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Abstract Consider the polynomial regressionmodel Y = Bo+p1 X+ - -+, X  +
o (X)e, where 02(X) = Var(Y|X) is unknown, and ¢ is independent of X and has
zero mean. Suppose that Y is subject to random right censoring. A new estimation
procedure for the parameters By, ..., 8, is proposed, which extends the classi-
cal least squares procedure to censored data. The proposed method is inspired by
the method of Buckley and James (1979, Biometrika, 66, 429-436), but is, unlike
the latter method, a noniterative procedure due to nonparametric preliminary esti-
mation of the conditional regression function. The asymptotic normality of the
estimators is established. Simulations are carried out for both methods and they
show that the proposed estimators have usually smaller variance and smaller mean
squared error than the Buckley—James estimators. The two estimation procedures
are also applied to a medical and an astronomical data set.

Keywords Bandwidth - Bootstrap - Kernel estimation - Least squares estimation -
Linear regression - Nonparametric regression - Right censoring - Survival analysis

1 Introduction
Suppose the random vector (X, Y) satisfies the polynomial regression model

Y =B+ X+ -+ B,X" +0(X)e, (1)
where 62(X) = Var(Y|X), and the error term & (with unknown distribution F)

is independent of X and has zero mean. We suppose that Y is subject to random
right censoring, i.e. instead of observing Y we only observe (Z, A), where Z =
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min(Y, C), A = I(Y < C) and the random variable C represents the censoring
time, which is independent of Y, conditionally on X. Usually, Y is some known
monotone transformation of the survival time. In case this transformation is the
logarithmic transformation, model 1 is called the accelerated failure time model.
Let (Y;, Ci, Xi, Z;, A;) (i =1, ..., n)benindependent copiesof (¥, C, X, Z, A)
andlet V = (X, Z, A) denote the vector of observed random variables.

A number of extensions to censored data of the least squares procedure for
estimating By, ..., Bp have been studied in the literature. The list of ‘first-gener-
ation’ estimators includes, e.g. Miller (1976), Buckley and James (1979), Koul,
Susarla, Van Ryzin (1981), and Leurgans (1987), while more recent contributions
have been made by Zhou (1992), Stute (1993), Fygenson and Zhou (1994), Akritas
(1994, 1996) and Van Keilegom and Akritas (2000). The idea of the estimator of
Buckley and James (1979) is as follows. Consider for simplicity the case where
p = 1, and suppose that o0 (X) = 1. Then,

E (Y}|X;i) = Bo+ B Xi,

where Y* = Yi A; + E(Y;|Y; > C;, X;)(1 — A;). The idea of Buckley and James
(1979) is to write

[e¢)
1
EY;Y; > Ci, X)) = i X; dF
XY > Ci, Xi) = B l+1_F,81(Zi_,31Xi) / y ﬂ](y)
Zi—pi1X;
and next to estimate Y;* by the ‘synthetic’ data points
1 o
YEBD) = Yidi + { BiXi + —— / ydFg () 1 (1= A,
L= Fp(Zi = B1Xi) o x
i—P1A;

where Fg, (y) is the distribution of Y — 81 X and F 6, (y) is the Kaplan-Meier (1958)
estimator of Fg, (y) based on (Z; — B1X;, A;) (i =1, ..., n). Next, Buckley and
James (1979) estimate the parameters (8o, 1) from the normal equations :

> (7260 - fo— i) =0,
z @)
Z (I?i*(ﬂl) —Bo — ,BIXi) X; =0.

i=1

A solution to these equations can be found in an iterative way. Ritov (1990) and
Lai and Ying (1991) obtained the asymptotic properties of a (slightly modified)
version of this estimator.

Although this estimator behaves usually well in practice, there are a number
of disadvantages: (1) the iterative procedure suffers in certain cases from conver-
gence problems which lead to unstable solutions or no solution at all; and (2) the
estimation method restricts to homoscedastic models, while in practice the data
often follow a heteroscedastic model. In light of these drawbacks, we propose in
this paper a variant of the Buckley—James (1979) procedure, which does not suffer
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from the above disadvantages. The idea is to estimate E(Y;|Y; > C;, X;) (and
hence Y;*) in a nonparametric way. This is done by using kernel smoothing with
an adaptively chosen bandwidth parameter. The advantage of this is that, contrary
to the Buckley—James (1979) procedure, the so-obtained ‘synthetic’ data points
do not depend on the unknown S-vector and hence the normal equations have an
explicit (noniterative) solution. As will be seen in the simulations, this leads to
more stable solutions and hence to a smaller variance. Moreover, contrary to other
methods which construct ‘synthetic’ data points (e.g. Koul et al., 1981; Leurgans,
1987; Akritas, 1996), the ‘synthetic’ data points of the new method use information
from the whole model. The details of the proposed method are given in the next
section.

This paper is organized as follows. In Sect. 2, we introduce some notations
and describe the estimation procedure in detail. In Sect. 3 we state the asymptotic
normality result of the regression parameter estimators. Section 4 contains a sim-
ulation study, in which the new procedure is compared with the Buckley—James
(1979) method, while in Sect. 5 two data sets on cancer of the larynx and on spectral
energy distributions of quasars are analyzed by means of the two methods. Finally,
Appendix contains the proofs of the main results of Sect. 3.

2 Notations and description of the method

We assume throughout that regression model 1 holds. Let m(-) be any location
function and o (-) be any scale function, meaning that m(x) = T (F(-|x)) and
o(x) = S(F(:|x)) for some functionals 7" and S that satisfy T (Fyy+»(-|x)) =
aT (Fy(-|x))+band S(Fay+»(-|x)) = aS(Fy(-|x)),foralla > 0and b € IR (here
F,y+»(+]x) denotes the conditional distribution of aY + b given X = x). Then, it
can be easily seen that if model 1 holds, the model Y = m(X)+ o (X)e with ¢ inde-
pendent of X, is also valid. So from now on, m and o can denote any location and
scale function, and are not restricted to the conditional mean and variance. Also, we
use the notation ¢ = (Y —m (X)) /o (X) for any location function m and scale func-
tion 0. Define F(y|x) = P(Y < y|x), G(y|x) = P(C < y|x), H(y|x) = P(Z <
ylx), Hs(ylx) = P(Z < y, A =é|x), H(y) = P(Z < y), Fx(x) = P(X < x),
F.(y)=P(e <Y),S.(y) =1—-F,(y),andfor E = (Z—m(X))/o (X) we denote
H.(y) = P(E < y), Hes(y) = P(E < y, A = §), H/(y|x) = P(E < y|x) and
H.s(y|lx) = P(E <y, A =6|x) (6 =0, 1). The probability density functions of
the distributions defined above will be denoted with lower case letters, and let Ry
denote the support of the variable X.

