tkn−1
2 )

}]

≤ Cn−1
2 Lk

[
c2

k (n
−2n−3/15 ln8(n)+ n−2

1 k−6)

L2
k t2

k n−2
2

+ c−2
k t−2

k

]

≤ Ck1+d t−2
k

(
n−1n−3/15 ln10(n)+ n−1

1 bnk−6
)

+ Cn−1
2 t−2

k k−1−d .



Density of regression errors 639

Let us evaluate the term G1. Denote	k := L−1
k

∑
j∈Bk

θ2
j , θ j = ∫ f (u)ϕ j (u)du

and write

E
{

I (tkn−1
2 < 	̄k ≤ 2tkn−1

2 )
}

≤ I ((1/2)tkn−1
2 < 	k ≤ 4tkn−1

2 )

+E
{

I (	̄k −	k > (1/2)tkn−1
2 )
}

I
(
	k ≤ (1/2)tkn−1

2

)

+E
{

I (	k − 	̄k > (1/2)	k)
}

I
(
	k > 4tkn−1

2

)

≤ tk + 2

tk

	k

	k + n−1
2

I
(
(1/2)tkn−1

2 < 	k ≤ 4tkn−1
2

)

+ C L−2
k n−2

2 (	k + n−1
2 )2

t4
k n−4

2

I
(
	k ≤ (1/2)tkn−1

2

)

+ C L−2
k n−2

2 (	k + n−1
2 )2

	4
k

I
(
	k > 4tkn−1

2

)

≤ Ct−1
k

	k

	+ n−1
2

I
(
(1/2)tkn−1

2 < 	k ≤ 4tkn−1
2

)
+ Ct−4

k L−2
k . (45)

In the next to last inequality we used Lemma 1 from Efromovich (1985) which
asserts that E(	̄k − 	k)

4 ≤ C L−2
k n−2

2 (	k + n−1
2 )2. Now let us remember a

blockwise Wiener oracle, discussed in Sect. 2, that knows regression errors and
an estimated density of errors and employs optimal shrinkage coefficients µ∗

k =
	k/(	k + n−1), 1 ≤ k < ∞ based on Fourier coefficients of the known (to the
oracle) estimated density of errors. This oracle is the benchmark for Pinsker oracle,
and its MISE is proportional to n−1

2

∑∞
k=1 Lk	k/(	k + n−1

2 ) (Efromovich, 1985,
1999). Hence, combining the results we get

K∑

k=1

E{F2(k)} ≤ Cn−1
2

K∑

k=1

tk Lk
	k

	k + n−1
2

I
(
(1/2)tkn−1

2 < 	k ≤ 4tkn−1
2

)

+ Cb2
nn−1

≤ Cn−1
2 b2

n + C
∑

k>b2/3
n

tk Lk
	k

	k + n−1
2

I
(
(1/2)tkn−1

2 	k ≤ 4tkn−1
2

)

+ Cb2
nn−1

≤ C ln−1(bn)E
∫
( f̂ P(u,Z∗)− f (u))2du + Cb2

nn−1.

Finally, let us consider F3(k) in (37). Write, F3(k) ≤ Lk	̂k I (	̂k > 2tkn−1
2 )I (	̄k ≤

tkn−1
2 )+ 2tk Lk	̂k I (tkn−1

2 < 	̂k ≤ 2tkn−1
2 )I (	̄k ≤ tkn−1

2 ) =: F31(k)+ F32(k).
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Then the relation F31(k) ≤ 2Lk |	̂k − 	̄k |I (	̂k − 	̄k > tkn−1
2 )I (	̄k ≤ tkn−1

2 ),
Chebyshev inequality, (43) and (44) imply

E{F31(k)} ≤ C Lkn−2
1

[
L−2

k c2
k (n

−3/15 ln10(n)+ k−6)+ c−2
k

]
/(tkn−1

2 )

≤ Cn−2
1 n2t−1

k

[
k1+d(n−3/5 ln10(n)+ k−6)+ k−1−d

]
,

with the plain corollary
∑K

k=1 E{F31(k)} ≤ Cn−2
1 n2 < Cb2

nn−1. To evaluate
F32(k) we write

F32(k) = 2tk Lk	̂k I
(

tkn−1
2 < 	̂k ≤ 2tkn−1

2

)
I
(
	̄k ≤ (1/2)tkn−1

2

)

+2tk Lk	̂k I
(

tkn−1
2 < 	̂k ≤ 2tkn−1

2

)
I
(
(1/2)tkn−1

2 < 	̄k < tkn−1
2

)

=: F321(k)+ F322(k).

The term F321(k) is evaluated similarly to F31(k), and then
∑K

k=1 E{F321(k)} <
Cb2

nn−1. The term F322(k) can be estimated as follows. First, we note that 	̂k I (tkn−1
2

< 	̂k ≤ 2tkn−1
2 ) ≤ 2tkn−1

2 . Second, we use (45) and then a simple algebra implies
∑K

k=1 E{F322(k)} ≤ C ln−1(bn)E
∫
( f̂ P(u,Z∗)− f (u))2du + Cb2

nn−1. Combin-
ing the results we get

∑K
k=1 E{F3(k)} ≤ C ln−1(bn)E

∫
( f̂ P(u,Z∗)− f (u))2du +

Cb2
nn−1. Using the obtained results in (37) we get

E

⎧
⎨

⎩

K∑

k=1

(µ̂k − µ̄k)
2
∑

j∈Bk

θ̂2
j

⎫
⎬

⎭
≤ C ln−1(bn)E

{∫
( f̂ P (u,Z∗)− f (u)2du

}

+ Cb2
nn−1.

