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Abstract This paper deals with nonparametric estimation of a regression curve,
where the estimation method should preserve possible jumps in the curve. At each
point x at which one wants to estimate the regression function, the method chooses
in an adaptive way among three estimates: a local linear estimate using only data-
points to the left of x, a local linear estimate based on only datapoints to the right
of x, and finally a local linear estimate using data in a two-sided neighbourhood
around x. The choice among these three estimates is made by looking at differences
of the weighted residual mean squares of the three fits. The resulting estimate pre-
serves the jumps well and in addition gives smooth estimates of the continuity parts
of the curve. This property of compromise between local smoothing and jump-pre-
serving is what distinguishes our method from most previously proposed methods,
that mainly focused on local smoothing and consequently blurred possible jumps,
or mainly focused on jump-preserving and hence led to rather noisy estimates in
continuity regions of the underlying regression curve. Strong consistency of the
estimator is established and its performance is tested via a simulation study. This
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study also compares the current method with some existing methods. The current
method is illustrated in analyzing a real dataset.

Keywords Consistency · Jump-preserving estimation · Local linear fit · Nonpara-
metric regression · Smoothing · Weighted residual mean square

1 Introduction

When one wants to estimate a regression function that possibly shows a discon-
tinuous behaviour at certain places, two smoothing approaches have been adopted
in the literature. The first approach, which we will call the indirect approach, esti-
mates the discontinuity locations first and then considers different segments of the
design interval, on which the underlying function is assumed to be continuous. The
final estimate of the regression function is obtained by using a conventional esti-
mator (e.g., a local linear estimator) on each of the segments. Such an approach can
provide estimates of jump sizes simultaneously. By this approach, good estimation
of the regression function depends on accurate estimates of the jump locations. It
also requires users to implement each of its two steps properly. As long as the jump
locations are accurately estimated, its estimates in continuity regions often show
the desired smoothness. The second approach, called the direct approach, estimates
the regression curve directly, without first estimating the number and locations of
discontinuity points. By this approach one starts with the idea that each point in
the design interval is a potential discontinuity point and thus the curve estimation
method should adapt at each point to a possible discontinuity. Therefore it is conve-
nient to use and also preserves potential jumps well. A consequence of this built-in
flexibility is that the resulting estimates often show a quite ‘unsmooth’behaviour in
regions where the underlying regression function is actually continuous. For both
approaches one can use methods based on kernel smoothing, splines, wavelets, etc.

The two approaches mentioned above are quite different in nature and a thor-
ough comparison of them is lacking. It is even questionable whether such a com-
parison makes much sense because their major objectives are quite different. By
the first approach, the major goal is to obtain good estimates of jump locations and
jump sizes. Estimation of the regression function in its continuity regions is often
secondary. On the other hand, the major goal of the second approach is to obtain
an overall good estimation of the regression function, and it should be noted that
a good overall estimate of the regression function may not necessarily reveal jump
locations and sizes well. Due to this difference in major goals, it is even difficult
to choose an appropriate criterion for comparisons.

This paper suggests a “greedy” jump-preserving curve estimation method which
has the properties that: (1) it is still a direct method and therefore jumps are not de-
tected explicitly before curve estimation, (2) its curve estimate behaves ‘smoother’
in the continuity regions than those of most existing direct methods, and (3) it still
preserves possible jumps well. Therefore the proposed new methodology combines
the major benefits of existing direct and indirect jump-curve estimation methods.
It might be greedy to achieve these goals simultaneouly.

For estimating continuous regression functions, there exist many smoothing
methods in the literature. Among the kernel smoothing methods there are the
Nadaraya–Watson estimator, the Gasser–Müller estimator, the local linear kernel



Jump-preserving regression and smoothing 237

estimator, and several others. In this paper we focus on local linear kernel smooth-
ing because of its special merits when estimating regression functions at boundary
points. The discontinuity points of a discontinuous regression function are simi-
lar in nature to boundary points of a continuous regression function because the
discontinuous regression function is continuous within the interval formed by two
consecutive discontinuity points. Therefore it would be advantageous to use lo-
cal linear kernel smoothing in the context of discontinuous curve estimation. See
Fan and Gijbels (1996) for a more complete discussion about local linear kernel
smoothing techniques.

It is known that the conventional local linear kernel estimator using observa-
tions in a two-sided neighbourhood of a given point has a good smoothing property.
But it assumes that the true regression function is smooth, and hence would not
preserve jumps. Around a jump point a better way for constructing the local lin-
ear kernel estimate is to use data points located on a single (left or right) side of
that point, avoiding the dependence on the smoothness assumption of the under-
lying regression function at the point. The basic idea of our method is to consider
three possible estimates at each point x: the conventional local linear estimate, the
local linear estimate using data only to the left of x, and the local linear estimate
using data only to the right of x. Ideally, one should use the conventional local
linear estimate at continuity points of the regression function, and one of the two
one-sided estimates near or at discontinuity points. Since the jump locations are
often unknown, we suggest a data-driven criterion for choosing among the three
estimates as well for choosing the involved bandwidth parameter.

Methods based on similar ideas have been proposed in the literature. Mc Donald
and Owen (1986) suggested to obtain at each point three local linear fits, via least
squares, and to construct a ‘split linear fit’ as a weighted average of these three esti-
mates with weights determined by the goodness-of-fit values of the estimates. Hall
and Titterington (1992) proposed an alternative to this split linear fitting method.
They considered at each point three nearest-neighbour type estimates, and propose
various diagnostics to decide whether the regression function was continuous at
that point or not. The method of Hall and Titterington (1992) is in fact an indi-
rect method, since it searched for discontinuity points first and then constructed the
curve estimate in each continuity region. Recently Qiu (2003) proposed a jump-pre-
serving curve fitting procedure based on local piecewise-linear kernel estimation.
For each point x two one-sided local linear estimates were considered, and based
on a comparison of the residual sums of squares of the two one-sided fits the curve
estimate at x was defined by one of the two estimates or their average. This esti-
mate preserves jumps quite well, but shows a quite ‘rough’ behaviour in continuity
regions of the underlying regression curve, as mentioned at the beginning of this
section regarding direct jump curve estimation methods. The proposed method in
this paper represents an improvement in this regard, by compromising between
local smoothing and jump-preserving.

The literature on indirect estimation methods includes Müller (1992), Wu and
Chu (1993), Eubank and Speckman (1994), Müller and Song (1997), Qiu and
Yandell (1998), Gijbels et al. (1999), Kang et al. (2000), Gijbels and Goderniaux
(2004), among others. Spline estimation of discontinuous regression functions has
been discussed in Koo (1997).
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A completely different adaptive estimation procedure that simultaneously adapts
to the smoothness of the regression curve and to its discontinuities as well has been
proposed by Spokoiny (1998). Our method distinguishes from this method by its
computational simplicity and by the fact that it is a non-iterative procedure. Other
relevant references are the papers on Sigma filtering by Lee, (1983) and on M-
smoothers by Chu et al., (1998) and Rue et al., (2002).

The paper is organized as follows. In Sect. 2 we first briefly introduce the esti-
mation method proposed by Qiu (2003) and then discuss possible improvements
based on theoretical considerations. We focus on one particular improved estima-
tion method and establish its strong consistency in Sect. 3. Proofs of the theoretical
results are defered to the Appendix. The estimation method involves selection of a
threshold and a smoothing parameter, which is discussed in Sect. 4. A simulation
study investigating the performances of the proposed methods is provided in Sect.
5. An application of the proposed method to real data is demonstrated in Sect. 6.

