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Abstract We present the asymptotic distribution for an estimator of the population
size for the case of s partially catchable populations. Our approach is useful for
capture–recapture studies with photo-identification data where part of the popula-
tion does not have any distinctive characteristic which allows unique identification
of the individuals. This work represents an extension of Theorem 4 in Sanathanan
(1972, The Annals of Mathematical Statistics, 43, 142–152).
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1 Introduction

Capture–recapture estimators of the size of a closed population require that a num-
ber of assumptions be satisfied if the estimates are to be unbiased. These assump-
tions are discussed in detail in Seber (1982). One of the main assumptions require
homogeneity of animal behaviour with respect to catchability. The bias in the esti-
mation of abundance resulting from heterogeneous capture probabilities is gen-
erally negative, i.e., the population size estimates tend to underestimate the true
population size. In many instances characteristics of the individuals being captured
are responsible for such heterogeneity. For example, older individuals may be eas-
ier to catch than younger ones, or females be easier to catch than males, etc. The
bias resulting from lack of homogeneity can be minimized either by stratification
of the data in order to obtain abundance estimates for more homogeneous sub-pop-
ulations (Sekar and Deming, 1949; Rivest et al., 1995) or by modeling the capture
probabilities as a function of variables related to the process (Alho, 1990; Hug-
gins, 1989, 1991). In the first case, the sub-populations formed by classifying the
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animals according to variables influencing their capture probabilities are, actually,
post-strata. Analyses on strata of the population can always be done, provided the
attribute characteristic has been recorded and the sample sizes within strata are not
too small.

This paper deals with the problem of estimating the size N of a closed pop-
ulation containing uncatchable individuals in a post-stratified photo-id Capture–
recapture study. Besides that we evaluate the uncertainty of such an estimator. The
framework that we consider is one in which the whole population is composed
of s partially catchable demographically closed sub-populations. Our approach is
useful for Capture–recapture studies where photo-id data are collected and part
of the population does not have any distinctive characteristic which allows unique
identification of the individuals (in such a case those individuals are then consid-
ered uncatchable). Estimation of bowhead whale (Balaena mysticetus) abundance
using photo-id data is an example of such a problem. In the case of the bowhead
whale it is not possible/practical to attach an artificial mark to the captured individ-
uals, but the acquired natural marks throughout their lives are useful to allow the
analyst to distinguish individuals. Contrary to the notion of a marked individual in
Capture–recapture studies, a marked bowhead means that it has acquired natural
marks enough to make reidentification possible. Since part of the population never
acquire any natural marks, classical Capture–recapture estimators are not adequate
to estimate the size of the whole population composed of naturally marked and
unmarked individuals. For the bowhead whale, classes of maturity (mature/imma-
ture) which are related to the size of the animal, is a characteristic which allows
post-stratification of the individuals. During the bowhead whale migration period,
mature and immature whales tend to travel in different groups (age segregation).
The earliest whales tend to be small, and the later migrants are mostly adults (mature
whales). Such behaviour causes heterogeneity in capture probabilities which has
to be dealt with adequate methods in the estimation of population abundance.

For such a problem, evaluation of uncertainty of abundance estimators has been
tackled so far either through the use of bootstrap methods (da Silva et al., 2000) or
through confidence regions (Schweder, 2003). da Silva et al. (2000) used parametric
bootstrap methods to draw inferences to the bowhead whale population size. Their
likelihood expressions do not belong to a regular family of distributions, preventing
that variances of the estimators could be obtained via the standard large sample the-
ory of maximum likelihood estimators. Besides that, other kinds of approximations
were too complicated due to some covariance terms involved in the calculations.
Schweder (2003) used confidence distribution to provide confidence intervals for
the stratified by maturity classes bowhead whale population size. In that work the
author also faces the problem of estimating uncertainty for abundance. As it can be
noticed from Table 3 of Schweder (2003), estimated values for the standard errors
for abundance are not reported. According to the author, uncertainty estimation
was affected by bias in the population size estimates and skewness in confidence
distribution.