Using this and (36) in (33) proves Theorem 1. �	

5 Proof of Lemmas 1–4

Proof of Lemma 1 We begin with verification of (12). For n > n0, where n0 de-
pends only on minx∈[0,1] p(x), we can write |p(x)− p̂(x)| ≤ |p(x)− p̃(x)|. Here
p̃(x) := 1 +∑S

s=1 π̃sϕs(x) and π̃s = n−1
1

∑n1
l=1 ϕs(Xl). Thus it suffices to eval-

uate the risk of the nontruncated p̃ (the original series design density estimate).
Write for those n:

E
{
(p(x)− p̂(x))2k

}
≤ E

{
(p(x)− p̃(x))2k

}

= E

[
S∑

s=1

(πs − π̃s)ϕs(x)+
∑

s>S

πsϕs(x)

]2k

≤ Ck E

[
S∑

s=1

(πs − π̃s)ϕs(x)

]2k

+
[
∑

s>S

πsϕs(x)

]2k

.

The second term is at most Ck ln2k(n)S−2k due to the assumption about the
bounded derivative of the design density; remember Remark 1. To evaluate the
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first term we write πs − π̃s = πs − n−1
1

∑n1
l=1 ϕs(Xl) = n−1

1

∑n1
l=1(πs − ϕs(Xl)).

Using this expression we get

E

[
S∑

s=1

(πs − π̃s)ϕs(x)

]2k

= n−2k
1 E

[
n1∑

l=1

S∑

s=1

(πs − ϕs(Xl))ϕs(x)

]2k

= n−2k
1

n1∑

l1,...,l2k=1

E

{
2k∏

i=1

S∑

s=1

(πs − ϕs(Xli ))ϕs(x)

}

.

Let us make several comments. First, recall that predictors are independent and
Eϕs(Xl) = πs . Thus the last expectation is zero whenever at least one index li has
no match. Second, following Efromovich (1999, s.2.4), introduce

S∑

s=0

ϕs(u) = c1 + c2 DS(u), DS(u) := sin(π(2S + 1)u/2)

sin(πu/2)
, (46)

where c1 and c2 are some absolute constants and DS(u) is the Dirichlet kernel
which has the following familiar property (note that the integral is improper)

|DS(u)| ≤ 2S + 1,

∞∫

−∞
|DS(u)|du ≤ C ln(S). (47)

Then using (46) and (47) together with maxx,S |∑S
s=1 πsϕs(x)| < C (the latter is

based on Assumption A and Remark 1), we get E[∑S
s=1(πs − ϕs(Xl))ϕs(x)]2 ≤

C + E D2
S(X1 − x)+ E D2

S(X1 + x) ≤ C ln(n)S ≤ C ln(n)n1/3, and |∑S
s=1(πs −

ϕs(Xl))ϕs(x)| ≤ C S. Using these comments together with a simple calculation
implies

max
x

E

[
S∑

s=1

(πs − π̃s)ϕs(x)

]2k

≤ Ck ln2k(n)n−2k/3. (48)

Combining the results we establish (12).
Now we are verifying (13). According to Butzer and Nessel (1971, s.2.4) and

Remark 1, under Assumption A we can write m(x) = ∑∞
s=0 κsϕs(x), x ∈ [0, 1]

with κs := ∫ 1
0 m(x)ϕs(x)dx and then

E(m(x)− m̂(x))2k = E

[
S∑

s=0

(κs − κ̂s)ϕs(x)+
∑

s>S

κsϕs(x)

]2k

≤ Ck E

[
S∑

s=0

(κs − κ̂s)ϕs(x)

]2k

+Ck

[
∑

s>S

κsϕs(x)

]2k

, (49)
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where the second term decreases not slower than Ck ln2k(S)S−2k uniformly over
x ∈ [0, 1]. Now let us consider the first term on the right side of (49). Write

κ̂s = n−1
1

2n1∑

l=n1+1

Ylϕs(Xl)

p̂(Xl)
= n−1

1

2n1∑

l=n1+1

m(Xl)ϕs(Xl)

p̂(Xl)

+n−1
1

2n1∑

l=n1+1

ξl
σ(Xl)ϕs(Xl)

p̂(Xl)

= κs + n−1
1

2n1∑

l=n1+1

(m(Xl)ϕs(Xl)

p̂(Xl)
− κs

)
+ n−1

1

2n1∑

l=n1+1

ξl
σ(Xl)ϕs(Xl)

p̂(Xl)
.

Using this we get

S∑

s=0

(κ̂s − κs)ϕs(x) = n−1
1

2n1∑

l=n1+1

S∑

s=0

(m(Xl)ϕs(Xl)

p̂(Xl)
− κs

)
ϕs(x)

+ n−1
1

2n1∑

l=n1+1

ξl
σ(Xl)

p̂(Xl)

S∑

s=0

ϕs(Xl)ϕs(x)

= n−1
1

2n1∑

l=n1+1

S∑

s=0

(
m(Xl)ϕs(Xl)

p(Xl)
− κs

)

ϕs(x)

+ n−1
1

2n1∑

l=n1+1

S∑

s=0

m(Xl)ϕs(Xl)ϕs(x)(p(Xl)− p̂(Xl))

p(Xl) p̂(Xl)

+ n−1
1

2n1∑

l=n1+1

ξl
σ(Xl)

p̂(Xl)