2 Estimation procedures

In this section, we first discuss some preliminary results about the three local linear
kernel estimates (i.e., the conventional estimate and the two one-sided estimates),
and then introduce several jump-preserving curve estimation procedures, all based
on the three local linear kernel estimates.

2.1 Model and preliminary results

Consider the regression model

Yi = f (xi) + εi, i = 1, . . . , n, (1)

where the xi = i/n are n equally-spaced design points in the design interval
[0, 1], εi are n iid random errors with zero mean and finite variance σ 2, and f is a
nonparametric regression function. In this paper, we consider the case when f has
jumps at points sq in [0, 1] with jump magnitudes dq , for q = 1, . . . , m. Without
loss of generality, f is assumed to be right-continuous at all jump locations. The
number of jumps m, the jump locations sq’s and the jump magnitudes dq’s are all
unknown. In (1) the design points are assumed equally-spaced for convenience. All
methodologies developed in this paper can actually be applied to cases when the
design points are unequally-spaced or even random, under some regularity con-
ditions. Moreover, the methodologies also apply when the conditional variance is
a function of x, denoted as σ 2(x), i.e. in the heteroscedastic case. The theoreti-
cal results have been proved for the random design and heteroscedastic case, but
for ease of presentation, we present here only the proofs for the fixed design and
homoscedastic case.

LetK be a bounded symmetric density kernel function supported on [−1/2, 1/2].
Two one-sided kernel functions are defined by:
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Kl(x) =
{

K(x), when x ∈ [−1/2, 0),
0, otherwise ;

Kr(x) =
{

K(x), when x ∈ [0, 1/2],
0, otherwise .

Namely, Kl is defined as the left-half of K on its support and Kr is the right-half.
Then three sets of local linear estimators of f and its first-order derivative f ′ at x
are considered. The left local linear estimator is defined by:

(̂al,0(x), âl,1(x)) = arg min
a,b

n∑
i=1

[Yi − a − b(xi − x)]2Kl

(
xi − x

hn

)
, (2)

where hn > 0 is a bandwidth parameter. The right and conventional local lin-
ear estimators, denoted by respectively (̂ar,0(x), âr,1(x)) and (̂ac,0(x), âc,1(x)) are
obtained by using, respectively, Kr and K instead of Kl in (2). Obviously the esti-
mators (̂ac,0(x), âc,1(x)) are the usual local linear estimators of f (x) and f ′(x),
based on data in the neighbourhood

[
x − hn

2 , x + hn

2

]
of x. The first set of estima-

tors are based on data in the left-sided interval [x− hn

2 , x), and the second estimator
relies only on data in the right-sided interval

[
x, x + hn

2

]
.

The quality of the three local linear fits can be evaluated via their weighted
residual mean squares (WRMSs), defined as

WRMSl(x) =
∑

i[Yi − âl,0 − âl,1(xi − x)]2Kl(
xi−x

hn
)∑

i Kl(
xi−x

hn
)

(3)

for the left local linear estimate. The residual quantitiesWRMSr(x) andWRMSc(x)
are defined similarly by replacing (̂al,0, âl,1, Kl) by respectively (̂ar,0, âr,1, Kr) and
(̂ac,0, âc,1, K) in (3). If f is continuous around a given point x, then all three esti-
mators âl,0(x), âr,0(x) and âc,0(x) are consistent estimators of f (x) (cf. Sect. 2.2
below). The following proposition tells us that all three weighted residual mean
square quantities are consistent estimators of the error variance σ 2 in such cases.

Proposition 2.1 Assume that f has continuous second-order derivatives in [0, 1]\⋃m
q=1

[
sq − hn

2 , sq + hn

2

]
; the kernel function K is uniformly Lipschitz continuous;

hn → 0 and nhn → ∞. Then at any x ∈ [
hn

2 , 1 − hn

2

] ∖⋃m
q=1

[
sq − hn

2 , sq + hn

2

]
,

we have

WRMSj (x) = σ 2 + Rn,j,1(x), j = �, r, c , (4)

where Rn,l,1(x), Rn,r,1(x) and Rn,c,1(x) are random variables tending to 0 almost
surely and uniformly in x ∈ [

hn

2 , 1 − hn

2

] ∖⋃m
q=1

[
sq − hn

2 , sq + hn

2

]
.

The proof of this result is along the same lines as the proof of Theorem 3.2 in
Qiu (2003) and is omitted here.

The behaviours of the weighted residual mean squares are quite different near
jump points. Next we discuss this behaviour for an arbitrary jump point s with
associated jump magnitude d. Any point x in the neighbourhood

[
s − hn

2 , s + hn

2

]
of s can be denoted as

x = s + τ hn, with τ ∈ [−1/2, 1/2]. (5)
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In the left-half of the neighbourhood, i.e., for x = s + τ hn with τ ∈ [− 1
2 , 0),

intuition tells us that only WRMSl(x) provides a consistent estimator for σ 2 and
the other two weighted residual mean squares would be affected by the jump at
s. Similarly, in the right-half of the neighbourhood, i.e. for x = s + τ hn with
τ ∈ [

0, 1
2

]
, only WRMSr(x) provides a consistent estimator for σ 2. The following

proposition formally states these results. For points x = s+τ hn, τ ∈ [−1/2, 1/2],
in the neighbourhood of a jump point s, we introduce the following notations:

C2
τ,j = q−2

j

1/2∫
−τ

⎡
⎢⎣

−τ∫
−1/2

s1,j (x)Kj (x) dx − u

1/2∫
−τ

s0,j (x)Kj (x) dx

⎤
⎥⎦

2

Kj(u) du

+q−2
j

−τ∫
−1/2

⎡
⎣

1/2∫
−τ

s1,j (x)Kj (x) dx + u

1/2∫
−τ

s0,j (x)Kj (x) dx

⎤
⎦

2

Kj(u) du,

(6)

where j denotes r, l, c, respectively (with Kc = K) and

qj = v0,j v1,j − v2
1,j , s0,j (x) = v0,j x − v1,j ,

s1,j (x) = v2,j − v1,j x and vk,j =
1/2∫

−1/2
ukKj (u) du.

(7)

Proposition 2.2 Assume that f has continuous second-order derivatives in[
s − hn

2 , s + hn

2

]
except at a jump point s (with jump magnitude d) at which f

has a second-order left derivative (for (i) below) or a second-order right deriv-
ative (for (ii) below); the kernel function K is uniformly Lipschitz continuous;
hn → 0 and nhn → ∞. Then, we have

(i) For any x = s + τ hn with τ ∈ [− 1
2 , 0):

WRMSl(x) = σ 2 + Rn,l,2(x),

WRMSr(x) = σ 2 + d2C2
τ,r + Rn,r,2(x), (8)

WRMSc(x) = σ 2 + d2C2
τ,c + Rn,c,2(x),

where Rn,l,2(x), Rn,r,2(x) and Rn,c,2(x) are random variables tending to 0
almost surely and uniformly in x ∈ [s − hn

2 , s);
(ii) For any x = s + τ hn with τ ∈ [

0, 1
2

]
:

WRMSl(x) = σ 2 + d2C2
τ,l + Rn,l,3(x),

WRMSr(x) = σ 2 + Rn,r,3(x), (9)

WRMSc(x) = σ 2 + d2C2
τ,c + Rn,c,3(x),

where Rn,l,3(x), Rn,r,3(x) and Rn,c,3(x) are random variables tending to 0
almost surely and uniformly in x ∈ [

s, s + hn

2

]
.
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Fig. 1 a Plots of C2
τ,c; b Plots of C2

τ,l and C2
τ,r , for the three kernel functions (Uniform, Ep-

anechnikov and Triangular)

The expressions for WRMSl(x) and WRMSr(x) in (9) and (10) were derived
by Qiu (2003). The expressions for WRMSc(x) can be derived in a similar way.