As already outlined in Sect. 1, the idea of the proposed method is to estimate
E(Y;|Y; > C;, X;) in a nonparametric way, in order to obtain a direct noniterative
estimator for the B-coefficients. One can write

EY|Y; > Ci. X;) = m(X; o (Xi) OodF 3
Y;1Y: > Ci, Xi) = m( l)+Te(Ei) ydF.(y). (3)

E;

The main idea is now to estimate m(-), o (-), and F,(-) in a nonparametric way and
to plug-in the so-obtained estimator of E(Y;|Y; > C;, X;) into the formula of Y.



276 C. Heuchenne and I. Van Keilegom

Since these new Y;*’s do not depend on the S-coefficients, the resulting minimiza-
tion problem and normal equations (similar to Eq. 2) yield explicit solutions for
B. However, due to the censoring mechanism, it is in general impossible to obtain
consistent, nonparametric estimators of the conditional mean and variance. We
will therefore use location and scale functions m(+) and o (+) , that can be estimated
in a consistent way under censoring (and change F,(-) accordingly). Since Eq. 3
remains valid when m and o are any location and scale function, respectively, we
can choose for them the following L-functions:

1 1

m(x):/F_l(s|x)J(s)ds, az(x)=/F_1(s|x)2J(s)ds—m2(x), 4)

0 0

where F~!(s|x) = inf{y; F(y|x) > s} is the quantile function of Y given x and
J(s) is a given score function satisfying fol J(s)ds = 1. When J(s) is chosen
appropriately (namely put to zero in the right tail, there where the quantile func-
tion cannot be estimated in a consistent way due to the right censoring), m(x) and
o (x) can be estimated consistently. Now, replace the distribution F(y|x) in Eq. 4
by the Beran (1981) estimator, defined by

A B Wi(x, an)
Fylx)=1-— H [1 - Z'/l':l I(Z; > Zi)Wj(x’a")] ©

Zi<y,Ai=1

(in the case of no ties), where W;(x,a,)(i = 1,..., n) are the Nadaraya (1964)
and Watson (1964) weights
—X;
K (5

Z;:l K ( An j)

K is a kernel function and {a,} a bandwidth sequence. Note that this estimator
reduces to the Kaplan—Meier (1958) estimator when all weights W; (x, a,,) equal
n~!. This yields

Wix,ay) =

1 1

rh(x):/ﬁ*‘(ﬂx)](s)ds, az(x)=/ﬁ*1(s|x)2J(s)ds—m2(x) (6)

0 0
as estimators for m (x) and o2(x). Let
FEy=1- ] o (7)
e\V) = R n—i+1
Ei=<y,Aup=1

denote the proposed Kaplan—Meier (1958) estimator of F, (in the case of no ties),
where E; = (Z; —m(X;))/6 (X;), E is the ith order statistic of Ey, ..., E, and
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Ay is the corresponding censoring indicator. This estimator has been studied in
detail by Van Keilegom and Akritas (1999). This leads to

5(X; R
ol /dee(y) A-A)

l_ﬁe(EiT)ér

i

Y5 =YiAi + {m(X) +

as an estimator of Y, where S = (Tx, — m(X;))/6(X;), EI.T = E; A S, and
for any x, Ty < To(x) + m(x), where T < 1y, and 1 = inf{y : F(y) = 1}
for any distribution F. Note that due to the right censoring, we have to trun-
cate the integral in the definition of Y}“i (however, when 7, < 7¢,, the bound
S; can be chosen arbitrarily close to tf, for n sufficiently large). Finally, define
the estimator of B8 = (Bo, ..., Bp) by the usual least squares estimator based
on the pairs (X;, )A’}l.) (i = 1,...,n) and denote these estimators by B =
(,éTo, el ,f}Tp). As it is clear from the definition of )A’;l., ﬁm, . /§Tp are actu-
ally estimating B = (Bro, ..., Brp) = (2\,”/'\?)_1/"(/E(Y}"i|X,-)l’.’:l (condition-
ally on X1, ..., X,), where the element (i, j) of the matrix X equals Xfl (i =
L...,m;j=1,...,p+1),

Si

Y7, =YiAi + m(Xi)Jr&/dee(y) (1—-A),
- F(ED) )
E!

i

Si = (Tx, —m(X;))/o(X;) and E] = (Z; ATx, —m(X;))/o (X;) = Ei AS;. As
before, these coefficients Bro, . . ., Br) can be made arbitrarily close to By, . . ., Bp,
provided f, < 1g,.

Another way to construct new data points should be to replace each data point
Y; by an estimation of its conditional location function m(X;). This alternative
estimation method has been studied by Akritas (1996) (Biometrics). The method
of Akritas (1996) offers the advantage of being more robust to outliers, since all
observations are transformed, whereas in our method we only change the censored
observations. On the other hand, our method has the advantage of making use of
the model Y = m(X) + o (X)e in the construction of the synthetic data points, and
so it uses the model in a more efficient way. In particular, this leads to an estimator
that is less sensible to regions with heavy censoring.

3 Asymptotic results

We start with developing an asymptotic representation for BT i=Bri(j=0,...,p).
This representation is useful to obtain later the asymptotic normality of the estima-
tors. The assumptions and notations used in the results below, as well as the proof
of the first result, are given in Appendix.
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Theorem 1 Assume (Al)—(AS8), Then,
Bro — Bro ” op (n=/?)

: =M_1n_IZP(Xi,Zi,Ai)+ : ,
BTp - ,BTp i=l op (n_]/z)

where M = (Mj) (j,k=1,...,p+ 1), Mjr = E(X/T*2), p = (0o, ..., pp),

Sy

o Plexnzioane @)
pj(Xi,Zi,Ai)=/xfo<x)/ AR /udFe(u)
o | (= Fe (el @)

Rx el'(2)
1 i
+—F / udp(X;, Z;i, A;j,u) ¢ dHp(z|x)dFx(x)
1— Fe (e;‘(z)) ; @ 2 i i
ey (2)

+fX(Xi)/Bj(Za Zi, Ai|X;) dHo(z]| X;)
+Xij (Y7, — E [YHX,-])
(G=0,....p;i=1,...,n).

Theorem 2 Under the assumptions of Theorem I, nl/z(,éTo — Bros ..., /§Tp —
Brp) —d> N (0, X), where

L=MTE[p(X.Z,M)p' (X, Z, D] M.

The proof of this result follows readily from Theorem 1.

Remark 1 (Homoscedastic model) Note that when model 1 is homoscedastic (i.e.
o = 1), the representation in Theorem 1 simplifies. In fact, it is easily seen that
the function ¢ equals zero in that case.