In this paper we derive, as an extension of Sanathanan’s result, an asymptotic
distribution for the population size estimators of s partially catchable populations.
Sanathanan (1972) derived an asymptotic theory for estimating the number of
trials of a multinomial distribution from an incomplete observation of the total cells.
Estimation of population size when a Capture–recapture experiment is undertaken
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is an example of such a problem, since cell totals are observed only for the cases
where individuals are captured at least once over the sampling experiment.

In Sect. 2 we introduce some notation. In Sect. 3 we define a conditional likeli-
hood based on good photos which incorporates information about the uncatchable
part of the population. In Sect. 4 we present and prove a theorem for the asymptotic
distribution of an estimator for the size of a population composed of s partially
catchable closed sub-populations. In Sects. 5 to 7 we describe a simulation study
and a model meant to compare the estimated standard errors for N̂ using a derived
asymptotic expression with those based on a parametric bootstrap method. In Sect.
8 we present the results and conclusions.

2 Notation

Quality of photos and extent of natural marks of an animal are important variables
in our model formulation. A capture essentially means that a good quality photo of
an individual was taken. In this case, if a natural mark (scars, white pigmentation
patterns, etc) is found then the individual is considered marked. We now intro-
duce some notation. Let s be the number of populations being considered, then for
t = 1, . . . , s,

• N u
t : the total number of unmarked (uncatchable) individuals in population t .

• N m
t : the total number of marked (catchable) individuals in population t .

• N = ∑s
t=1 Nt , with Nt = N m

t + N u
t : the total number of individuals in

population.
• Nm = (N m

1 , . . . , N m
s ) : the vector of population sizes of marked individuals.

• � = (θ1, . . . , θr ) : the vector of independent parameters; r < t (l − 1).
• � = (ψ1, . . . , ψs) : where ψt = N m

t /Nt .
• Xt

a : the number of good photos of the individuals in population t at occasion
a, a = 1, . . . , A, where good photos are those from which the identification of
the individuals is possible.

• xt
a : the number of good photos of marked individuals in population t at occasion

a, a = 1, . . . , A.
• �: the set with 2A elements where each element is a sequence of A binary

components.
• nti : the total number of marked individuals in population t with capture history

i , where i is a label for an element of �, with i = 1, . . . , l.
• pti : the probability of an individual in population t having capture history i ,

where i is a label for an element of �, with i = 1, . . . , l.
• nt : the number of different individuals in population t that were captured over

the experiment.

Let (nt1, . . . , ntl) be distributed according to the multinomial law M(N m
t ;

pt1, . . . , ptl), with ptl = 1 − ∑l−1
i=1 pti , with pti (�) = fti (�), i = 1, . . . , l

where fti are known functions. For example, fti (�) may be a logistic function.
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Sanathanan (1972) showed that expressing the capture histories in terms of fti
leads to estimability of population size. In the next section we present a conditional
likelihood for the model which we are proposing and some definitions.

3 A conditional likelihood based on good photos

The model we are going to discuss involves a combination of s multinomial mod-
els factorized in the same fashion described by Sanathanan (1972) and s binomial
models. The multinomial models account for the marked (catchable) part of the
population while the binomial ones incorporate, through the number of good photos
of unmarked individuals, information about the uncatchable part of the population.
Next we present a conditional likelihood function based on good photos. The con-
ditional likelihood of (Nm, �,�), given {Xt

a} is

L = L
(
Nm, �,�

) = P
({nt1, . . . , ntl}, {xt

a} | {Xt
a},Nm, �,�

)

= P
({nt1, . . . , ntl} | Nm,�

)
P

({xt
a} | {Xt

a}, �)

=
s∏

t=1

N m
t !

(N m
t − nt )!

l−1∏

i=1

nti !
[ptl(�)]

N m
t −nt

l−1∏

i=1

[pti (�)]
nti

×
s∏

t=1

A∏

a=1

(
Xt

a
xt

a

)

ψ
xt

a
t (1 − ψt )

Xt
a−xt

a , (1)

where pti (�) = fti (�), i = 1, . . . , l, ntl = N m
t − nt , and nt =

l−1∑

j=1

nt j . Thus, if

A = 3, there are l = 23 = 8 possible capture histories: (1,1,1),(0,1,1),. . .,(0,0,0).
For t = 1, . . . , s, N m

t − nt is the number of individuals in the population with
capture history (0, 0, 0).