S∑

s=0

ϕs(Xl)ϕs(x)

=: A1(x)+ A2(x)+ A3(x). (50)

Consider these three terms in turn. Denote ãl(x) := ∑S
s=0(m(Xl)ϕs(Xl)p−1

(Xl)−κs)ϕs(x), and then E{A2k
1 (x)} = n−2k

1

∑2n1
l1,...,l2k=n1+1 E{∏2k

i=1 ãli (x)}. Re-

call that predictors are independent and E{ãl(x)} = 0. Then a term E{∏2k
i=1 ãli (x)}

is zero whenever values of the indexes (l1, l2, . . . , l2k) do not appropriately match.
Further, using (46) and (47) we can write |ãl(x)| = |m(Xl)p−1(Xl)

∑S
s=0 ϕs(Xl)

ϕs(x) − ∑S
s=0 κsϕs(x)| ≤ C |c1 + (c2/2)DS(Xl + x) + (c2/2)DS(Xl − x)| +

|∑S
s=0 κsϕs(x)|. Note that |∑S

s=0 κsϕs(x)| < C uniformly over x and S because
these are partial Fourier sums of the function m(x)which has a bounded derivative;
recall Remark 1.

Using these results together with a straightforward calculation we get E{A2k
1 (x)}

≤ Cn−k
1 E

{∏k
l=1[ãl(x)]2

}
+Cn−k−1

1 lnk−1(S)Sk+1 ≤ C lnk(n)n−k
1 Sk ≤ C lnk+1

(n)n−2k/3. Now let us consider A2(x) in (50). Write
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A2(x) = n−1
1

2n1∑

l=n1+1

m(Xl)(p(Xl)− p̂(Xl))

p(Xl) p̂(Xl)

S∑

s=0

ϕs(Xl)ϕs(x)

≤ Cbnn−1
1

2n1∑

l=n1+1

∣
∣
∣p(Xl)− p̂(Xl)

∣
∣
∣

×
∣
∣
∣c1 + (c2/2)DS(Xl − x)+ (c2/2)DS(Xl + x)

∣
∣
∣.

Then

E{A2k
2 (x)} ≤ Cb2k

n n−2k
1 E

⎧
⎨

⎩

2n1∑

l1,...,l2k=n1+1

2k∏

i=1

∣
∣
∣p(Xli )− p̂(Xli )

∣
∣
∣

×
∣
∣
∣C + DS(Xli − x)+ DS(Xli + x)

∣
∣
∣

}

= Cb2k
n n−2k

1 E

⎧
⎨

⎩

2n1∑

l1,...,l2k=n1+1

E

{
2k∏

i=1

|p(Xli )− p̂(Xli )|
∣
∣
∣Xl1, . . . , Xl2k

}

×
2k∏

j=1

[1 + |DS(Xl j − x)| + |DS(Xl j + x)|]
⎫
⎬

⎭

≤ Cb2k
n n−2k

1 E

×
⎧
⎨

⎩

2n1∑

l1,...,l2k=n1+1

2k∏

i=1

E1/(2k)
{
|p(Xli )− p̂(Xli )|2k

∣
∣
∣Xl1, . . . , Xl2k

}

×
2k∏

j=1

[1 + |DS(Xl j − x)| + |DS(Xl j + x)|]
⎫
⎬

⎭
.

Using (12), (46) and (47) we get

E{A2k
2 (x)} ≤ Cb2k

n n−2k
1 ln2k(n)n−2k/3

1 E

×
⎧
⎨

⎩

2n1∑

l1,...,l2k=n1+1

2k∏

j=1

[
1 + |DS(Xl j − x)| + |DS(Xl j + x)|]

⎫
⎬

⎭

≤ Cb2k
n n−2k

1 ln2k(n)n−2k/3
1 n2k

1 ln2k(S) ≤ Cb2k
n ln4k(n)n−2k/3

1 .

Denote âl(x) := [σ(Xl)/ p̂(Xl)]∑S
s=0 ϕs(Xl)ϕs(x) and get

E{A2k
3 (x)}=n−2k

1

2n1∑

l1,...,l2k=n1+1

E

⎧
⎨

⎩
E

{
2k∏

i=1

ξli |Xn1+1,. . ., X2n1

}
2k∏

j=1

âl j (x)

⎫
⎬

⎭
.

(51)



644 S. Efromovich

Recall that pairs (X1, ξ1), . . . , (Xn, ξn) are independent and E{ξl |Xl} = 0. Also
note that |âl(x)| ≤ Cbn|c1 + (c2/2)DS(Xl − x) + (c2/2)DS(Xl + x)|. These
remarks, together with (46) and (47), yield

E{A2k
3 (x)} ≤ Cn−k

1 b2k
n lnk(n)Sk ≤ C lnk+1(n)n−2k/3. (52)

Combining the obtained results in (50) with (49) proves (13).
Let us check (14). For all n > n′

0, where n′
0 depends only on minx∈[0,1] σ 2(x),

we have |σ 2(x) − σ̂ 2(x)| ≤ |σ 2(x) − σ̃ 2(x)|. Thus it suffices to verify (14) for
the nontruncated scale estimate σ̃ 2(x). To make the proof shorter, we shall use
Remark 2 and steps of the above-presented proof of (13) for the regression func-
tion m(x); note that according to (28) the only difference between the two models
is that the role of σ(Xl)ξl is now played by µ̂(Xl) + v̂(Xl)ηl . Here the relation
(49) holds for the considered “scale-regression” model, and the second term, in
its right side, is again bounded by C ln2k(S)S−2k because σ 2(x) has a bounded
derivative. The relation (50) also holds with σ(Xl)ξl replaced by µ̂(Xl)+ v̂(Xl)ηl .
Then the only difference in the proof below (50), which should be explained,
is the analysis of the third term A3(x). Let us express this term using our new
notation, namely for the scale function case the third term becomes A3(x) :=
n−1