Remark 2 (Bandwidth choice) The choice of the bandwidth parameter can be car-
ried out through the minimization of the function

LR R . 2
min > (97 (@) = Bro@n) = = Brp@x?) ", ©)
i=1

over a specific grid of values of the smoothing parameter a,,. The rationale of this
bandwidth rule is to minimize the least squares criterium function, not only with
respect to the parameters 8, but also with respect to the bandwidth a,,. This idea
has been used in other contexts as well, see e.g. Hérdle et al. (1993) where a similar
principle is used in the context of single index models. Note that the argument a,,
is added to ¥, and Br; (i = 1,...,n;j = 0,..., p) in order to highlight the
dependence on a,, of these quantities. This procedure to select the bandwidth is
illustrated in Sect. 4 on some finite sample simulations.
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Remark 3 (Bootstrap approximation) For the computation of the variance of the

estimator Br the bootstrap procedure proposed by Li and Datta (2001) can be used.
First, generate X ’1“, ..., X} i.i.d. from the empirical distribution of X1, ..., X,.
Next, foreachi = 1, ..., n, select at random a Yl.* from the distribution F Cl1X ;‘),
and a C; from G('|X;‘) [which is the Beran (1981) estimator of G(:|X[) ob-
tained by replacing A; by 1 — A; in the expression for F (-]X7)]. Finally, let
ZF = min(Y/, C) and AT = I(Y] < C}). For each so-obtained resample
{(XF,ZF, AY) i = 1,...,n}, calculate a bootstrap estimator of the regression
parameters. Repeat this for a large number of bootstrap samples (say B). The var-
iance of these B bootstrap estimates is then an approximation of the variance of
the estimator B7. In a similar way, the bootstrap can also be used to approximate
the full distribution of B7.

Remark 4 (Practical implementation) The proposed estimator can be easily imple-
mented in practice. In fact, the parameters on which the estimator depends, can
all be chosen in an adaptive way. The finite sample performance of Br for these
adaptively chosen parameters is illustrated in the next section. Programs (written
in Matlab) of the estimator BT can be obtained by simple request to the authors.
First of all, for the score function J, we recommend the choice

J)=b"'10<s<b) 0<s<1),

where b = minj<;<, ﬁ(+oo|X,-). In this way, the region where the Beran (1981)
estimators £ C1Xy, ..., Ia (-| X ) are inconsistent is not used, and on the other hand,
we exploit to a maximum the “consistent” region. For the bandwidth, the procedure
explained in Remark 2 is completely data-driven and easy to implement whereas
the choice of the kernel K is of minor importance. Finally, 3',- (i=1,...,n)canbe

chosen larger (or equal) than the last order statistic £ () of the estimated residuals.
In this way, all the Kaplan—Meier (1958) jumps of the integral 8 are considered.

Remark 5 (Extensions) The estimation procedure and the methodology used to
obtain the results of this section could be used as a basis for a number of more gen-
eral models. For instance, it could be studied how the proposed estimation method
can be adapted to any (non)linear parametric regression model with censored data.
Also, the extension to situations where the covariate is subject to censoring could
be considered [in that case the Beran estimator will need to be replaced by, e.g.
the estimator proposed in Van Keilegom (2003)]. Finally, it would be interesting to
extend the obtained results to semiparametric regression models, like partial linear
or single index models.

4 Simulations

In this section, we compare the finite sample behavior of the Buckley—James (1979)
estimator with the estimator proposed in this paper by means of Monte Carlo sim-
ulations. We are primarily interested in the behavior of the bias and variance of the
two estimators. The simulations are carried out for samples of size n = 100 and
the results are obtained by using 500 simulations.
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In the first setting, we generate i.i.d. data from the normal homoscedastic regres-
sion model

Y = Bo+B1X + o, (10)

for various choices of By, B1, and o, where X has a uniform distribution on the unit
interval and the error term ¢ is a standard normal random variable. The censoring
variable C satisfies C = ag + o1 X + o¢&*, for certain choices of o and « and
where ¢* has a standard normal distribution. We further assume that ¢ and ¢* are
independent of X, and that ¢ is independent of ¢*. It is easy to see that, under this
model,

P(A=0|X=x)=1—d>(a0_'30+(0‘1—,31)X).

V2o

For the weights that appear in the Beran (1981) estimator F (y|x), we choose
a biquadratic kernel function K (x) = (15/16)(1 — x2)2I(Jx| < 1). In order to
improve the behavior near the boundaries of the covariate space, we work with
the boundary corrected kernels proposed by Miiller and Wang (1994). As a con-
sequence of the fact that these boundary corrected kernels can become negative,
the Beran (1981) estimator decreases at certain time points. In these cases, the
estimator is redefined as being constant until it starts increasing again.

For the bandwidth sequence a,, we select the minimizer of Eq. 9 among a
grid of 20 possible values between 0 and 1. For small values of a,, the window
[x —a,, x +a,] at a point x sometimes does not containany X; (i =1, ..., n) for
which the corresponding Y; is uncensored (and in that case estimation of F(-|x) is
impossible). We enlarge the window in that case such that it contains at least one
uncensored data point in its interior. It also happens sometimes that the bandwidth
ap at a point x is larger than the distance from x to both the left and right endpoint
of the interval. In such cases, the bandwidth is redefined as the maximum of these
two distances.

In a number of situations, the iterative Buckley—James (1979) method does not
converge, but oscillates around two or more values. In such cases, the estimator is
defined as the average of these values.

Tablel summarizes the simulation results for different values of «g, o1, Bo, B1,
and o . For fixed values of 8y, 81, and o, the values of g and o] are chosen in such
a way that some variation in the censoring probability curves is obtained (different
proportions of censoring, different degrees of smoothness of the censoring prob-
ability curve,etc.). The table shows that, in general, the Buckley—James (1979)
estimator has a larger variance but a smaller bias than the newly proposed estima-
tor. In most cases the effect of the bias on the mean squared error is, however, small
(relative to the variance). As a consequence, the new estimator has in most cases a
smaller mean squared error than the Buckley—James (1979) estimator. These facts
can be explained in the following way. First, that the new estimator has a larger bias
than the Buckley—James (1979) estimator is due to the use of smoothing methods.
They imply a certain inherent bias, but the contribution of this bias to the mean
squared error is in most cases small. Second, the smoothing parameter a,, gives an
additional possibility to fine-tune the new estimation procedure. The dependence
on a bandwidth a, can thus be considered as an advantage for the new method,
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Table 1 Results for the Buckley—James (1979) estimator (first line) and the new estimator (second
line) for model 10