Since our curve estimation method depends heavily on the three weighted resid-
ual mean squares, which in turn depend on the quantities C2

τ,l, C
2
τ,r and C2

τ,c, we
explore these quantities a bit further.

From their expressions, the quantities C2
τ,l, C2

τ,r and C2
τ,c depend on τ and the

kernel function K . When K is one of the Uniform, Epanechnikov and Triangular
kernels on [−1/2, 1/2], the three quantities are shown in Fig. 1 as functions of τ .
From Fig. 1, we can discover some of their common properties: all three quanti-
ties seem to be bimodal functions of τ and this bimodality is stronger for kernels
with smaller values at 0. Furthermore, the quantities C2

τ,l and C2
τ,r are symmetric
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versions of one another and C2
τ,c is always symmetric about τ = 0. Moreover,

we have C2
τ,r ≤ C2

τ,c for all values of τ . All these properties have been proved
formally. Expressions for finding the local maxima of the three functions of τ are
also available.

2.2 Estimation procedures

Qiu (2003) recently proposed the following estimator of f (x):

f̂1(x) =

⎧⎪⎨
⎪⎩

âl,0(x) if WRMSl(x) < WRMSr(x)

âr,0(x) if WRMSl(x) > WRMSr(x)

(̂al,0(x) + âr,0(x))/2 if WRMSl(x) = WRMSr(x)

(10)

which is defined by one of the left and right estimates with smaller WRMS value.
Qiu (2003) proved that f̂1(x) is a consistent estimator of f (x) in the entire design
interval. In practice it appears that this estimator preserves jumps well, but is quite
noisy in continuity regions of f , due to the fact that only one-sided (left- or right-
sided) observations are used in its construction.

In order to get a better insight into the different behaviour of the three estima-
tors âl,0(x), âr,0(x) and âc,0(x), next we look at their asymptotic bias and variance
expressions, in cases when x is far away from any jump points and when x is close
to a jump point. The following two propositions formally state the asymptotic mean
squared error (MSE) expressions for the three estimates.

Proposition 2.3 Assume that f has continuous second-order derivatives in

[0, 1]\
m⋃

q=1

[
sq − hn

2
, sq + hn

2

]
;

the kernel function K is uniformly Lipschitz continuous; hn → 0 and nhn → ∞.
Then at any

x ∈
[
hn

2
, 1 − hn

2

]∖ m⋃
q=1

[
sq − hn

2
, sq + hn

2

]
,

we have

MSE(̂aj,0(x)) =
[
h2

n

2
f ′′(x)Bj,K

]2

+ σ 2

nhn

Vj,K + o

(
h4

n + 1

nhn

)
, j = l, r, c,

(11)
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where

Bl,K = v2
2,l − v1,lv3,l

v0,lv2,l − v2
1,l

, Vl,K =
0∫

−1/2

K2(u)

[
v2,l − v1,lu

v2,lv0,l − v2
1,l

]2

du,

Br,K = v2
2,r − v1,rv3,r

v0,rv2,r − v2
1,r

, Vr,K =
1/2∫
0

K2(u)

[
v2,r − v1,ru

v2,rv0,r − v2
1,r

]2

du, (12)

Bc,K =
1/2∫

−1/2

u2K(u) du = v2,c, Vc,K =
1/2∫

−1/2

K2(u) du,

with vk,l and vk,r (k = 1, 2, 3) as defined in (7).

For a formal proof of these results readers are referred to Fan and Gijbels
(1996). From Proposition 2.3 we can conclude that the three estimators are con-
sistent in mean square sense and have the same rate of convergence in continuity
regions of f . The only differences among them appear in the terms of (12). For
the Epanechnikov kernel, as an example, we have Bl,K = Br,K ≈ −0.02, Bc,K =
0.05, Vl,K = Vr,K ≈ 8.995 and Vc,K = 1.2. So asymptotically the right or the left
estimator with the same hn increases variance by a factor of 7.5 compared to the
conventional estimator, while decreases bias by a factor of 2.5.

Proposition 2.4 below provides expressions for asymptotic biases and variances
of the three estimators âl,0(x), âr,0(x) and âc,0(x) on a left-sided or right-sided
interval around a jump point s.

Proposition 2.4 Assume that f has continuous second-order derivatives in
[s − hn

2 , s + hn

2 ] except at s at which f has a second-order left derivative (for
(i) below) or a second-order right derivative (for (ii) below); the kernel function
K is uniformly Lipschitz continuous; hn → 0 and nhn → ∞. Then, we have

(i) For any x = s + τ hn with τ ∈ [− 1
2 , 0):

MSE(̂al,0(x)) =
[
h2

n

2
f ′′(s−)Bl,K

]2

+ σ 2

nhn

Vl,K + o

(
h4

n + 1

nhn

)
,

MSE(̂ar,0(x)) =
[
d

∫ 1/2

|τ |
Kr(u)

v2,r − v1,ru

v0,rv2,r − v2
1,r

du

]2

+ σ 2

nhn

Vr,K + o(1),

MSE(̂ac,0(x)) =
[
d

∫ 1/2

|τ |
K(u) du

]2

+ σ 2

nhn

Vc,K + o(1), (13)
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(ii) For any x = s + τ hn with τ ∈ [
0, 1

2

]
:

MSE(̂al,0(x)) =
[
−d

∫ −|τ |

−1/2
Kl(u)

v2,l − v1,lu

v0,lv2,l − v2
1,l

du

]2

+ σ 2

nhn

Vl,K + o(1),

MSE(̂ar,0(x)) =
[
h2

n

2
f ′′(s+)Br,K

]2

+ σ 2

nhn

Vr,K + o

(
h4

n + 1

nhn

)
,

MSE(̂ac,0(x)) =
[
−d

∫ −|τ |

−1/2
K(u) du

]2

+ σ 2

nhn

Vc,K + o(1), (14)

where f ′′(s−) (respectively f ′′(s+)) denotes the left-hand (respectively right-
hand) second-order derivative of f at s and d is the jump magnitude of f at
the point s.

A formal proof for the result about MSE(̂ac,0(x)) can be found in Hamrouni
(1999) and Grégoire and Hamrouni (2002). The results about MSE(̂al,0(x)) and
MSE(̂ar,0(x)) can be proved along the same lines. The asymptotic expressions in
(13) reveal that âc,0(x) and âr,0(x) are not consistent at any point in the neigh-
bourhood [s − hn/2, s) which is τhn away from s with τ ∈ [− 1

2 , 0). A similar
discussion can be given for points on the right-side interval of the jump point s
by using expressions (14). Since these left and right neighbourhoods tend to the
empty set when n tends to ∞, the mean integrated squared error (MISE) of the
three estimates all tends to zero as n tends to ∞. See Hamrouni (1999) for details
about this result.