1

∑3n1
l=2n1+1[µ̂(Xl)+ v̂(Xl)ηl ] p̂−1(Xl)

∑S
s=0 ϕs(Xl)ϕs(x). Write

A2k
3 (x) = n−2k

1

3n1∑

l1,...,l2k=2n1+1

2k∏

i=1

(
µ̂(Xli )+ v̂(Xli )ηli

p̂(Xli )

S∑

s=0

ϕs(Xli )ϕs(x)

)

.

For any set G of 2k elements chosen with replacement from {2n1 + 1, . . . , 3n1},
if at least one of its elements is not matched, E

{∏
i∈G ηli |X2n1+1, . . . , X3n1,

(X, Y )2n1
1

}
= 0. Using this together with (29) and (30), and then following along

(51) and (52) with the use of (13) we get maxx∈[0,1] E A2k
3 (x) ≤ Ck lnk+1(n)n−2k/3.

Combining obtained results establishes (14). �	

Proof of Lemma 2 We begin with the evaluation of E(κs − κ̂s)
4; note that this

would be a simple task if the design density p was known or if the density was
assumed to be smoother. Write

κs − κ̂s = n−1
1

2n1∑

l=n1+1

(κs − Ylϕs(Xl) p̂
−1(Xl))

= n−1
1

2n1∑

l=n1+1

(κs − Ylϕs(Xl)p
−1(Xl))

+n−1
1

2n1∑

l=n1+1

Ylϕs(Xl)
p̂(Xl)− p(Xl)

p̂(Xl)p(Xl)
.
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This yields

(κs − κ̂s)
4 ≤ C

⎡

⎣n−1
1

2n1∑

l=n1+1

(κs − Ylϕs(Xl)p
−1(Xl))

⎤

⎦

4

+ C

⎡

⎣n−1
1

2n1∑

l=n1+1

σ(Xl)ξlϕs(Xl)
p̂(Xl)− p(Xl)

p̂(Xl)p(Xl)

⎤

⎦

4

+ C

⎡

⎣n−1
1

2n1∑

l=n1+1

m(Xl)ϕs(Xl)
p̂(Xl)− p(Xl)

p̂(Xl)p(Xl)

⎤

⎦

4

=: A1 + A2 + A3.

To evaluate A1 we recall that pairs (Xl , Yl), l = n1 + 1, . . . , X2n1 are inde-
pendent and κs = E{Ylϕ j (Xl)p−1(Xl)}. The second term is considered simi-
larly because ξl ’s are independent and zero mean gives the predictor. This implies
E{A1 + A2} ≤ Cn−2

1 . Now let us consider A3. Denote gs(x) := m(x)ϕs(x) and
write

n−1
1

2n1∑

l=n1+1

gs(Xl)
p̂(Xl)− p(Xl)

p̂(Xl)p(Xl)

= n−1
1

2n1∑

l=n1+1

gs(Xl)
p̂(Xl)− p(Xl)

p2(Xl)
− n−1

1

2n1∑

l=n1+1

gs(Xl)
( p̂(Xl)− p(Xl))

2

p̂(Xl)p2(Xl)

=: G1 − G2. (53)

Note that gs(x) is bounded on [0, 1]. Then using (12), together with a simple cal-
culation, implies EG4

2 ≤ Cn−4
1 b4

nn4
1 maxx∈[0,1] E( p̂(x) − p(x))8 ≤ Cb4

n ln8(n)

n−8/3
1 ≤ Cn−2

1 . Evaluation of G1 is more involved. First of all, we can write

G1 = n−1
1

2n1∑

l=n1+1

gs(Xl)
p̂(Xl)− p̃(Xl)

p2(Xl)
+ n−1

1

2n1∑

l=n1+1

gs(Xl)
p̃(Xl)− p(Xl)

p2(Xl)

=: G11 + G12,

where p̃(x) = 1 + ∑S
j=1 π̃ϕ j (x), π̃ j = n−1

1

∑n1
l=1 ϕ j (Xl). G11 is straightfor-

wardly evaluated using Chebyshev’s approach and (12); recall that (12) was proved
for p̃(x) as well. Then denote δ := minx∈[0,1] p(x)/2 and write for all sufficiently
large n such that b−1

n ≤ δ,

E{G4
11} ≤ C E

{∫
( p̂(x)− p̃(x))4dx

}

≤ C E
∫

{x : | p̃(x)−p(x)|>δ}
( p̃(x)− p(x))4dx

≤ Cδ−4 E

{∫
( p̃(x)− p(x))8dx

}

≤ Cn−7/3
1 .
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To evaluate G12 we write G12 = n−1
1

∑2n1
l=n1+1 gs(Xl)p−2(Xl)[∑S

j=1(π̃ j −π j )ϕ j

(Xl)+∑ j>S π jϕ j (Xl)]. This yields

E{G4
12} ≤ 4n−4

1 E

⎡

⎣
2n1∑

l=n1+1

gs(Xl)p
−2(Xl)

S∑

j=0

(π̃ j − π j )ϕ j (Xl)

⎤

⎦

4

+4n−4
1 E

⎡

⎣
2n1∑

l=n1+1

gs(Xl)p
−2(Xl)

∑

j>S

π jϕ j (Xl)

⎤

⎦

4

=: G121 + G122.