Bo B Bo Bi
o o o? Bias Var MSE Bias Var MSE
0 1 —.004 022 022 —.009 068 069
0.6 0.85 0.5 005 021 021 —.019 065 066
0 1 —.013 026 026 —.011 084 084
0.27 0.45 0.5 —.009 024 024 —.043 075 077
0 1 —.006 041 041 —-.015 141 141
1.5 —0.5 1 .002 040 040 —.052 135 137
0 1 —.018 050 050 —.013 .169 169
0.6 —0.2 1 —.008 047 047 —.074 153 158
0 5 —.004 021 021 —.011 069 069
1 4.1 0.5 008 021 021 —.050 067 069
0 5 —.013 025 025 —.006 088 088
0.5 4 0.5 011 025 025 —.079 086 092
0 5 —.006 042 042 —.014 138 138
1.3 3.9 1 009 041 041 —.067 130 135
0 5 —.015 047 047 —.004 186 186
1 3 1 033 047 048 —.170 171 200

since it allows to optimize the estimation procedure. Third, the Buckley—James
(1979) estimator suffers in certain cases from instability problems that are inherent
to this method, as explained in Sect. 1.

Next, suppose that Y and C are distributed according to

Y|X = x ~ Weibull (exp [—d (vo+yix + yzxz)] .d),
C|X = x ~ Weibull (exp [~d (a0 + a1x + @2x?)], d)

and are independent conditionally on X. The covariate X is uniformly distributed
on [0, 1]. It is easy to check that

log Y|X = x ~ F(y|x) = 1 —exp (—exp[d(y — yo — y1x — y2x?)]) . 0
log C|X =x ~ G(ylx) = 1 —exp (—exp[d(y — ap — a1x — aw2x?)]) .

It follows that log Y has, conditionally on X = x, an extreme value distribution
and hence E(log Y|X = x) = —D/d + yo + y1x + y2x?> = Bo + B1 + B2x? and
Var(log Y|X = x) = m?/(6d%), where By = —D/d + yo, Bi = y1. 2 = 2.
and D = 0.5772 is the Euler constant. It easily follows that if m(x) = E(log Y|x)
and o2(x) = Var(log Y|x), then P(e < y|x) = P((logY —m(x))/o(x) < y|x) =
1—exp(— exp(ym/+/6—D)). Since this is independent of x, model 1 holds. Further,
witha, = exp(—d(yo+y1x+y2x2)) and by = exp(—d (ag+a1x+arx?)), the con-
ditional censoring probability curve is given by P(A = 0|X = x) = by /(ax +by).

The bias, variance, and mean squared error of the new and the Buckley—James
(1979) estimator for 16 sets of parameters are given in Table 2. The results are
similar (but even more pronouncing) than in Table 1: in most cases, the new esti-
mator has a slightly larger bias, but a much smaller variance, which leads to a
substantial smaller mean squared error compared to the Buckley—James (1979)
estimator. Other choices of the parameters lead to similar results.
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Table 2 Results for the Buckley—James (1979) estimator (first line) and the new estimator (second
line) for model 11

no v n Bo Bi B2

oo o ar d Bias Var MSE Bias Var MSE Bias Var MSE
7.6 1 1 .013 .069 .069 —.053 1.66 1.66 043 1.62 1.62
87 —-02 1 5/3 —.014 .064 .064 172 145 1.48 —248 135 141
7.6 1 1 013 .085 .085 —.064 232 232 067 241 241
82 —-02 1 53 —-.032 .073 .074 323 172 1.82 —.452 1.60 1.81
7.6 1 1 .022 200 .201 —.088 470 4.71 061 450 4.50
9 -02 1 1 —.014 .182 .183 174 4.07 4.10 —.257 378 3.85
7.6 1 1 .027 255 255 —.117 643 6.45 100 636 6.37
82 —02 1 1 —.046 205 .207 381 4.60 4.75 —.507 427 453
7.6 5 1 .013 .070 .070 —.054 1.66 1.66 040 1.60 1.60
8.6 4 1 5/3 —.004 .069 .069 121 156 1.57 —.185 144 148
7.6 5 1 .014 .087 .087 —.072 231 231 069 235 235
8.1 4 1 5/3 —.006 .090 .090 212 217 222 -316 205 2.15
7.6 5 1 .020 .202 .203 —.083 473 473 .058 4.50 4.50
8.9 4 1 1 —.007 .190 .190 162 427 4.29 —.252 394 4.01
7.6 5 1 027 264 265 —.115 649 6.51 099 632 6.33
8.1 4 1 1 —-.025 .236 .237 357 5.28 5.41 —.513 479 5.06
6.7 5 5 017 .127 .127 —.064 297 297 044 284 284
7.9 4 5 54 —-.001 .126 .126 131 284 2.86 —.188 2.63 2.66
6.7 5 5 .021 .161 .161 —.093 4.09 4.10 .082 4.06 4.06
7.2 4 5 5/4 —.007 .166 .167 288 3.94 4.02 —-.370 3.70 3.84
6.7 5 5 .044 840 .842 —.170 19.0 19.1 120 17.8 17.8
8.9 4 5 05 —.022 .789 .789 333 174 175 —.463 159 16.1
6.7 5 5 076 1.14 1.15 —.303 259 259 246 242 242
7.2 4 5 05 —-.069 971 .976 782 212 21.8 —1.00 19.2 20.2
6.7 1 5 .016 .085 .086 —.064 183 1.84 047 1.68 1.68
7 2 4 5/3 —.002 .081 .081 103 1.69 1.70 —.142 151 1.53
6.7 1 5 .031 .127 .128 —.128 2.62 2.63 104 237 238
6.5 2 4 53 —.006 .110 .110 236 2.16 221 —-.307 190 1.99
6.7 1 5 .027 332 .332 —.103 748 7.49 073 7.04 7.04
7.9 2 3 0.8 —.033 305 .306 336 6.63 6.75 —441 6.04 6.24
6.7 1 5 .054 463 466 —.241 10.8 10.8 212 105 105
6.8 2 3 0.8 —-.077 377 .383 727 8.05 8.58 —928 7.28 8.14

The final setting we consider is a normal heteroscedastic regression model
Y=o+ B1X +yXe, (12)

with o = 0, 81 = 10, X has a uniform distribution on [0, 1], ¢ has a standard
normal distribution, and y equals 1, 2, 3, or 5. The censoring variable is given by
C = ag + a1 X + p¢&*, where ¢* has a standard normal distribution. We further
assume that ¢ and £* are independent of X, and that ¢ is independent of £*. As
the Buckley—James (1979) estimator is limited to homoscedastic models, we con-
tinue using the same estimator as before, while the new estimator is now taking the
heteroscedasticity into account. Therefore, we expect the Buckley—James (1979)
estimator to behave poorly when there is much heteroscedasticity in the model.
This is indeed confirmed by the results in Table 3, which show deteriorating results
for the Buckley—James estimator for increasing values of y.