As an illustration of these asymptotic expressions, we plot in Fig. 2 the asymp-
totic bias functions, as function of x on [0.1, 0.9], for the three estimators and the
regression function f = g1 considered in Sect. 5 (see (24) and the top left panel
of Fig. 3). From Fig. 2 it can be seen that all three estimates have relatively low
biases in continuity regions (equal to zero in linear regions and depending on the
second derivative and the constants Bj,K as in (12) in the sinusoidal regions). Note

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2 Asymptotic bias functions of âc,0(x) (solid curve), âl,0(x) (dotted curve) and âr,0(x)
(dashed-dotted curve) for the regression function f = g1 defined in (24), using hn = 0.078
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also that one of the two one-sided estimates has a considerably smaller bias than
the other one near a jump point.

Based on this detailed discussion about the MSEs of the three estimators and
the discussion about their weighted residual mean squares, provided in Proposi-
tions 2.1 and 2.2, next we propose some curve estimation procedures which try to
balance jump-preservation and local smoothing.

As mentioned above, f̂1 is quite noisy in continuity regions of f .
To overcome this problem, we propose two different modifications. By the first

modification we introduce the conventional estimator âc,0 in (10), and define

f̂2(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

âc,0(x) if WRMSc(x)

C
≤ min(WRMSl(x),WRMSr(x))

âl,0(x) if WRMSc(x)

C
> min(WRMSl(x),WRMSr(x)) = WRMSl(x)

âr,0(x) if WRMSc(x)

C
> min(WRMSl(x),WRMSr(x)) = WRMSr(x)

(̂al,0(x)

+âr,0(x))/2 if WRMSc(x)

C
> WRMSl(x) = WRMSr(x).

(15)

The constant C should be chosen such that the conventional estimate is selected in
continuity regions of f [i.e., WRMSc(x)

C
≤ min(WRMSl(x),WRMSr(x)) in such

cases], and one of the two one-sided estimates is selected near a jump point [i.e.,
WRMSc(x)

C
> min(WRMSl(x),WRMSr(x))]. The case C ≤ 1 should be avoided

since it can be shown that often WRMSc(x) > min(WRMSl(x),WRMSr(x))
under some regularity conditions (cf. Lemma A.1 in the Appendix), which implies
that the conventional linear estimate will almost never be selected in the continuity
regions of f by the above definition. By Propositions 2.1 and 2.2, the above two
requirements are asymptotically equivalent to

1 < C < 1 + d2

σ 2
C2

τ,c, (16)

which depends on the signal-to-noise ratio d/σ .
By the second modification, the three WRMS’s are compared by their differ-

ences instead of ratios in (15), and the resulting estimate is defined by:

f̂3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

âc,0(x) if diff(x) ≤ u,

âl,0(x) if diff(x) > u and
WRMSl(x) < WRMSr(x),

âr,0(x) if diff(x) > u

and WRMSl(x) > WRMSr(x),

(̂al,0(x) + âr,0(x))/2 if diff(x) > u

and WRMSl(x) = WRMSr(x),

(17)

where u is a threshold value and
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diff(x) = max(WRMSc(x) − WRMSl(x),WRMSc(x) − WRMSr(x)).

(18)

In continuity regions of f,WRMSl(x),WRMSr(x) and WRMSc(x) are all con-
sistent estimates of σ 2. So diff(x) is close to zero in such cases. From Proposition
2.2 we know that diff(x) = d2C2

τ,c + o(1), a.s., near a jump point. By combining
these two properties of diff(x), the threshold value u needs to be selected such that

0 < u < d2C2
τ,c. (19)

In contrast to the (asymptotic) constraint on C [cf. (16)], we can see that the (asymp-
totic) constraint on u does not have the error variance σ 2 involved, which leads to
certain advantages for the second modification, as shown by the simulation study
in Sect. 5.

It should be mentioned that in case of multiple jump points, the constraints (16)
and (19) should be replaced by

1 < C < 1 + d2
q

σ 2
C2

τq ,c and 0 < u < d2
qC2

τq ,c,

for q = 1, 2, . . . , m, where τq is defined by τq = x−sq

hn
.

Practical choices of the parameters hn, C, u involved in the modified estimates
will be discussed in Sect. 4.

3 Consistency

From our extensive simulation study in Sect. 5, it appears that f̂3 has some pref-
erable properties compared to the other estimates f̂1 and f̂2. In this section, its
strong consistency is proved. First, we establish the uniform strong consistency of
the three estimates âc,0(x), âl,0(x) and âr,0(x), on which f̂3 is based.

Theorem 3.1 Iff is second-order differentiable on [0, 1], f ′′ is uniformly bounded
on [0, 1], the kernel function K is uniformly Lipschitz continuous, and hn →
0, nh3

n → ∞ and
√

nh5
n

ln n
→ 0 as n goes to ∞, then for any 0 < ρ < 1 we have

sup
x∈[ρ,1−ρ]

√
nhn

ln n
|̂ac,0(x) − f (x)| = O(1), a.s.,

sup
x∈[ρ,1]

√
nhn

ln n
|̂al,0(x) − f (x)| = O(1), a.s.,

sup
x∈[0,1−ρ]

√
nhn

ln n
|̂ar,0(x) − f (x)| = O(1), a.s.,

for n sufficiently large.
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Theorem 3.2 below states that f̂3 is uniformly strong consistent on the inter-
val [0, 1] excluding all neighbourhoods of jumps points. In the neighbourhoods
of jump points, it is pointwise consistent. Finally, in the neighbourhoods of jump
points excluding any small regions around the neighbourhood endpoints and cen-
ters, it is still uniformly consistent. The three different regions mentioned above
are denoted by:

D1 =
⎡
⎣[ρ, 1 − ρ]\

m⋃
q=1

[sq − hn/2, sq + hn/2]

⎤
⎦ ,

D2 =
m⋃

q=1

[sq − hn/2, sq + hn/2],

D2,δ =
m⋃

q=1

{
[sq − (1/2 − δ)hn, sq − δhn]

⋃
[sq + δhn, sq + (1/2 − δ)hn]

}
,

(20)

where 0 < ρ < 1 and 0 < δ < 1/4 are two constants.

Theorem 3.2 Suppose that f is second-order differentiable and f ′′ is uniformly
bounded on [0, 1] except the jump points {sq, q = 1, . . . , m} at which f has left
and right bounded second-order derivatives. It is further assumed that the kernel
function K is uniformly Lipschitz continuous, the bandwidth hn satisfies the con-

ditions that hn → 0, nh3
n → ∞ and

√
nh5

n

ln n
→ 0, and the threshold u = un → 0

as n goes to ∞. Then we have:

(i) sup
x∈D1

√
nhn

ln n
|f̂3(x) − f (x)| = O(1), a.s.,

(ii) For any x ∈ D2, √
nhn

ln n
|f̂3(x) − f (x)| = O(1), a.s.,

(iii) sup
x∈D2,δ

√
nhn

ln n
|f̂3(x) − f (x)| = O(1), a.s.,

for n sufficiently large.

The proofs of Theorems 3.1 and 3.2 are given in the Appendix. It can be proved
along the same lines that the other two estimates f̂1 and f̂2 are also strong con-
sistent for estimating f . A way to compare these estimates theoretically is via
studying their biases and variances. However, it is not an easy task to derive useful
formulas for their biases and variances, because of their complicated definitions in
which weighted residual mean squares are used in indicator functions. In this paper,
we compared these estimates by studying their finite-sample biases and variances
through an extensive simulation study in Sect. 5.
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4 Error criteria and choice of procedure parameters

We discuss two important issues in this section. To compare different curve estima-
tion procedures, an error criterion is needed for measuring their performance. This
is discussed in Sect. 4.1. Then in Sect. 4.2, we discuss selection of the procedure
parameters.