To evaluate G121 we write

G121 = 4n−4
1 E

⎧
⎨

⎩

2n1∑

l1,l2,l3,l4=n1+1

4∏

i=1

⎛

⎝gs(Xli )p
−2(Xli )

S∑

j=1

(π̃ j − π j )ϕ j (Xli )

⎞

⎠

⎫
⎬

⎭
.

(54)

Let us begin the analysis by considering a particular case where all {l1, l2, l3, l4}
are different. Denote rs j := ∫ gs(x)p−1(x)ϕ j (x)dx and write for this case

E
{∏4

i=1 gs(Xli )p
−2(Xli )

∑S
j=1(π̃ j − π j )ϕ j (Xli )

}
= E

[ ∫
gs(x)p−1(x)

∑S
j=1

(π̃ j − π j )ϕ j (x)dx
]4

E
[∑S

j=1(π̃ − π)rs j

]4
. Note that π̃ j − π j = n−1∑n1

t=1

(ϕ j (Xt )− π j ), and then

E

⎡

⎣
S∑

j=1

(π̃ j − π j )rs j

⎤

⎦

4

= n−4
1 E

⎡

⎣
n1∑

t=1

S∑

j=1

(ϕ j (Xt )− π j )rs j

⎤

⎦

4

= n−4
1 E

[
n1∑

t=1

qsS(Xt )

]4

= n−4
1

n1∑

t1,t2,t3,t4=1

E

{
4∏

i=1

qsS(Xti )

}

.

Here qsS(x) := ∑S
j=1(ϕ j (x) − π j )rs j . Note that E{qsS(X)} = 0 because

E{ϕ j (X)} = π j . Also, we can show that maxx,s,S |qsS(x)| ≤ C < ∞. To check
this inequality we first note that

∑∞
j=1 |π j | < ∞ due to (20) proved in Efromo-

vich (2001). Second, let m(x)p−1(x) =: ∑∞
j=0 λ jϕ j (x), then (20) implies that

∑∞
j=0 |λ j | < C < ∞. Then we get m(x)p−1(x)ϕs(x) = 2−1/2∑∞

j=0 λ j [ϕ j+s(x)
+ ϕ j−s(x)] and thus

rs j = 2−1/2[λ j−s + λ j+s]. (55)

The latter implies maxs
∑∞

j=0 |rs j | < ∞, and thus we get the verified inequality
for qsS(x).
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Using the obtained results we conclude that

E

⎡

⎣
∞∑

j=1

(π̃ j − π j )rs j

⎤

⎦

4

≤ Cn−2
1 . (56)

In a similar way we can consider a case where l1 = l2 and {l2, l3, l4} are different

in (54). Write E
{∏4

i=1 gs(Xli )p
−2(Xli )

∑S
j=1(π̃ j − π j )ϕ j (Xli )

}
= E

{∫
g2

s (Xl)

p−3(x)[∑S
j=1(π̃ j − π j )ϕ j (x)]2dx [∑S

j=1(π̃ j − π j )rs j ]2
}

≤ C E1/2{∫
[∑S

j=1

(π̃ j − π j )ϕ j (x)
]4 dx}E1/2

[∑S
j=1(π̃ j − π j )rs j

]4 ≤ C ln2(n)n−5/3
1 . In the last

inequality we used (48) and (56). For the analysis of all other cases it suffices to
utilize a rough inequality based on (48),

max
l1,l2,l3,l4

∣
∣
∣
∣
∣
∣
E

⎧
⎨

⎩

4∏

i=1

gs(Xli )p
−2(Xli )

S∑

j=1

(π̃ j − π j )ϕ j (Xli )

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
≤ C ln4(n)n−4/3

1 .

Combining the results and using a simple calculation we establish that E{G121} ≤
Cn−2

1 .

Now we are considering G122. Write G122 = 4n−4
1 E{∑2n1

l1,l2,l3,l4=n1+1

∏4
i=1 gs

(Xli )p
−2(Xli )×

∑
j>S π jϕ j (Xli )}.Let us again begin with a particular case where

all four indexes {l1, l2, l3, l4} are different. Recalling notation rs j = ∫ gs(x)p−1(x)
ϕ j (x)dx and using Cauchy–Schwarz inequality we get E{∏4

i=1 gs(Xli )p
−2(Xli )∑

j>S π jϕ j (Xli )} = [∑ j>S π j rs j ]4 ≤ [∑ j>S π
2
j

∑
j>S r2

s j ]2. According to

Proposition 1 of Efromovich (2001), we have
∑

j>S π
2
j ≤ C S−2 and also, due to

(55),
∑

j>S r2
s j ≤∑ j>S(λ

2
j−s+λ2

j+s) ≤ C[(1+S−s)−2+S−2] ≤ C(1+S−s)−2.