Let L = L (Nm,�) L (�). According to Sanathanan (1972), L (Nm,�) can
be written as L (Nm,�) = ∏s

t=1 Lt1
(
N m

t , ptl(�)
)

Lt2(�). Thus, let us write L
as

L =
s∏

t=1

Lt1
(
N m

t , ptl(�)
)

Lt2(�)Lt3(ψt ) = L1 × L2 × L3, (2)

where

Lt1(N
m
t , ptl(�)) = (N m

t !/(nt !(N m
t − nt )!))[1 − ptl(�)]nt [ptl(�)]N m

t −nt ,

Lt2(�) = (nt !/(nt 1! . . . ntl−1!))[qt1(�)]nt1 · · · [qtl−1(�)]ntl−1 and

Lt3(ψ) =
A∏

a=1

(
Xt

a
xt

a

)

ψ
xt

a
t (1 − ψt )

Xt
a−xt

a ,

with qti (�) = pti (�)/(1 − ptl(�)), i = 1, . . . , l − 1.
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For t = 1, . . . , s, ψ̂t =
(∑A

a=1 xt
a/

∑A
a=1 Xt

a

)
, with ψ̂t →a.s. ψt . Following

the same lines of Lemma 1 in Sanathanan (1972), for any pt ,

N̂ m
t = nt/(1 − p̂tl), N̂t = nt/(ψ̂t (1 − p̂tl))= N̂ m

t /ψ̂t and N̂ =
s∑

t=1

N̂t . (3)

An unconditional MLE of N is obtained when there exists N̂ m
t of N m

t and ψ̂t of
ψt for t = 1, . . . , s, which simultaneously maximize L over all admissible values
of (Nm, �,�). A conditional MLE of N , N̂c, is obtained when we find N̂ m

t max-
imizing Lt1(N m

t , p̂tc) where p̂tc = ptl(�̂c) and �̂c is the value of � maximizing
Lt2(�).

In the following section we enunciate and prove a theorem which is an extention
of Theorem 4 by Sanathanan (1972). Such theorem incorporates the uncatchable
part of the population making possible that asymptoptic properties of the MLE’s
be evaluated for the whole population size estimator of N .

4 Case of s partially catchable populations

Let Nm
o , �o, �o, and No, respectively, be the true values of Nm , �, �, and N.

For t = 1, . . . , s, and i = 1, . . . , l, let pti (�) be denoted by po
ti when � = �o,

and denoted by p̂ti when � = �̂. Similarly let the partial derivatives of pti (�)
with respect to θ j be denoted by po

ti, j when � = �o, and denoted by p̂ti, j when

� = �̂. Let L1 j = ∂ log L1/∂θ j , L2 j = ∂ log L2/∂θ j , and L̂ j = L̂1 j + L̂2 j .

Theorem 1 Let the pti (�)’s admit first order partial derivatives which are contin-
uous at every admissible value �. Let N̂m = (N̂ m

1 , . . . , N̂ m
s ), �̂ = (ψ̂1, . . . , ψ̂s),

�̂ = (θ̂1, . . . , θ̂r ), and N̂ = (N̂1, . . . , N̂s) be the estimates of Nm
o , �o, �o, and

No respectively such that

(i) �̂ →a.s. �o

(ii) �̂ →a.s. �o

(iii)

〈

(N m
ot )

−1/2
(

N̂ m
t − nt/(1 − p̂tl)

)〉

→a.s. 0

(iv)

〈

(N m
ot )

−1/2
(

N̂t − nt/(ψ̂t (1 − p̂tl))

)〉

→a.s. 0

(v) (N m
T )

−1/2 L̂ j →a.s. 0, j = 1, . . . , r

where 〈et 〉denotes the vector (e1, . . . , es), and N m
T = ∑s

t=1 N m
ot . Let �̄−1 = (σ i, j )

be the (r + s)× (r + s) matrix given by

σ j,h =
s∑

t=1

ct

l∑

i=1

[
po

ti

]−1
po

ti, j po
ti,h, j = 1, . . . , r; h = 1, . . . , r ,

σ j,r+t = −(ct )
1/2[po

tl

]−1
po

tl, j , j = 1, . . . , r; t = 1, . . . , s,

σ r+t,r+u = δtu
[

po
tl

]−1
(1 − po

tl), t = 1, . . . , s; u = 1, . . . , s,
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where δtu = 1{t=z}. Assume that

lim
N m

T →∞
N m

ot

N m
T

= ct , 0 < ct < 1,
s∑

t=1

ct = 1.