4.1 Error criteria for comparison

Recall that the main objective of the curve estimation procedures discussed in Sect.
2 is to give good overall reconstruction of the regression function f . Therefore a
natural criterion for evaluating an estimate f̂ is the mean integrated squared error,

MISE = E
[∫ 1

0 (f̂ (x) − f (x))2 fX(x) dx
]
, where fX(x) denotes the design den-

sity in the random design case, and equals one in the fixed design case. For estimat-
ing a jump regression curve, the curve estimates also need to be jump-preserving.
To measure jump-preserving around a given jump point s, we propose to use the
following local MISE:

MISEs = E

⎡
⎣

s+0.05∫
s−0.05

(f̂ (x) − f (x))2 fX(x) dx

⎤
⎦ , (21)

which measures the MISE between f̂ and f in the interval [s−0.05, s+0.05]. The
half-width of this interval, 0.05, is subjectively selected. In applications a reason-
able choice for this number is hn/2, by which 0.05 is reasonable for most numerical
examples in Sect. 5.

From Proposition 2.4, âc,0(x) is not pointwise consistent when x is in the neigh-
bourhood [s −hn/2, s +hn/2], i.e., x = s + τ hn with τ ∈ [−1/2, 1/2]. So by the
local MISE criterion, this estimate would not perform well. However, due to the
facts that the width of this neighbourhood is small and it often performs better than
the other estimates in continuity regions of f , its global performance measured by
MISE would be good. As a matter of fact, it can be checked that its MISE is of
order O(hn + 1

nhn
), which implies that âc,0 is L2-consistent on the entire design

interval [0, 1].

4.2 Choice of procedure parameters

4.2.1 Bandwidth parameter hn

The choice of the bandwidth parameter hn is crucial. There exist many bandwidth
selection procedures in the literature. Some of them are difficult to use here (e.g.,
the plug-in procedures). Some others are complicated to compute (e.g., the boot-
strap procedures). For simplicity we opt for the cross-validation procedure, i.e. we
select hn as
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ĥn = arg min
hn

n∑
i=1

[
Yi − f̂ −i (xi)

]2
, (22)

where f̂ −i (xi) is one of the proposed estimates of f (xi) based on all data except
the ith observation (xi, Yi).

4.2.2 Thresholds C and u

The threshold parameters C = Cn and u = un used in f̂2 and f̂3 can be selected,
together with the bandwidth hn, by the cross-validation procedure:

(̂hn, Ĉn) = arg minhn,Cn

n∑
i=1

[
Yi − f̂ −i (xi)

]2
,

(̂hn, ûn) = arg minhn,un

n∑
i=1

[
Yi − f̂ −i (xi)

]2
,

(23)

where f̂ −i is one of f̂ −i
2 and f̂ −i

3 .
To solve the minimization problems in (23), we need to specify a grid for

the Cn-values and a grid for the un-values. Recall that the (asymptotic) constraint
(16) needs to be imposed on Cn, which has two unknown quantities |d| and σ 2

involved. The quantity |d| can be estimated by maxx∈[ρ,1−ρ] |̂al,0(x) − âr,0(x)|,
where ρ > 0 is a small constant, and σ 2 can be estimated by the residual mean
square 1

n

∑n
i=1(Yi − f̂1(xi))

2 of f̂1 (recall that f̂1 preserves the jumps well). Then
the range for Cn-values can be specified by (16). We know that when C = 1, f̂2(x)
is close to f̂1(x) in such a case, which is good in preserving the jumps. If C is
large, then f̂2(x) is close to âc,0(x), which behaves best in the continuity regions.
Therefore the cross-validation procedure considers many estimates that behave in
between the two estimates f̂1(x) and âc,0(x). By selecting Cn, we would automat-
ically end up with a compromise between local smoothing and jump preserving.
Similar remarks can be made regarding the choice of the grid for the un-values,
although selection of un is generally simpler since the (asymptotic) constraint (19)
does not have σ 2 involved.

One might think that choosing both parameters h and C (or u) by the CV pro-
cedure (23) would require a big computational demand, but this is not true. In view
of (15) and (17), once we have the three estimators (̂ac,0, âl,0 and âr,0) (for fixed
h), we do not have to re-compute these estimators for different values of C (or u),
which saves a great amount of computation.

5 Simulation study

In this section we investigate the performance of the curve estimation procedures
discussed in Sect. 2.2 by a simulation study. We also provide some comparison
with performances of other methods.
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5.1 Simulation models and results

In model (1), suppose that ε1 ∼ N(0; σ 2) and the regression function f is one of
the following three functions:

g1(x) =
⎧⎨
⎩

−3x + 2, on [0, 0.3),
−3x + 3 − sin((x − 0.3)π/0.2), on [0.3, 0.7),
x/2 + 1.55, on [0.7, 1],

g2(x) = (3x2 + 0.93)I [0.3 ≤ x < 0.7] + (4x2 + 1.24)I [0.7 ≤ x ≤ 1],

g3(x) = cos(8π(0.5 − x))I [0 ≤ x < 0.5] − cos(8π(0.5 − x))I [x ≥ 0.5].

(24)

The left panels of Fig. 3 depict the three regression functions. Note that g1 has
two jump points at positions 0.3 and 0.7 with the same jump magnitude 1. The
function g2 has two jumps at 0.3 and 0.7, with respective jump magnitudes 1.2
and 0.8. This function is chosen to investigate the effect of jumps with different
sizes on the performance of the proposed estimates. The function g3 has one dis-
continuity at x = 0.5 with jump size −2. This function might be most difficult to
estimate among the three functions, because it is steep at several different locations
and these locations could be confused with jump locations by the curve estimation
procedures. The right panels of Fig. 3 present noisy versions of the three regression
functions with n and σ values as specified in the figure caption.

For a given regression function f, N = 200 samples are then generated from
model (1) with ε1 ∼ N(0; σ 2). We use the Epanechnikov kernel: K(x) = 1.5(1 −
4x2)I [−1/2 ≤ x ≤ 1/2]. The MISE value of a curve estimate f̂ is estimated by

̂MISE = 1

N

N∑
k=1

ÎSEk , with ÎSEk =
n−1∑
i=1

SEk(xi) + SEk(xi+1)

2n
, (25)

where SEk(xi) = (f (xi) − f̂ k(xi))
2 with f̂ k denoting the curve estimate f̂ con-

structed from the kth simulated sample.
Around a jump point s, the local MISE value, MISEs , of f̂ [cf. (21)] can be

estimated by

̂MISEs = 1

N

N∑
k=1

ÎSEs,k, (26)

where

ÎSEs,k =
n−1∑
i=1

SEk(xi) + SEk(xi+1)

2n
I [s − 0.05 < xi < xi+1 < s + 0.05].