For a particular case where l1 = l2 and {l2, l3, l4} are different we get

E

⎧
⎨

⎩

4∏

i=1

gs(Xli )p
−2(Xli )

∑

j>S

π jϕ j (Xli )

⎫
⎬

⎭

=
⎛

⎜
⎝

∫
g2

s (x)p
−3(x)

⎡

⎣
∑

j>S

π jϕ j (x)

⎤

⎦

2

dx

⎞

⎟
⎠

×
⎡

⎣
∫

gs(x)p
−1(x)

⎡

⎣
∑

j>S

π jϕ j (x)

⎤

⎦ dx

⎤

⎦

2

≤ C
∫
⎡

⎣
∑

j>S

π jϕ j (x)

⎤

⎦

2

dx

⎡

⎣
∫
∣
∣
∣
∣
∣
∣

∑

j>S

π jϕ j (x)

∣
∣
∣
∣
∣
∣
dx

⎤

⎦

2

≤ C ln2(n)S−4.

These relations together with maxx,s |gs(x)p−2(x)
∑

j>S π jϕ j (x)| ≤ C ln(n)

n−1/3
1 yield E{G122} ≤ C[n−2

1 + S−4(1 + S − s)−4]. Combining the results we
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verify (16) for κs −κ̂s . Let us check (16) for its second term. Recall that the nontrun-
cated squared–scale estimate σ̃ 2(x) is defined below line (9), and denote its Fourier
coefficient as ν̃s := ∫ σ̃ 2(x)ϕs(x)dx .Then (νs−ν̂s)

4 ≤ 4(νs−ν̃s)
4+4(ν̃s−ν̂s)

4 =:
4F1 + 4F2. Let us begin with the analysis of F2. Set δ := minx∈[0,1] σ 2(x)/2, and
from now on we are considering only sufficiently large n such that b−1

n ≤ δ and
bn − maxx∈[0,1] σ 2(x) ≥ δ. Then we can write

E{F4
2 } = E

[∫
(σ̃ 2(x)− σ̂ 2(x))ϕs(x)dx

]4

≤ 4E
∫
(σ̃ 2(x)− σ̂ 2(x))4dx

≤ 4E
∫

{x : |σ̃ 2(x)−σ 2(x)|>δ}
(σ̃ 2(x)− σ 2(x))4dx

≤ 4δ−4 E
∫
(σ̃ 2(x)− σ 2(x))8dx ≤ Cn−7/3.

In the last inequality we used (14) together with the remark that (14) was proved
for σ̃ 2(x) as well as for σ̂ 2(x). Further,

E{F4
1 } = n−4

1 E

⎡

⎣
3n1∑

l=2n1+1

(νs − Y ∗
l ϕs(Xl) p̂

−1(Xl))

⎤

⎦

4

≤ 4n−4
1 E

⎡

⎣
3n1∑

l=2n1+1

(νs − Y ∗
l ϕs(Xl)p

−1(Xl))

⎤

⎦

4

+ 4n−4
1 E

⎡

⎣
3n1∑

l=2n1+1

Y ∗
l ϕs(Xl)( p̂

−1(Xl)− p−1(Xl))

⎤

⎦

4

≤ 4n−4
1 E

⎡

⎣
3n1∑

l=2n1+1

(
νs − Y ∗

l ϕs(Xl)p
−1(Xl)

)
⎤

⎦

4

+ 16n4
1 E

⎡

⎣
3n1∑

l=2n1+1

(µ̂(Xl)+ v̂(Xl)ηl)ϕs(Xl)( p̂
−1(Xl)− p−1(Xl))

⎤

⎦

4

+ 16n−4
1 E

⎡

⎣
3n1∑

l=2n1+1

σ 2(Xl)ϕs(Xl)( p̂
−1(Xl)− p−1(Xl))

⎤

⎦

4

=: F11 + F12 + F13.
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In the three terms are analogs of the above-evaluated E{A1}, E{A1} and E{A3},
then

F11 ≤ Cn−4
1 E

⎡

⎣
3n1∑

l=2n1+1

(νs − σ 2(Xl)ϕs(Xl)p
−1(Xl))

⎤

⎦

+ Cn−4
1

⎡

⎣
3n1∑

l=2n1+1

(m(Xl)− m̂(Xl))
2ϕs(Xl)p

−1(Xl)

⎤

⎦

4

+ Cn−4
1 E

⎡

⎣
3n1∑

l=2n1+1

v̂(Xl)ηlϕs(Xl)p
−1(Xl)

⎤

⎦

4

=: F111 + F112 + F113.

Note that νs = E{σ 2(Xl)ϕs(Xl)p−1(Xl)} according to (15), and that the func-
tions involved are bounded; this implies that F111 ≤ Cn−2

1 . Using (13) we get

F112 ≤ Cn−7/3
1 . By recalling that E{ηl |Xl , (X, Y )2n1

1 } = 0, l = 2n1 + 1, . . . , 3n1

we get F113 ≤ Cn−2
1 .

To evaluate F12 we are using (12), (13) and E{ηl |Xl , (X, Y )2n1
1 } = 0, l =

2n1 + 1, . . . , 3n1; these results together with a direct calculation yield F12 ≤
Cn−2

1 . Finally, the evaluation of F13 is identical to the above-conducted evalua-
tion of E{A3} with the only difference that σ 2(x) is used in place of m(x), and
note that these two functions satisfy the same smoothness assumption; this yields
F13 ≤ C[n−2

1 + S−4(1 + S − s)−4]. �	

Proof of Lemma 3 Inequality (18) follows (13) and (14), Remark 3, Cauchy–
Schwarz inequality and σ̂−1(x) ≤ bn . Let us verify (19). Write

V (x) = m(x)− m̂(x)

bσ(x)
+ (σ (x)− σ̂ (x))(m(x)− m̂(x))

bσ̂ (x)σ (x)
=: V1(x)+ V2(x),

and

W (x) = σ 2(x)− σ̂ 2(x)

2bσ 2(x)
+
[
(σ (x)− σ̂ (x))2

bσ̂ (x)σ (x)
+ (σ 2(x)− σ̂ 2(x))2

2bσ 2(x)(σ (x)+ σ̂ (x))2

]

=: W1(x)+ W2(x).