A final remark on the choice of the bandwidth: simulations have shown that the
estimator proposed in this paper is not very sensitive (relatively to other situations
where kernel smoothing is used) to the choice of the bandwidth. This is because the
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Table 3 Results for the Buckley—James estimator (first line) and the new estimator (second line)
for model 12.

Bo Bi
o7 o] 0 y Bias Var MSE Bias Var MSE
0.7 9.85 1 1 .085 .007 014 181 .049 .082
.063 .006 .010 135 .048 .066
1.5 9.5 2 2 .166 .027 .054 .366 197 331
.100 .023 .033 —.266 .190 .260
2.4 10 4 3 230 .061 114 475 466 .692
119 .052 .066 —.326 444 .550
2.6 10 4 5 465 172 .388 967 1.20 2.13
201 136 177 —.569 1.16 1.48

estimators of the regression parameters are obtained by taking a weighted average
of the artificial data points )A’,.* (i =1, ..., n). In this way, the effect of the choice
of the bandwidth is in some way averaged out. This is a typical phenomenon in
situations where kernel smoothing is used in the construction of a root-n consistent
estimator.

5 Data analysis

We illustrate the proposed method on two data sets. The first one is about 90 male
larynx cancer patients, diagnosed and treated during the period 1970-1978 in a
peripheral hospital in the Netherlands [see Kardaun (1983) for more details]. The
variable of interest is the time interval (in years) between first treatment and death
of the patient. At the end of the study (1 March 1981) 40 patients were alive, and
their survival time was therefore censored to the right. We are interested in studying
the relationship between Y = log(survival time) and X = log[age of the patient at
diagnosis (in years)]. The data shown in Fig. 1 suggest that a linear model might
be appropriate:

Y =80+ piX +e, 13)

where ¢ and X are independent and E(¢) = 0. The Buckley—James (1979) algo-
rithm and the new method yield, respectively, the values —1.03 and —0.97 for the
slope parameter and 5.64 and 5.39 for the intercept parameter. It was observed
that the Buckley—James (1979) method does not converge to a single value of the
slope parameter, but oscillates between three values. The estimator is defined as
the average of these values. For the new method, boundary corrected kernels are
used. The bandwidth is selected from a grid of 16 bandwidths, according to the
method described in Remark 2. From Fig. 1 it is clear that the regression lines
(and also the new data points) obtained from the Buckley—James (1979) method
and the new method are very close to each other. By using the bootstrap method
explained in Remark 3, the variance of the slope, respectively, intercept of the new
method is given by 1.05, respectively, 18.32. Confidence intervals obtained from
the percentile bootstrap method are [—3.10, 0.92] for the slope and [—2.65, 14.00]
for the intercept. The intervals obtained from the normal approximation are very
similar, which suggests that the asymptotic normality result is accurate here.
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log (age at diagnosis)

Fig. 1 Linear regression for the larynx cancer data. The solid, respectively, dashed line rep-
resents the estimated regression line for the new, respectively, Buckley—James (1979) method.
Uncensored data points are given by times symbol, and censored observations by upper triangle.
The new data points obtained from the new, respectively, Buckley—James (1979) method are
represented by asterisks, respectively plus symbols.

The second data set comes from a study of quasars in astronomy. To date,
many studies have focused on the dependence on luminosity and redshift of quasar
ultraviolet-to-X-ray spectral energy distributions (characterized by means of the
spectral index oox = 0.384 10g(L2keV/L2,500,&)’ where /,, = log L2,500A and

Ix = log Lykev denote the rest-frame 2, 500 A and 2keV luminosity densities)
(see Vignali, Brandt, & Schneider, 2003). This allows to obtain information and to
validate the proposed mechanism driving quasar broad-band emission (accretion
disk onto a super-massive black hole). Due to technical constraints of the used
instruments, only upper bounds on 69 of the 137 values of Ix are observed, leading
thus to left censoring. Right-censored data points are next obtained by replacing
the left-censored Iy ; by Z; = (max;.j—1, 137, ;) — ), i =1,...,137. We
show in Fig. 2 the results of the regression of /x on [, for both the new and the
Buckley—James (1979) algorithm, assuming that model 13 is valid (where the latter
is again obtained by taking the average of the values around which it oscillates).
We observe a big similarity between the two regression lines. For both methods
there is a strong correlation between the two variables. The slope and intercept are
respectively, 0.75 and 3.48 for the new method and 0.74 and 3.76 for the Buckley—
James (1979) method. The variance of the slope and intercept for the new method
are equal to 0.006 and 5.68, respectively, while the percentile bootstrap confidence
intervals are given by [0.52, 0.83] and [0.98, 10.57], respectively.
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Fig. 2 Linear regression for the quasar data. The solid, respectively, dashed line represents the
estimated regression line for the new, respectively, Buckley—James (1979) method. Uncensored
data points are given by times symbol, and censored observations by down triangle. The new
data points obtained from the new, respectively, Buckley—James (1979) method are represented
by asterisks, respectively plus symbols

Finally, note that direct comparison of the parametric estimator with the non-
parametric estimator 17 (x) is not possible, since the latter function estimates m (x)
defined in Eq. 4 and the former estimates the conditional mean function. It would
be interesting to compare the parametric estimator with a nonparametric estimator
of the conditional mean. This can be done by means of the Beran (1981) estimator
defined in Eq. 5. However, since the Beran (1981) estimator is inconsistent in the
right tail, the so-obtained estimator of the conditional mean will be inconsistent.
Alternatively, a more elaborated estimator can be used which makes use of the
independence between ¢ and X to overcome these inconsistency problems.

Appendix: Proofs of main results

The following functions enter the asymptotic representation of ﬁT i = Brj (j =
0, ..., p), which we established in Sect. 3.

— 1 B dHe (s) Iz<y,8=1)
R = (T I-He)? -G |

dH, (s|x) I(z=y,6=1
— H(s|x))? 1 — H(z|x)

9’

YAZ
£(z, 68, ylx) = (1 = F(ylx)) —/(1
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Nz, 8lx) = /é(z,&UIX)J(F(UIX))dUO_'(X),

¢(z,8lx) = /E(Z 8, v[x)J (F(v|x )) porps ; )dvdfl(x)
- F o (s]) d ey (s1)
Vl(ﬂﬂ—/mdh’el(s)-i-/l_—w,
F he(s]x) _O;d(h(l))
B she(s|x she1(s|x
y2(ylx) = / (0= Ho)? dHei(s) + / TG
0(x,2,8,)) =& (m 5, y)
o(x)

= Se(Wn(z, 81X)y1(yIx) — Se(¥)¢(z, 8|x)y2(ylx),
fvsi udF,(u)

a;(v) = "R

Bi(z Zj, AjIXD) = X ' (X0o (X)) { [a; (f @) -1

Si fe(Si)
1= Fe (] @)

n {e?(z)a,{ (e,-T(z)) — (e,-T(z))

S7 fe(S)
P S Zi, Ni|X; ,
l—Fe(elT(z)):|§( ] j| )}

(k =0,...,psi,j = 1,...,n) where S; = Sx,, ¢/ (z) = e} (z) and for any
X € Ry, Sy = (Iy —m(x))/o(x) and €] () = (z A Ty — m(x)) /o (x).