Then,

U t =
(

(N m
T )

1/2(�̂−�o), (N
m
o1)

−1/2(N̂1−No1), . . . , (N
m
os)

−1/2(N̂s −Nos)

)

(4)

is asymptotically N (0, �̄). Now assume

lim
N m

ot →∞
lim∑A

a=1 Xt
a→∞

1

A

A∑

a=1

xt
a

N m
ot

= bt ,

then the asymptotic variance of N̂ is

Var(N̂ ) =
s∑

t=1

N m
ot

ψ2
ot

[

σ 2
N m

ot
+ 1 − ψot

Abt

]

, (5)

where σ 2
N m

ot
= σ̃ r+t,r+t , t = 1, . . . , s, with �̄ = (σ̃ i, j ).

Proof Equation (4) follows directly from Theorem 4 by Sanathanan (1972). Equa-
tion (5) follows from the next development.
Since Nt = N m

t /ψt , let

Ht = (
N m

ot

)−1/2
(N̂t − Not )=

(
N m

ot

)−1/2

(
N̂ m

t

ψ̂t
− N m

ot

ψot

)

= (
N m

ot

)−1/2

(
N̂ m

t − N m
ot

ψ̂ot

)

+(
N m

ot

)1/2
(

1

ψ̂t
− 1

ψot

)

.

(6)

From equation (6), and since from condition (i i)ψ̂t →a.s. ψot , and from expression

(4),
(
N m

ot

)−1/2
(

N̂ m
t − N m

ot

)
→d σN m

ot
Z1, where Z1 ∼ N (0, 1),

(
N m

ot

)−1/2

(
N̂ m

t − N m
ot

ψ̂ot

)

=
(
N m

ot

)−1/2
(

N̂ m
t − N m

ot

)

ψ̂ot
→d

σN m
ot

Z1

ψot
.
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Also from equation (6),

(
N m

ot

)1/2
(

1

ψ̂t
− 1

ψot

)

=
(
N m

ot

)1/2

(∑A
a=1 Xt

a

)1/2

(
A∑

a=1

Xt
a

)1/2 (
1

ψ̂t
− 1

ψot

)

=
( ∑A

a=1 xt
a

∑A
a=1 Xt

a

)1/2 (
N m

ot
∑A

a=1 xt
a

)1/2 (
A∑

a=1

Xt
a

)1/2

×
(

1

ψ̂t
− 1

ψot

)

. (7)

In equation (7), from condition (i i),
(∑A

a=1 xt
a/

∑A
a=1 Xt

a

)1/2 →a.s. (ψot )
1/2,

while from the delta method,
(∑A

a=1 Xt
a

)1/2 (
1
ψ̂t

− 1
ψot

)
→d − 1

(ψot )2
(ψot (1 −

ψot ))
1/2 Z2, where Z2 ∼ N (0, 1). Besides that,

lim
N m

ot →∞
lim∑A

a=1 Xt
a→∞

(
N m

ot
∑A

a=1 xt
a

)1/2

→ (Abt )
−1/2.

Therefore,

(
N m

ot

)1/2
(

1

ψ̂t
− 1

ψot

)

→d −
(
(ψot )

−2(1 − ψot )

Abt

)1/2

Z2.

Thus, the asymptotic variance of Ht is given by

Var

(
σN m

ot
Z1

ψot
−

(
1 − ψot

ψ2
ot Abt

)1/2

Z2

)

=
σ 2

N m
ot

ψ2
ot

+ 1−ψot

ψ2
ot Abt

−ρ
2σ 2

N m
ot

ψot

(
1−ψot

Abt

)1/2

,

(8)

where ρ is the correlation between Z1 and Z2, i.e., the correlation between ψ̂t and
N̂ m

t . However, according to the likelihood equations (1) and (2), and the derived
estimators of φt and N m

t (see end of Sect. 3), this correlation is zero. Since we
are assuming the sub-populations are independent, this completes the proof of the
Theorem.