When f = g1, 6 different values of σ 2 are considered, with a fixed sample
size n = 200. The performance of the curve estimation procedures is evaluated by
their ̂MISE and ̂MISEs=0.3 + ̂MISEs=0.7 values, which are presented in Table 1, in
the first and second columns, respectively. The procedure parameters are selected
as described in Sect. 4.2. From the table, it can be seen that âc,0 has decent ̂MISE
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Fig. 3 Left panel Graphs of the functions g1, g2 and g3. Right panel Simulated data from model
(1) with f = g1(n = 200, ε ∼ N(0; 0.22)); f = g2 (n = 100, ε ∼ N(0; 0.42)), and f =
g3(n = 100, ε ∼ N(0; 0.42))

values, but its local MISE values around the jump points are relatively large, due
to its bias caused by two-sided smoothing around jump points. The estimate f̂1

has opposite behaviour, namely, it has relatively small ̂MISEs=0.3 +̂MISEs=0.7 val-
ues (i.e., good jump-preserving), but relatively large ̂MISE values (caused by its
large variation in continuity regions). The other curve estimates behave in between,
which implies that they indeed found the compromise between local smoothing
and jump-preserving. Further, we can see that for all estimates ̂MISE increases
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Table 1 ̂MISE (first columns) and ̂MISEs=0.3 + ̂MISEs=0.7 values (second columns) when f =
g1, N = 200, n = 200 and ε1 ∼ N(0; σ 2)

Method σ = 0.1 σ = 0.15 σ = 0.2 σ = 0.25 σ = 0.3 σ = 0.4

âc,0 0.0056 0.0039 0.0084 0.0054 0.0113 0.0069 0.0144 0.0084 0.0179 0.0099 0.0247 0.0128

f̂1 0.0039 0.0008 0.0075 0.0015 0.0125 0.0029 0.0190 0.0050 0.0267 0.0077 0.0444 0.0139

f̂2 0.0025 0.0011 0.0065 0.0040 0.0108 0.0070 0.0146 0.0093 0.0180 0.0110 0.0243 0.0143

f̂3 0.0027 0.0014 0.0055 0.0030 0.0088 0.0048 0.0127 0.0068 0.0168 0.0090 0.0248 0.0126

with σ 2. For a large value of σ 2 all estimates (except f̂1) show similar results. This
means that for such a large value of σ 2 smoothing might be more important than
jump-preserving, and all these estimates behave like the conventional estimate in
such cases. We also remark that f̂3 behaves better than f̂2 for median values of σ .
This is no surprise since from their definitions provided in Sect. 2.2, it is already
clear that σ 2 is less involved in f̂3 (also see the constraints (16) and (19)).

Figure 4 gives a graphical display of the performance of the four estimates
âc,0, f̂1, f̂2 and f̂3 when f = g1. In each plot, the true regression function g1 is
represented by the solid curve. The dashed curve represents the average of N = 200
replicated fits. The dotted curves represent the corresponding 5th percentile and
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Fig. 4 Plots of four curve estimates when f = g1, n = 200, σ = 0.2 and N = 200. In each
plot, the true regression function is denoted by the solid curve. The average of N replicated fits
is denoted by the dashed curve. The corresponding 5th percentile and the 95th percentile curves
are denoted by dotted curves. Estimates: a âc,0; b f̂1; c f̂2; and d f̂3
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the 95th percentile. The curve of the averaged fit can be seen as an estimator of
Bias(f̂ (x)), and the difference between the upper and lower dotted curves can
be regarded as a measure of Var(f̂ (x)). From the plots, it can be seen that the
conventional estimator âc,0 blurs the two jumps, but its variance is quite small.
The estimate f̂1 preserves the jumps very well, but its variance is quite large in
continuity regions. For f̂2 and f̂3, their variances are close to that of âc,0, and they
preserve the jumps much better than the conventional estimate (but not as good as
the estimate f̂1). We also notice that their variances near the two jumps have been
increased, which is mainly due to the fact that in these regions they take the value
of one of the two one-sided estimates which have larger asymptotic variances than
the conventional estimate if all of them use the same bandwidth.

When f = g2, we consider two different sample sizes n = 200, 500 and one
error variance value σ 2 = 0.16. The global and local MISE values of various
estimates are presented in Table 2 In addition we show here how the estimated
̂MISEs=0.3 and ̂MISEs=0.7 decompose into estimated integrated squared bias (ÎSB)
and integrated variance (ÎV), providing as such information on the separate contri-
butions of bias and variance. We can see that for all estimates ̂MISE decreases as
n increases. Furthermore, the estimate f̂1 has the largest ̂MISE, and all other esti-
mates have similar ̂MISE values when n is small due to the fact that σ 2 is quite large
here. For the local measure ̂MISEs=0.3 around the jump point s = 0.3, which has a
large jump size, we remark that âc,0 has the largest ̂MISEs=0.3 values (due to jump
blurring) and f̂1 has the smallest ̂MISEs=0.3 values (i.e., good jump preserving).
The other estimates behave in between them. Around the second jump point, it can
be seen that âc,0 performs the best and all other estimates have similar performance.
For both jumps points the integrated squared bias is largest for the conventional
estimator (not jump preserving) and smallest for the estimator f̂1 (priviledges jump
preserving). On the other hand, the estimator âc,0 shows the smallest contribution
from the integrated variance (priviledge smoothing). Since the noise level is quite
large in this example the smoothing operation results in a bigger impact on the

Table 2 ̂MISE, ̂MISEs=0.3 and ̂MISEs=0.7 values and their integrated squared bias (ÎSBs) and
integrated variance (ÎVs)decompositions when f = g2, N = 200 and ε1 ∼ N(0; 0.16)

Sample size Method ̂MISE ̂MISEs=0.3 ÎSBs=0.3 ÎVs=0.3 ̂MISEs=0.7 ÎSBs=0.7 ÎVs=0.7

n = 200 âc,0 0.0242 0.0092 0.0074 0.0018 0.0047 0.0033 0.0014

f̂1 0.0311 0.0054 0.0006 0.0048 0.0052 0.0009 0.0043

f̂2 0.0235 0.0090 0.0048 0.0042 0.0055 0.0035 0.0020

f̂3 0.0235 0.0077 0.0025 0.0052 0.0054 0.0026 0.0028

n = 500 âc,0 0.0145 0.0057 0.0047 0.0010 0.0029 0.0021 0.0008

f̂1 0.0153 0.0033 0.0005 0.0029 0.0034 0.0007 0.0027

f̂2 0.0125 0.0039 0.0012 0.0027 0.0037 0.0016 0.0021

f̂3 0.0121 0.0036 0.0008 0.0028 0.0036 0.0014 0.0022
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Table 3 ̂MISE and ̂MISEs=0.5 values when f = g3, N = 200 and ε1 ∼ N(0; 0.16)

Method n = 100 n = 200 n = 300

̂MISE ̂MISEs=0.5 ̂MISE ̂MISEs=0.5 ̂MISE ̂MISEs=0.5

âc,0 0.0531 0.0224 0.0346 0.0158 0.0275 0.0132

f̂1 0.0909 0.0082 0.0572 0.0048 0.0433 0.0041

f̂2 0.0743 0.0226 0.0355 0.0155 0.0252 0.0115

f̂3 0.0484 0.0168 0.0277 0.0094 0.0210 0.0073

MISE-measures, especially for the jump point with the smallest jump size (the
point 0.7).

Figure 5 depicts the performance of the four estimates âc,0, f̂1, f̂2 and f̂3 when
f = g2. The dashed curve represents the average of f̂ − f using N = 200 repli-
cated fits. The dotted curves represent the corresponding 5th percentile and the 95th
percentile. The solid line represents the zero line. Similar conclusions to those from
Fig. 2 can be drawn here, except that the first jump seems to be better preserved
by f̂1, f̂2 and f̂3.
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Fig. 5 Plots of four curves f̂ − f when f = g2, n = 200, σ = 0.4 and N = 200. In each
plot, the zero line is denoted by the solid curve. The average of f̂ − f using N replicated fits is
denoted by a dashed curve. The corresponding 5th percentile and the 95th percentile are denoted
by dotted curves. Correponding estimates: a âc,0; b f̂1; c f̂2; and d f̂3
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When f = g3, we also use three different sample sizes n = 100, 200, 300 and
one error variance σ 2 = 0.16, as in the previous example. The simulation results
are summarized in Table 3. We can see that for all estimates ̂MISE decreases as
n increases. Values of ̂MISE are larger than those in the previous examples when
f = g1 and g2, because g3 is more difficult to estimate as explained before.
Once again, it can be noticed that f̂1 has the largest ̂MISE values but the smallest
̂MISEs values, âc,0 shows the opposite behaviour, and the other estimates behave
in between them. We can also see that f̂3 performs considerably better than f̂2 in
this case.