Let T, be any value less than the upper bound of the support of H (-|x) such
that infycg, (1 — H (Tx|x)) > 0. For a (sub)distribution function L(y|x) we will
use the notations I(y|x) = L'(y|x) = (8/3y)L(y|x), L(y|x) = (0/0x)L(y|x)
and similar notations will be used for higher order derivatives.

The assumptions needed for the results of Sect. 3 are listed below.

i|77(stAj|Xi)

(A1)
(i) nat — 0and na’*t?(loga; )~ — oo for some § < 1/2.
(ii) Ry is compact, convex and its interior is not empty.
(iii) K is a density with compact support, [uK (u)du = 0 and K is twice
continuously differentiable.
(iv) det(M) # 0.
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(A2)

(i) There exist 0 < 59 < s1 < 1 such that s; < inf, F(fx|x),so < inf{s €
[0, 13; J (s) # O}, 51 = supfs € [0, 11; J(s) # 0} and infyery infsy=s=s,
SFET 51010 > 0.

(ii) J is twice continuously differentiable, fol J(s)ds = 1and J(s) > 0 forall
0<s<l.

(iii) The function x — Ty (x € Ry) is twice continuously differentiable.

(A3)

(i) Fx is three times continuously differentiable and inf cg, fx(x) > 0.

(ii) m and o are twice continuously differentiable and inf cg, o (x) > 0.

(iii) Inthe model Y = m(X) + o (X)e, E[¢%] < oo and E[E*] < co.

(Ad)

(i) n(z,d|x) and ¢(z, 8]x) are twice continuously differentiable with respect
to x and their first and second derivatives (with respect to x) are bounded,
uniformly in x € Ry, z < Tx and §.

(ii) The first derivatives of n(z, 8|x) and ¢(z, §|x) with respect to z are of
bounded variation and the variation norms are uniformly bounded over all
X.

(AS) The function y — P(m(X) + eo(X) < y)(y € IR) is differentiable for all
e € IR and the derivative is uniformly bounded over all ¢ € IR.

(A6) For L(ylx) = H(ylx), Hi(y|x), He(y|x) or Hi(y|x): L'(y|x) is con-
tinuous in (x, y) and sup, |y2L’(y|x)| < 00, the same holds for all other
partial derivatives of L(y|x) with respect to x and y up to order three, and
sup,. , [y3L" (y1)| < 00,

(A7)

(i) sup, . f |B(t,z,8x)|h(t)dt < oo (k=0,...,p;86=0,1).

(ii) sup, [sup, |B/(t,z,8|x)|h(t)dt < oo (k = 0,..., p;8 = 0, 1), where

B,;(/)(t, z,8|x) equals the first (second) derivative of By(f, z, §|x) with
respect to x when ¢ # T, and equals O otherwise.
(A8) For the density fx|z a(x|z, ) of X given (Z, A), sup, , | fx|z,.a(x]z,8)| <

00, sup, . | fxz.a(x|z, 8)| < 00, sup, . | fxz.a(x]z,8)| < 00(8 =0, 1).

Proof of Theorem 1 Let B = (Byg---» ﬂ;p) be the least squares estimator
obtained from the pairs (X;, Y7,) (i =1, ..., n). We will first consider

Br — Br = (' X)X (0 - V),
where Y* = (Y%, ..., Y% Y, and Y* = (Y%, ..., V%) The (k + 1) element

(k=0,..., p)of the vector n_lX’(JAJ* — V*) equals

Si
' Xf [nﬁ(X,-)—m(X,-)]—i—%/udﬁe(u)
Ai=0 1_F€<Ef)ér

S,

o(X)) [
TR [udFe(u)

1

i
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=n"" D> X[ {A1 + Axi + Az}
Ai=0

The asymptotic representation given in Proposition 4.8 of Van Keilegom and Ak-
ritas (1999) (hereafter abbreviated by VKA) yields

n
_ Xi —X; _
Al =—(na)) " fx' Xo (X)) DK (a—’) n(Zj, AjIXi) +op(n™ '),
j=1 "
uniformly ini = 1, ..., n. Next, write
n~t " XF{AL + Ay + Asi) (14)
A;=0
=n"' > XAy + A + Az} I(E; < Uy)
A;i=0
+n7 D XA+ Agi + A3} I(E; > Uy,
A;=0
where U,, < 0 is defined by U,, = —nl/za,iﬂ/ for some y > 0 to be determined

later. First, let us show that the first sum of this expression is asymptotically negli-
gible. Let V,, be the number of residuals E; that are less than or equal to U,,. Then,
by the law of the iterated logarithm [see e.g. Serfling (1980), p. 35],

Vi — nHo(Uy) < 2[Ho(Up)(1 — Ho(Up)n loglogn]'? as..

Since |U, |*H,(U,) < f_Ugo ly|* dH,(y) — 0, it follows that H,(U,) < C,|U,|™*

for some sequence C, — 0. From this, we have that V,, = o(n|U, |~ +|U,|%n'/?
(loglogn)'/?) a.s. Next, A1; + As; + As; is bounded in probability, which follows
from Lemma 1, the fact that E|e| < oo, the uniform consistency of 7 (-) and 6 (-)
given by Proposition 4.5 in VKA (1999) and the consistency of

£ (z/\ Tf —n%(x)) _F (z ATy —m(x))‘
o(x) o(x)
which is obtained as follows:
£ (z A Tf —n%(x)) _F (z ATy — m(x))
o (x) o(x)
_ 1:} (Z A Tic — n%(x)) _F (z A Tic — n%(x))
o(x) o (x)

v F, (Z ATy —rh(x)) s (Z A Ty —m(x))

o(x) o (x)

\E, (Z/\ Tf —m(x)) _F (z ATy —m(x))
o(x) o(x)

= ot,i(z, x) + oe,%(z, x) + aﬁ(z, X).