In the next section we describe a simulation experiment aimed to generate the
data that was used to exemplify and evaluate the methods discussed so far.

5 Simulation experiment

For the simulations we considered partially uncatchable closed populations includ-
ing two subgroups: the mature and immature individuals. For simplicity the Cap-
ture–recapture data included only 4 (four) sampling occasions. At a given time an
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individual is considered captured when it is photographed and it has at least one
good quality photo.

Population size and catchability effects on the estimates of the asymptotic vari-
ance of N̂ were taken into account in the simulations by considering the four cases:
large N and two levels of capture probabilities (high and low) and not so large N
and the same levels of capture probabilities.

The simulated data contain the following information: (1) four binary vectors
that together indicate the capture histories of the captured individuals. For each
time, 1 indicates a capture and 0 otherwise; (2) four columns indicating the num-
ber of good photos taken from each of the captured individuals in each of the
sampling occasions; (3) one binary vector indicating whether or not the individual
is naturally marked; (4) one binary vector indicating whether or not the individ-
ual is mature. (5) four columns indicating the sampling effort. Those values were
similar for individuals captured at a given time and belonging to the same maturity
class.

The following aspects were considered in the simulations:
(a) Population sizes: In order to evaluate the impact of the population size

on the performance of the estimated asymptotic standard errors, we considered
hypothetical populations of sizes N = 15, 000 and 50, 000.

(b) Marked population and maturity: we fixed at 30% the percentage of un-
marked individuals and at 60% the percentage of mature individuals in the popu-
lation. For the unmarked population we fixed at 70% the percentage of immature
individuals. Such procedure results in four categories of individuals: marked ma-
ture, marked immature, unmarked mature and unmarked immature. According to
the stablished percentages, a marked individual is much more likely to be mature
than an unmarked one. For the simulations we considered the percentages above
to randomly assign each individual in the population to one of the four categories.
The same percentages were used for each of the population sizes described in item
(a).

(c) Shooting probabilities: high (0.10, 0.15, 0.20, 0.24) and low (0.05, 0.075,
0.10, 0.12) shooting probabilities for each of the hypothetical populations sizes
were considered. For each sampling occasion we used the respective pre-assigned
probabilities to randomly select the individuals in the population to be photo-
graphed. We did not use extremely high such proportions since those cases are
of very limited practical interest. For the shooting probabilities we did not con-
sider differences among groups of individuals characterized either by the extent
of markings or maturity class. We assumed that based on the sampling protocol of
bowhead whales which are photographed regardless their size (related to maturity)
or markings.

(d) Good photos: In order to simulate the number of photos taken from each
photographed individual we supposed that this variable follows a zero truncated
Poisson distribution. The parameter of the Poisson distribution, ξ , was fixed accord-
ing to some bowhead whale data. We wanted a value ξ that after truncation gives
an average of 1.541 photos/whale. A value of ξ = 0.938 satisfies this criterion. We
assumed that the probability of getting a good photo (fixed at 0.8) in occasion j is
the same for marked and unmarked individuals. That is a reasonable assumption
since it is in agreement with the analyst’s procedure protocol to attach rank quality
to a photo. The analyst gives a grade to each photo based only on photo quality,
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not on the individual’s extent of marks. The number of good photos taken from a
given photographed individual was generated according to a binomial distribution
with parameters given by the total number of photos taken from that individual and
p = 0.8.

(e) Effort data: For the simulations, effort data for each maturity class (our
covariate) has been fixed as the proportion of marked captured individuals in each
sampling occasion. We adopted such procedure in order to guarantee a very good
description of the effort weights at each time. That would assure less biased pop-
ulation size estimates.

6 Modelling capture probabilities

For exemplifying the methods discussed in the previous sections, the model con-
ceived for the probability of capturing an individual in population t at sampling
occasion a, λta , was a logistic one being described by

λta = exp (θo + θ1 fta)

1 + exp (θo + θ1 fta)
, (9)

where fta represents the sampling effort for population t at sampling occasion a.
In our case we have two sub-populations, the mature and the immature individuals.