For a generic function g(x), which is differentiable and its derivative g(1)(x)
is square integrable on [0, 1], we get

∫ [m(x) − m̂(x)]g(x)dx = ∑S
s=0(κs −

κ̂s)
∫

g(x)ϕs(x)dx + ∑
s>S κs

∫
g(x)ϕs(x)dx . Denote ws := ∫

g(x)ϕs(x)dx .
Proposition 1 in Efromovich (2001) implies that the inequality

∑
s≥1 s2w2

s < C
holds. This together with Hölder inequality yields
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E

[∫
[m(x)− m̂(x)]g(x)dx

]4

= E

[
S∑

s=0

(κs − κ̂s)ws +
∑

s>S

κsws

]4

≤ C E

[
S∑

s=0

(1 + s)−2(κs − κ̂s)
2

S∑

s=0

(1 + s)2w2
s

+
∑

s>S

κ2
s

∑

s>S

w2
s

]2

≤ C
S∑

s=0

(1+s)−3 ln2(2+s)E(κs −κ̂s)
4+Cn−8/3.

(57)

In the last inequality we used Proposition 1 in Efromovich (2001) and
∑S

s=0[(1 +
s) ln2(2 + s)]−1 < C. Then using Lemma 2 we get

E

[∫
(m(x)− m̂(x))g(x)dx

]4

≤ C
S∑

s=0

(1 + s)−3 ln2(2 + s)[n−2
1 + S−4(1 + S − s)−4] + Cn−8/3

≤ Cn−2
1 + C S−4

S∑

s=0

(1 + s)−3 ln2(2 + s)(1 + S − s)−4

≤ Cn−2
1 + C S−8

∑

0≤s≤S/2

(1 + s)−2 + C S−7 ln2(2 + S)

×
∑

S/2≤s≤S

(1 + S − s)−4 ≤ Cn−2
1 .

This yields E[∫ g(x)V1(x)dx]4 ≤ Cn−2
1 .Further, using Cauchy–Schwarz inequal-

ity, (13) and (14) and σ̂ (x) ≥ b−1
n we get a rough (but sufficient) upper bound

E[∫ g(x)V2(x)dx]4 ≤ Cn−7/3
1 .Combining the results yield E[∫ g(x)V (x)dx]4 ≤

Cn−2
1 . Now we need to consider E[∫ g(x)Wi (x)dx]4, i = 1, 2. The term involv-

ing W2 is plainly evaluated with the help of Cauchy–Schwarz inequality along
with (13) and (14); this yield E[∫ g(x)W2(x)dx]4 ≤ Cn−7/3

1 . To evaluate the term
with W1, it suffices to consider E[∫ (σ̂ 2(x) − σ 2(x))g(x)dx]4 for a generic g(x)
satisfying the condition of Lemma 3. This task is identical to the earlier performed
evaluation of the left side of (57). �	
Proof of Lemma 4 Relation (20) is proved in Proposition 1 of Efromovich (2001).
Using Parseval identity and integration by parts we are verifying (21):

∫ 1
0 [g(1)(u)]2

du = [∫ 1
0 g(1)(u)du]2 +∑∞

j=1[
∫ 1

0 g(1)(u)21/2 cos(π ju)du]2 = [g(1)− g(0)]2 +
∑∞

j=1

[
g(u)21/2 cos(π ju)

∣
∣
∣
1

0
+ π j

∫ 1
0 g(u)21/2 sin(π ju)du

]2 = ∑∞
j=1(π j)2[∫ 1

0
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g(u)21/2 sin(π ju)du]2. To establish (22) we use a similar technique:
∫ 1

0 [g(2)(u)]2

du = ∑∞
j=1

[ ∫ 1
0 g(2)(u)21/2 sin(π ju)du

]2 = ∑∞
j=1

[
g(1)(u)21/2 sin(π ju)

∣
∣
∣
1

0
−

π j
∫ 1

0 g(1)(u)21/2 cos(π ju)du
]2 = ∑∞

j=1(π j)2
[ ∫

g(1)(u)21/2 cos(π ju)du
]2 =

∑∞
j=1(π j)4

[ ∫ 1
0 g(u)21/2 sin(π ju)du

]2
.

Inequality (23) is proved, for instance, in Efromovich (1999, s.2.2). Part (a) is
verified.

Now we are considering part (b). Letψ(u, x) be a function such thatψ(0, x) =
ψ(1, x) = 0 for all x ∈ [0, 1] and also

∫ 1
0

∫ 1
0 [(∂/∂x∂2/∂u2)ψ(u, x)]2dudx < ∞.

Parseval identity implies:

1∫

0

1∫

0

[ ∂

∂x

∂2

∂u2ψ(u, x)
]2

dudx

=
∞∑

j=0

∞∑

s=0

⎡

⎣
1∫

0

1∫

0

(
∂

∂x

∂2

∂u2ψ(u, x)

)

21/2 sin(π ju)21/2 sin(πsx)dudx

⎤

⎦

2

.