sup
X,z




Censored polynomial regression using smoothing 289

Using Corollary 3.2 of VKA (1999), sup, _ |a} (z, x)| is O, (n~1/?). For the two
other terms, we use two first-order Taylor developments

m(x) —m(x)

w2 (2, %) + o (2, x) = ——— fe(Ay)
G (x)
o(x)—oa(x)zA Ty —m(x)
- 50 o) Je(By),

for some A, (B,) between

ATy —m(x) AT —m(x) (2 ATy —m(x) ZA T, —m(x)
and and

o (x) o(x) o(x) o(x)

Using Proposition 4.5 of VKA (1999) and the fact that sup, |ef, (e)| <400, a,% (z, x)
+ 043 (z,x) =0 ((nan)’]/2 (log an’l )1/2) a.s. Therefore, the first term on the right-

hand side of Eq. 14 is op(Uy|™) = op(n~1?) for y small enough. We next
consider the second term on the right-hand side of Eq. 14. Write

S;
Ao + Az = M / udF,u)
1—F, (E,.T) Z
F(ET)-FR(ED)
+o(X;) 7 . /udFe(u)
(1= Fe(E) (=R (e
E/ Si
LAC O /udﬁe(u)—f—ﬂ/ud(ﬁe(u)—ﬂ(u))
1~ F (E) I~ Fe(ET)
o8, T
x
o X,‘ A
27 [udE,
A /” “
Si
= > Bji
j=1
First consider
Si Si Si
/ udF,(u) = / udF,(u) + / wd(F,(u) — Fo(u)) (15)
ET ET ET
Ef $;
+/udﬁe(u)+/udﬁe(u),

ET Si

i
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which appears in Bj; and By;. By using integration by parts, the third term of Eq.
15 can be rewritten as

(28 (7 (81) = e (1)) | [ P (F) = EDr (1)

£
+[(87) (ke (£7) - 7 (£1))] —/Fe(u)du. (16)
ET

i

By Corollary 3.2 in VKA (1999) and the order of U,, the first term of Eq. 16 is
Op (a,l,+y), while from Proposition 4.5 in VKA (1999) it follows that the second
and fourth term are 0p(a,l,/2+y (log an_l)l/z). Using the fact that

sup | £, (Z A Tic —n%(x)) _r (z/\ T, —m(x)) |
X,z o (x) o(x)

= Op ((na,)""*(loga, H'"?)

yields that the order of the third term is Op (a,ll/ 2y (loga, 1Y1/2)  Hence, the third

term of Eq. 15 is 0p(a,,1/2+y(logan’1)1/2), uniformly ini = 1, ..., n. In a similar
way it can be shown that the second and fourth term of Eq. 15 are of this order,
which implies that

5
o(Xi) —o(Xi)

Bii + By = 1= £ (ET) udF,(u)
£, (ElT) — F, (ET)
+0(X0) 3 /udFe(u)+oP(n—1/2).
(1-F(ED

B1; 4 B»; can now be written as a sum of i.i.d. terms (up tothe op (n™ 1/2) remainder
term), by applying the representation for 6 (X;) — o (X;) given by Proposition 4.9
in VKA (1999) and using the fact that

Fe(E) - Fe(ET) = (nanrlZK( ) 5o (25, 8,1)
+¢(Z), 8j1Xi) E ]fe (EZT)

n
n >0 (X2 A El) Hop (7). aD)
i=1

where this development is obtained after two Taylor expansions and by apply-
ing Theorem 3.1, Lemma B.1 and Propositions 4.8 and 4.9 in VKA (1999). For
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B3; write
ET ET ET
/udﬁe(u) - /udFe(u)+/ud(ﬁe(u) — F,(u)).
ET ET ET

Integrating by parts the second term of the expression above and using Corollary
3.2 in VKA (1999) and the fact that |ET — ET| = Op(ay>"" (loga; H)1/12), we

obtain
e [£(e7) (1) . 37) 4 1. (21

BT
- / (Few) = Fo) du+ 0p (™7,
ET

1

It is easy to see that the integral in this expression is also op(n~'/2). As a con-
sequence of Theorem 3.1 and Lemma B.1 in VKA (1999), the first term is op
(IET|n=1/2). Hence,

ET Er
___ o) _ r),-1/2
By=——p 5 /udFe(u) /udFe(u) +op (|E, In )
0 0
. . E[ fo (El)
_ N . T N | ZiJe =i )
=[x = mCx) + ET (600 G(Xl))]l—Fe(EiT)

+op (|EiT|n71/2) +op (n17?)

using a Taylor expansion. Note that the term op (n~!/2) in the expression above is
obtained from the fact that sup, |zf.(z)| < oo and sup, |z2 fi(2)| < oo. Next, the
term By; is given by

By = % 5i[ecs — Fetsn | — EF [ £ (ET) — o (E])]
Si
—/ (ﬁe(u) - Fe(u)) du
i

Finally, the term Bs; is treated in the same way as the term Bz;, leading to

Si e Si

+op (IS:1n71) +op (n712) .
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It now follows that the complete asymptotic representation for the (k + 1)®
component of n~ X (Y* — Y*) can be written as

EFf (£ e (E) ] S udF,(u)

n! XFIE > U | - + _

z SR ()

Sife(Si)
1 —F, (EtT)

. Xi—X;
x(nan)” fx (Xio (X)) DK (a—’) n(Zj, AjIX;)
j=1 "
ET fo (ET) [2r udFo(u) [ udFe(u)
(1-F (EN)?  1-F(E])

CED (B SR
1_F6(EiT) I_Fe(EiT)

- Xi—X;
x(nay) ™" ' (X (X)) DK (a—’) (Zj, AjIX)
j=1 "
[3 udF(u) ET n
. i _ i -1 7. A. gT
+G(Xz) (I_FE(EZT))Q 1_Fe(ElT) n ;go(xjvzijjvEl)
o(X)Si i~
— X;,Zj, A}, S;
1—Fe(El.T)n %w( i Zj )i Si)
(X)) )
o (X
-~ mn—lz/q)(xj,zj,@,u)du +op (n71?), (18)
o i=lgr

where use is made of the representations for I}e(o),rh(), and 6(-) given by
Theorem 3.1 and Propositions 4.8 and 4.9 in VKA (1999), respectively, and of

the representation for ﬁe(EiT ) — Fe(El.T) given in Eq. 17.
We can rewrite the sum of the first two terms of Eq. 18 as

Xi—X; _
(Pan) ™' D (A= AN (E;i>Uy)Bi(Zi, Zj, AjIX)K (—J)+0p (n=172).
j#i an
(19)
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Using a similar development as for the first term of Eq. 14 it is easily shown that
Eq. 19 can be written as