Notice that the capture history probabilities p′
ti s are written as a funtion of the

λ′
tas.

Considering equations (2) and (9), the log-likelihood function relating only
the parameters N m

t and (θo, θ1) is given by expression (10) ahead. The following
additional notation was used:

• yt j is the number of individuals from population t that were captured only at
time j , for t = 1, 2, and j = 1, . . . , 4.

• yt,mj is the number of individuals from population t that were captured only
at times m and j , for t = 1, 2, and m < j ∈ {1, . . . , 4}. Notation is analogous for
yt,mjv for m < j < v ∈ {1, . . . , 4}, and yt,1234.

Also let dt1 = ∑4
i=1 yti ; dt2 = ∑3

m=1
∑4

j=m+1 yt,mj ; dt3 = ∑2
m=1

∑3
j=m+1∑4

v= j+1 yt,mjv; dt4 = yt,1234; d5 =∑2
t=1

∑4
i=1 yti fti ; d6 = ∑2

t=1
∑3

m=1
∑4

j=m+1
yt,mj ( ftm + ft j );

d7 =
2∑

t=1

2∑

m=1

3∑

j=m+1

4∑

v= j+1

yt,mjv( ftm + ft j + ftv) and

d8 =
2∑

t=1

yt,1234

4∑

i=1

fti .
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Thus, the log-likelihood function relating only the parameters N m
t and (θo, θ1)

is given by

� = −
2∑

t=1

4∑

a=1

log (1 + exp (θo + θ1 fta))

[

(N m
t − nt )+

4∑

i=1

dti

]

+θo

2∑

t=1

4∑

i=1

idti + θ1

8∑

k=5

dk . (10)

Notice that nt = yt1 + · · · + yt4 + · · · + yt,1234.

7 Variance estimation via bootstrap

In this section we describe a bootstrap procedure aimed to estimate uncertainty
about N̂ . These estimates will be compared (in Sect. 8) to the respective asymp-
totic standard deviations estimated using expression (5).

We follow Buckland (1980) and others in using the parametric bootstrap to
estimate standard error. In the parametric bootstrap setting we draw B samples
of size n from the distribution F̂par, an estimate of F derived from a parametric
model for the data. Where parameters were needed to specify the distribution, esti-
mates of these parameters computed from the original data were used. The choice
between nonparametric and parametric bootstrap in Capture–recapture is addressed
by Buckland and Garthwaite (1991). They note that even though the nonparametric
bootstrap is more widely used and more familiar than the parametric bootstrap, the
latter allows us to choose which underlying distribution model to assume for the
data.

For the model presented in Sects. 3 and 6, a parametric bootstrap approach for
estimating variance of N̂ involves the following steps:

1. Obtain the “original data” by running the data simulation program once. Con-
sider as fixed the obtained sampling effort and the total number of good photos
at each samppling occasion, {Xt

a}.
2. Using the data obtained in step 1 estimate the parameters {N m

t }, θo, θ1, {ψt },
and then {λta} and {pti }.

3. Considering expression (1) and the estimates { p̂ti } and {N̂ m
t }, simulate the num-

ber nti of individuals in population t with capture history i , and the number
nt of different individuals in population t that were captured over the experi-
ment, i.e., draw (n∗

t1, . . . , n∗
tl) from the multinomial law M(N̂ m

t ; p̂t1, . . . , p̂tl).
Calculate the estimate N m∗

t (and the p∗
ti ’s) from the bootstrap sample.

4. Simulate the number xt
a of good photos for group t at time a from a Binomial

(Xt
a, ψ̂t ) distribution. Obtain the estimates {ψ∗

t } and N∗.
5. Repeat steps 3–5 B times and calculate de standard deviation of sample N∗

1 , . . . ,
N∗

B .

In the above steps, * denotes data or an estimate from the bootstrap sample.
The determination of the number B of bootstrap replications depends on the

application. Efron (1981) suggests that bootstrap estimates of standard error usu-
ally have relatively little bias, and very seldom more than B = 200 replications
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are needed for estimating a standard error. Many more replications are needed to
obtain a good estimate of bias or for construction of confidence intervals. Buckland
and Garthwaite (1991) advocate that for a 95% confidence interval, B = 1, 000
should be satisfactory, whereas B = 200 is likely to be inadequate. In this work,
for standard error estimation of N̂ , we used B = 300 bootstrap replications.