Figure 6 depicts the performance (using f̂ −f ) of the four estimates âc,0, f̂1, f̂2

and f̂3 when f = g3. Similar conclusions to those from Figs. 4 and 5 can be drawn
here. Note that the bias of the four estimates in the continuous regions has some
sinusoidal behaviour. This can be explained by the sinusoidal behaviour of the
second derivative of g3 which appears in the expression of the asymptotic bias of
âc,0, âr,0 and âl,0 (see Propositions 2.3 and 2.4).

Figure 7 presents the estimated bias (left panels) and variance (right panels)
functions of âc,0, f̂1 and f̂3 when f equals g1. It can be seen from the plots that
the conventional estimator âc,0 has the largest bias around jump points, as seen in
Fig. 2, and the bias of f̂1 is the smallest at such places. In continuity regions, f̂1
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Fig. 6 Plots of four curves f̂ − f when f = g3, n = 200, σ = 0.4 and N = 200. In each
plot, the zero line is denoted by the solid curve. The average of f̂ − f using N replicated fits is
denoted by a dashed curve. The corresponding 5th percentile and the 95th percentile are denoted
by dotted curves. Correponding estimates: a âc,0; b f̂1; c f̂2; and d f̂3
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Fig. 7 Plots of the estimated bias function (left panel) and variance function (right panel) of
the estimates âc,0 (solid curves), f̂1 (dashed curves) and f̂3 (dotted curves) for f = g1, n =
200, σ = 0.2 and N = 200 simulated samples

has relatively large bias, and the biases of f̂3 and âc,0 are similar and small, due to
the fact that f̂3 most probably equals âc,0 in such cases. For the estimated variance
functions, we can see that f̂1 has the largest variance in continuity regions, which
is consistent with the asymptotic results obtained in Sect. 2.2. The variances f̂2
and f̂3 are bigger around the jump points because they have to choose among three
estimates at such places, which increases their variances.

In Sect. 4 we proved the consistency of f̂3, in which the threshold un is required
to tend to zero as n tends to infinity. In the practical implementation of f̂3, un is
selected by cross-validation, as explained in Sect. 4.2. To investigate the behaviour
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Fig. 8 Boxplots of ûn values obtained from 20 replicated simulations in cases when f = g1,
σ 2 = 0.04 and n = 100, 200, 400, 600, 1, 000 and 5, 000

of the selected ûn values when n increases, we performed N = 20 replicated sim-
ulations in each case when f = g1, σ

2 = 0.04 and n = 100, 200, 400, 600, 1, 000
and 5, 000. For each sample size n, the 20 selected ûn values from the 20 replicated
simulations were retained and presented by a boxplot in Fig. 8. From the plot, it
can be seen that the cross-validation choice of un does tend to zero when n gets
larger, which coincides with the theoretical condition imposed on un in Theorem
3.2.

Based on the extensive simulation study presented above, we recommend to use
the estimate f̂3 for estimating a jump curve because it seems to provide a good com-
promise between local smoothing and jump-preserving, and in most cases performs
best among all estimates that were designed to search for such a compromise.

5.2 Comparison with some other existing methods

We now run some simulations to compare our estimator f̂3 to some existing proce-
dures in the literature which include the Sigma filter (Lee, 1983), the M-constant
smoother (Chu et al., 1998), and the adaptive weight smoothing (AWS) procedure
(Polzehl and Spokoiny 2000, 2003). This last method is based on a similar idea to
that in Spokoiny (1998). The three existing methods mentioned above are all direct
methods, in the sense that they estimate jump regression functions without first
detecting jump positions explicitly. The conventional local linear kernel estimator
is used as a reference in this comparison.

Each related procedure has one or more parameters to select. However, not all
methods discuss data-driven choices for the involved parameters. To perform a fair
comparison among them, for each method, we choose the optimal values of its pro-
cedure parameters by minimizing the estimated MISE value based on N = 200
simulations. More specifically, we choose hn and un in f̂3, two bandwidths in the
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Table 4 ̂MISE values for several jump-preserving curve estimation procedures in the case when
n = 200 and N = 200

Method g1(σ = 0.2) g2(σ = 0.4) g3(σ = 0.4)

f̂3 0.0063 0.0230 0.0232
f̂3 (modified) 0.0055 0.0199 0.0214
f̂3 (local constant fit) 0.0069 0.0170 0.0200
Sigma filter 0.0078 0.0186 0.0264
M-constant smoother 0.0083 0.0174 0.0238
AWS (p = 0) 0.0072 0.0159 0.0325
AWS (p = 1) 0.0093 0.0212 0.0282
AWS (p = 2) 0.0067 0.0168 0.0219
AWS (p = 3) 0.0077 0.0201 0.0211
âc,0 0.0105 0.0230 0.0328

Sigma filter and the M-constant smoother, and hmax in the AWS procedure in that
way. In theAWS procedure, there are a number of other parameters which are taken
to be their default values [see Polzehl and Spokoiny (2000, 2003) for more explana-
tions]. The AWS procedure is run for four different values of p, i.e., p = 0, 1, 2, 3,
where p is the degree of local polynomial used in local function approximation.

The MISE results are reported in Table 4. In the table, f̂3 (local constant fit)
corresponds to the same procedure as (17) except that the local constant estimator
(i.e., the Nadaraya–Watson estimator) instead of the local linear estimator is used.
In Sect. 1, we mentioned that the local linear estimator has preferable asymptotic
properties near a boundary point. But, when the sample size is small to moderate,
the Nadaraya–Watson estimator often leads to better MISE results because it has
smaller variability. A referee also suggested to modify the proposed estimator such
that the three estimates are all based on data from intervals of length hn. The second
line in Table 4 [entitled f̂3 (modified)] reports the results for this modified esti-
mator. The results are slightly better. Note however that for such an estimator the
boundary regions are enlarged, and that the theoretical behaviours of the WRMS
quantities as well as of the difference function are more involved and need to be
studied.

From the table it can be seen that all jump-preserving methods outperform the
conventional local linear kernel estimator âc,0, which is not a surprise due to the
discontinuity feature of the three models considered. We can also see that f̂3 out-
performs the Sigma filter and the M-constant smoother, except for model 2 when
local linear estimation is used in f̂3. The AWS procedure and f̂3 seem to be quite
competitive depending on the models and the value of p. Overall, the proposed
method gives reasonably good results and thus is a good competitor of the existing
ones. It also has the advantage of simple computation.