To evaluate the integral we need to make several preliminary calculations. Write

1∫

0

(
∂

∂x

∂2

∂u2ψ(u, x)

)

21/2 sin(πsx)dx

=
(
∂2

∂u2ψ(u, x)

)

21/2 sin(πsx)
∣
∣
∣
x=1

x=0

−(πs)

1∫

0

(
∂2

∂u2ψ(u, x)

)

21/2 cos(πsx)dx

= −(πs)

1∫

0

(
∂2

∂u2ψ(u, x)

)

21/2 cos(πsx)dx .

This result, together with Fubini theorem, implies that

1∫

0

1∫

0

( ∂

∂x

∂2

∂u2ψ(u, x)
)

21/2 sin(π ju)21/2 sin(πsx)dudx

= −(πs)

1∫

0

21/2 cos(πsx)

⎡

⎣
1∫

0

( ∂2

∂u2ψ(u, x)
)

21/2 sin(π ju)du

⎤

⎦ dx .
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Consider the inner integral,

1∫

0

(
∂2

∂u2ψ(u, x)

)

21/2 sin(π ju)du

=
(
∂

∂u
ψ(u, x)

)

21/2 sin(π ju)
∣
∣
∣
u=1

u=0
− (π j)

1∫

0

(
∂

∂u
ψ(u, x)

)

21/2 cos(π ju)du

= −(π j)ψ(u, x)21/2 cos(π ju)
∣
∣
∣
u=1

u=0
+ (π j)2

1∫

0

ψ(u, x)21/2 sin(π ju)du.

Recall the assumption ψ(0, x) = ψ(1, x) = 0, x ∈ [0, 1], and then combining

the results we get
∫ 1

0

∫ 1
0

(
(∂2/∂u2)ψ(u, x)

)
21/2 sin(π ju)21/2 sin(πsx)dudx =

−(πs)(π j)2
∫ 1

0

∫ 1
0 ψ(u, x)21/2 cos(πsx) × 21/2 sin(π ju)dudx . Combining the

obtained results we get
∫ 1

0

∫ 1
0

[
(∂/∂x)(∂2/∂u2)ψ(u, x)

]2
dudx = ∑∞

j=0
∑∞

s=0

(π j)4(πs)2
[ ∫ 1

0

∫ 1
0 ψ(u, x)21/2 sin(π ju)21/2 cos(πsx)dudx

]2
,which verifies

(24). Further, relation (25) follows from (22). Part (b) is verified.
Let us consider (26). The part with

∫ 1
0 uk f (u|x) sin(π ju)du follows from

(25). The part with
∫ 1

0 uk f (u|x) cos(π ju)du follows from (2.2.7) in Efromovich
(1999). This verifies (26). Now we are considering (27). Using (22) and Cau-

chy–Schwarz inequality we get
∑

j∈Bk
j2
[ ∫ 1

0 [∫ 1
0 p(x)H(x, a + bu)ψ(u|x)dx]

sin(π ju)du
]2 ≤ j−2

k

∫ 1
0

[
(∂2/∂u2)

∫ 1
0 p(x)H(x, a+bu)ψ(u|x)dx

]2
du, where jk

is the minimal index from the block Bk . Note that jk ≥ Ck3 according to Remark 5.
Also, using notation from (17) we can write ∂2

∂u2

∫ 1
0 p(x)H(x, a +bu)ψ(u|x)dx =

∂2

∂u2

∫ 1
0 p(x)[V (x)+ (a + bu)W (x)]ψ(u|x)dx = ∫ 1

0 p(x)V (x)[(∂2/∂u2)ψ(u|x)]
dx + ∫ 1

0 p(x)W (x)[(∂2/∂u2)(a + bu)ψ(u|x)]dx . Combining the obtained results
and using Cauchy–Schwarz inequality we get

E

⎛

⎜
⎝
∑

j∈Bk

j2

⎡

⎣
1∫

0

1∫

0

p(x)H(x, a + bu)ψ(u|x) sin(π ju)dudx

⎤

⎦

2⎞

⎟
⎠

2

≤ Ck−6 E

⎧
⎨

⎩

1∫

0

⎡

⎣
1∫

0

p(x)V (x)

[
∂2

∂u2ψ(u|x)
]

dx

+
1∫

0

p(x)W (x)

[
∂2

∂u2 (a + bu)ψ(u|x)
]

dx

⎤

⎦

2

du

⎫
⎪⎬

⎪⎭

2
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≤ Ck−6 E

⎧
⎪⎨

⎪⎩

1∫

0

⎡

⎣
1∫

0

p(x)

[
∂2

∂u2ψ(u|x)
]

V (x)dx

⎤

⎦

2

du

⎫
⎪⎬

⎪⎭

2

+Ck−6 E

⎧
⎪⎨

⎪⎩

1∫

0

⎡

⎣
1∫

0

p(x)

[
∂2

∂u2 (a + bu)ψ(u|x)
]

W (x)dx

⎤

⎦

2

du

⎫
⎪⎬

⎪⎭

2

≤ Ck−6
1∫

0

⎧
⎪⎨

⎪⎩
E

⎡

⎣
1∫

0

p(x)

[
∂2

∂u2ψ(u|x)
]

V (x)dx

⎤

⎦

4

+E

⎡

⎣
1∫

0

p(x)

[
∂2

∂u2 (a + bu)ψ(u|x)
]

W (x)dx

⎤

⎦

4⎫⎪⎬

⎪⎭
du ≤ Ck−6n−2

1 .

Here the last inequality holds due to (19) and Assumption B. �	
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