All the estimation and bootstrap procedures were performed using codes writ-
ten in FORTRAN. Even so, the bootstrap procedure is very time consuming, taking
about 30 min. for each of the 400 original simulated samples for estimating var-
iance of N̂ . In this work we used a 512 Mb RAM memory 1.1 GHz pentium IV
processor.

8 Results and conclusions

Using the procedure described in Sect. 5, one hundred simulated data sets for each
of the four cases (two different population sizes, N = 15, 000 and 50, 000, and
two levels of capture probabilities, high and low) were produced. For each case of
the 400 simulated samples we performed maximum likelihood estimation for the
total number of individuals in the population, N , using expressions (3), (9) and
(10). We also estimated the standard error of N̂ using both expression (5) and the
parametric bootstrap procedure described in Sect. 7.

Notation s.d.Asy.(N̂ ) and s.d.Boot.(N̂ ) in Table 1 stand, respectively, for the
asymptotic and bootstrap standard deviations of N̂ .

For each case Table 1 summarizes some results for the estimated values of N
and the estimated standard deviations of N̂ based on the asymptotic and bootstrap
approaches. As we can observe from lines 1, 4, 7 and 10 of Table 1, the aver-
age/median values of N̂ are very close to the true N , especially for large values of
capture probabilities, as one could suppose. For N = 50, 000 we observe that the
values of each column of the summary statistics of s.d.Asy.(N̂ ) and s.d.Boot.(N̂ )

Table 1 Descriptive statistics for N̂ and estimated standard errors of N̂ based on the asymptotic
and bootstrap approaches — one hundred simulated samples were used for each of the four cases

Case Estimate Min. 1st Qu. Median Mean 3rd Qu. Max.

N̂ 43,550 47,800 48,850 49,030 50,450 54,080
N = 50, 000; small p′

i s s.d.Asy.(N̂ ) 1,351 1,552 1,598 1,612 1,688 1,875
s.d.Boot.(N̂ ) 1,296 1,501 1,565 1,566 1,640 1,815

N̂ 47,270 49,320 49,910 49,960 50,650 52,110
N = 50, 000; large p′

i s s.d.Asy.(N̂ ) 771 818 836 837 855 901
s.d.Boot.(N̂ ) 724 790 820 821 856 922

N̂ 12,680 14,270 14,760 14,780 15,250 17,950
N = 15, 000; small p′

i s s.d.Asy.(N̂ ) 709 839 888 891 930 1,207
s.d.Boot.(N̂ ) 733 917 989 983 1,031 1,319

N̂ 13,680 14,700 15,040 15,060 15,400 16,180
N = 15, 000; large p′

i s s.d.Asy.(N̂ ) 399 444 462 462 477 514
s.d.Boot.(N̂ ) 432 486 508 510 529 608
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Fig. 1 Comparison between the asymptotic and bootstrap standard errors of N̂

are very close. When N = 15, 000, larger differences between those summary
statistics are observed.

For each of the four cases Fig. 1 describes a comparison between the estimated
values of s.d.Asy.(N̂ ) and s.d.Boot.(N̂ ). We can observe that for large values of N
and large values of capture probabilities (upper left pannel) there is a very good
agreement between the asymptotic and bootstrap standard deviations for N̂ . Such
agreement is still very good for large N and small values of capture probabilities
(upper right pannel). However, when the population size is small, either for small
(lower right pannel) or large (lower left pannel) capture probabilities, the bootstrap
standard deviations tend to be larger than the asymptotic ones. Therefore, for small
N the estimated asymptotic standard deviations of N̂ tend to underestimate the
true value.

For simulated populations with N < 15, 000 individuals (not shown here) we
observed even more extreme differences between the bootstrap and the asymptotic
standard deviations, with last ones tending to underestimate the true uncertainty
about N̂ . Therefore, expression (5) is not suitable for estimating uncertainty about
N̂ for small populations. These findings are though consistent with the asymptotic
nature of the proposed methodology.
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