_ Xi— X, _
(n%ay) 1Z(l —A)DB(Zi, Zj, AjIXi)K (%) +op (n71?)
Jj#i "
= (an) "' D {AF(Vi, V)) + E[A (Vi V)| Vi]
J#i
+E[A(Vi, V)IVi1 = E[Ak(Vi, V)1} + 0p (n71/?)
=T\ +Ta+ T3+ Ty+op (n'7?),

where
Xi—X;
Ar(Vi, Vi) = (1 = ADBr(Z;i, Zj, Aj|Xi)K —Q )
n

AL (Vi, Vi) = A (Vi, V)= E[A(Vi, V)IViII=E[Ar(Vi, VIV H+E[AR(Vi, V)]
and V; = (X;, Z;, A;). Consider

E[Ar(Vi, V{IVi]

=({1-A) Z //Bk(Zi,z,SIX,-)K (Xia_x)hg(zlx)fx(x) dz dx
8=0,1 n
=a,(1-A) D //Bk<zi,z,a|xi>1<<u) (hs(z] X))
6=0,1

—anuhs(z|X;) + O (a7)) (fx(Xi) — anufy(X;) + O (ap)) dzdu

=ap(1 — Aj) fx(Xi) Z /Bk(Zi, 2,81X)hs(z|Xi)dz + O (a}) = O (a}),
5=0,1

since E[n(Z, A|X)|X] = E[¢(Z, AlX)|X] = 0, where fzg(z|x) denotes the deriv-
ative of hs(z|x) with respect to x. Hence, we also have that E[Ax(V;, V;)] =
O(aS). In a similar way we have for E[A,(V;, V;)|V;], using three Taylor expan-
sions of order 2,

E[A(Vi, VPIVi] = an fx (X ) Z 1- 3)/Bk(z, Zj, AjlXj)dHs(z]1X )
5=0,1

+ 0 (a)).

It follows that

n
L+ T+ Ta=n""y fx(Xl-)/ Bi(z, Zi, Ai|X:) dHo (2] Xi) + O (a7)

i=1
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For Ty, note that E[T]] = 0 and hence, by Chebyshev’s inequality,
_ 1/2
P(ITi1 > K@man™ E[azvi, v2?] )
< K2(ma,) E[Af(i. v)?] ' E[T7]
o -1
= K2 PE[AL (Vi Vo' D0 D E ALV, VDALV, Vi) |20)
J#L m#l

Since E[A:(V,-, V)] =0, the terms for which i, j # [, m are zero. The terms for

which either i or j equals / or m and the other differs from [ and m, are also zero,
because, for example when i =/ and j # m,

E[A;(Vi. V)E [A;(Vi, V) Vi, Vi]] = 0.
Thus, only the 2n(n — 1) terms for which (i, j) equals (/, m) or (m,[) stay such
that, Eq. 20 is bounded by 2K ~2, which can be made arbitrarily small for K large
enough. Since A} (Vy, V2) is bounded by K[(X| — X2)/a,]C + O(ay) for some
constant C > 0, independent of X; and X5, we have that E[A}(V], V)2 <
C%ay, [ f3(x)dx [ K*(u)du + O(a?) = O(ay) (and similarly for E[A}(V}, V2)
A% (Va, VD). Tt now follows that T; = Op(n~'a, '/*) = 0p(n=1/?).
We next consider the third, fourth and fifth term of Eq. 18. Their sum equals

n~' " I(E; > U Xf Jey 1 re ) " o(x>2 (xj,zj,A,-,El.T)
A0 (1 - F. (ET))’
Si n
#XE)E?)JMH_IJZ:;(W(X].,ZPAPM)
=n"2 > Vi, V) +op (n7'7?), Q1
J#i

where

[3 wdFo(u)

h(Vi, V) = (1= A X! 50 (Xg (X 25, 8. ET)

(1— e (E1))

Si
&/udg}(x-,z-,a,u) ,
1—Fe(EiT) jrLjs Bj

Er

using arguments similar as before. Defining hj (V;, V;) = he(Vi, Vi) +hi(V;, Vi),
Eq. 21 can be written as

-1
(1) v o .

j>l
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Using the Hajek-projection of a U-statistic on its conditional expectations [see e.g.
Serfling (1980), p. 189], this expression equals

n
n' D E[Ri(Vi. VLVi] +op (n7'/?)
i=1

Sy
_IZ/x o(x)/ X,,Z,,A,,e (Z)) / udF,(u)

1 _ el
(Z))) el'(2)
1 T
— ude(X;, Z;, Aj,u) ¢ dHo(z|x)dFx (x
1_ ( T(Z)) / o(Xi, Zi, A, u) 0(zlx)dFx(x)
el (2)
+op(n~1/?).
It remains to consider 87 — Br, which equals
n S (Y, = ENYEIXGD) op(n=/?)
M_] + ,
w3 XDy — EIXD) \ep(™V?)
using standard arguments. This finishes the proof. O

Lemma 1 Assume (A1)(i)—(iii), (A2)(i), (ii), (A3)(ii), Fx is twice continuously
differentiable , 1nfxeRX fx(x) > 0, for L(y|x) = H(y|x) or Hi(y|x), L(y|x) is
continuous, L(y|x) and L(y|x) exist, are continuous in (x,Y),
sup, lyL(y|x)| < oo and sup, |y2L(y|x)| < o0, H)(y|x) exists, is continu-
ousin (x,y), sup, lyH.(y|x)| < oo and E[|e|] < oc. Then, forany T < tg,,

T
/ | d o)

is bounded in probability.

Proof Wehave for T < ty,,

Y —m(X;)
/ |u|dF, (u) = Wil (A— < T),
o(X;)

where W; are the Kaplan—Meier (1958) jumps of I:“e. First, let us show that the

jumps of F, are uniformly Op(n~'). It is easily seen that the jump of F, at the
jth order statistic of E = (Y; — m(X;))/6(X;) i = 1,...,n) is bounded by
n—j+ ™' < (n—a+ 1)~', where a is the number of Ei’s smaller than or
equal to 7. From Proposition A.3 in VKA (1999) we know that

U(X)

H,(T) = H,(T) + op(1),
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where H, is the empirical distribution function of the E;’s. Thus, a = nH, (T) +
op(n)and (n —a + 1)~! = Op(n~"). It follows that, for n sufficiently large,

(Yi —m(X;) )
> Wil _ <T
AT o (X;)

m(X)
Co(Xp)

G (X;)

<0p(n~! +op(D)

= OP(l)/Iyldﬁel(y)+op(1)

= OP(l)[/ |yldHe1(y) +op (D] +op(D)

=0p(D),
where
| —m(X;) B
Ho(y)=n" z ( o (X)) _)’»Ai—l),
and provided that [ |y|dH,; = E[le|I(A =1)] < E[|¢]] < o0. O
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