6 Real data analysis

The data set consists of measurements in mils of the thickness of 90 US Lincoln
pennies. There are two measurements each year, from 1945 through 1989. Penny
thickness was reduced in World War II and restored to its original thickness some-
time around 1960 and reduced again in the 1970s. These data are given in Scott
(1992) and are displayed in Fig. 9. Speckman (1994) found that there were changes
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Fig. 9 The data (small dots) and the estimates âc,0(x) (dotted curve), f̂1(x) (dashed curve) and
f̂3(x) (solid curve). The cross-validation scores of the three estimates are 0.8475, 1.0568 and
0.7380, respectively

in thickness around the years 1958 and 1974. Similar findings were obtained by
Gijbels and Goderniaux (2004) using their jump detection procedure. We depict
in Fig. 9 the three estimates âc,0, f̂1 and f̂3. As expected, the conventional estima-
tor (presented as a dotted curve) blurrs the discontinuities. The estimate f̂1 (the
dashed curve) preserves the discontinuities well but is quite noisy in continuity
regions. Finally, the estimate f̂3 (the solid curve) is close to f̂1 in the discontinuity
regions and close to âc,0 in the continuous regions. Hence f̂3 preserves well the
discontinuities and removes the noise efficiently in continuity regions.

Appendix

In this section, we provide proofs for Theorems 3.1 and 3.2. We first give two
lemmas which will be used in the proofs of the theorems.

Lemma A.1 For any x ∈ [0, 1], we have

WRMSc(x) ≥ min(WRMSl(x), WRMSr(x)).

Proof Let gl(x; a, b), gc(x; a, b) and gc(x; a, b) denote the objective functions in
(2). Then it is easy to see that

gc(x; a, b) = gl(x; a, b) + gr(x; a, b), for any a, b, x. (27)

The three WRMS’s in (3) can be written as

WRMSl(x) = gl(x; âl,0(x), âl,1(x))∑
xi<x ki(x)

, (28)
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Table 5 Interior and boundary regions of the three estimates

Estimate Interior region Boundary region(s)

âc,0
(

hn

2 , 1 − hn

2

) [
0, hn

2

]⋃ [
1 − hn

2 , 1
]

âr,0
[
0, 1 − hn

2

) [
1 − hn

2 , 1
]

âl,0
(

hn

2 , 1
] [

0, hn

2

]

where ki(x) = K((xi − x)/hn) ≥ 0 for all i. For WRMSr(x) (respectively
WRMSc(x)) replace the index l by r (respectively c) and

∑
xi<x by

∑
xi≥x (respec-

tively
∑

xi
) in (28). By (27) and (28), we find

WRMSc(x) = {gl(x; âc,0(x), âc,1(x)) + gr(x; âc,0(x), âc,1(x))}∑
xi

ki(x)

≥ {gl(x; âl,0(x), âl,1(x)) + gr(x; âr,0(x), âr,1(x))}∑
xi

ki(x)

=
∑

xi<x ki(x)∑
xi

ki(x)

(
gl(x; âl,0(x), âl,1(x))∑

xi<x ki(x)

)

+
∑

xi≥x ki(x)∑
xi

ki(x)

(
gr(x; âr,0(x), âr,1(x))∑

xi≥x ki(x)

)

≥ min(WRMSl(x),WRMSr(x)).

This finishes the proof. 
�
Before discussing the next lemma, we first notice that the three estimates

âc,0(x), âr,0(x) and âl,0(x) have the following expressions:

âj,0(x) =
n∑

i=1

YiKj

(
xi − x

hn

)
w2,j − w1,j (xi − x)

w2,jw0,j − w2
1,j

, (29)

for x ∈ [0, 1], j = c, r, l and

wk,j =
n∑

i=1

Kj

(
xi − x

hn

)
(xi − x)k, for k = 0, 1, 2, 3. (30)

Please notice that w3,j does not appear in (29). But it will be used in the proof
below. So we also give its definition here. Clearly wk,j depends on x, which is
not explicit in its notation for simplicity. For the three estimates, their interior and
boundary regions, which are referred to several times below, are listed explicitly
in Table 5, for readers’ convenience.

Lemma A.2 If the kernel function K is uniformly Lipschitz continuous, then for
any interior point x, we have

wk,j

nhk+1
n

= vk,j + O

(
1

nhn

)
, (31)
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where vk,j = ∫ 1/2
−1/2 ukKj (u) du, j = c, r, l and k = 0, 1, 2, 3. For each j , this

equation is uniformly true for all interior points.

The proof of Lemma A.2 is quite straightforward, by using the uniform Lips-
chitz continuity property of the kernel function K . It is therefore omitted. We are
now ready to prove Theorems 3.1 and 3.2. The proof of Theorem 3.1 is based on
some ideas from the proof of Theorem 3.1 in Qiu (2003) and some ideas from
Masry (1996).

Proof of Theorem 3.1

First, we can write

âj,0(x) − f (x) = [̂
aj,0(x) − Eâj,0(x)

] + [
Eâj,0(x) − f (x)

]
. (32)

By (29) and Lemma A.2, we find

Eâj,0(x) =
n∑

i=1

Kj

(
xi − x

hn

)
w2,j − w1,j (xi − x)

w2,jw0,j − w2
1,j

f (xi)

= 1

nhn

n∑
i=1

Kj

(
xi − x

hn

)
v2,j − v1,j (

xi−x

hn
)

v2,j v0,j − v2
1,j

f (xi) + O(1/nhn)

=
∫

Kj(u)
v2,j − v1,j u

v2,j v0,j − v2
1,j

f (x + uhn) du + O(1/nhn)

=
∫

Kj(u)
v2,j − v1,j u

v2,j v0,j − v2
1,j

[
f (x) + uhnf

′(x)

+ (uhn)
2

2
f ′′(x) + o(h2

n)

]
du + O(1/nhn)

= f (x) + (v2
2,j − v1,j v3,j )f

′′(x)

2(v2,j v0,j − v2
1,j )

h2
n + o(h2

n) + O(1/nhn).

Since f ′′(x) is bounded uniformly, the above equation implies

sup
x∈(hn/2,1−hn/2)

|Eâc,0(x) − f (x)| = O(h2
n),

sup
x∈(hn/2,1]

|Eâl,0(x) − f (x)| = O(h2
n), (33)

sup
x∈[0,1−hn/2)

|Eâr,0(x) − f (x)| = O(h2
n)

for n sufficiently large.
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The first term on the right hand side of (32) can be written as:

âj,0(x) − Eâj,0(x) =
n∑

i=1

Kj

(
xi − x

hn

)
w2,j − w1,j (xi − x)

w2,jw0,j − w2
1,j

εi

=
w2,j

nh3
n

w2,j

nh3
n

w0,j

nhn
−
(

w1,j

nh2
n

)2 r0(x) −
w1,j

nh2
n

w2,j

nh3
n

w0,j

nhn
−
(

w1,j

nh2
n

)2 r1(x),

(34)

where for s = 0, 1,

rs(x) = 1

nhn

n∑
i=1

Kj

(
xi − x

hn

)(
xi − x

hn

)s

εi . (35)

By Lemma A.2, for k = 1, 2,
wk,j

nhk+1
n

w2,j

nh3
n

w0,j

nhn
−
(

w1,j

nh2
n

)2 = vk,j

v2,j v0,j − v2
1,j

+ O

(
1

nhn

)
. (36)

Next we study the properties of r0(x) and r1(x). Toward this end, we define, for
any given δ ∈ (0, 1),

ε̃i = εiI [|εi | < ti], where ti =
√

i ln i(ln ln i)1+δ

when i ≥ 3, and t1 = t2 = t3. (37)

Let r̃s (x) be the truncated version of rs(x), defined by

r̃s (x) = 1

nhn

n∑
i=1

Kj

(
xi − x

hn

)(
xi − x

hn

)s

ε̃i .

Then rs(x) can be written as

rs(x) = [
rs(x) − r̃s (x)

] + [
r̃s (x) − Er̃s(x)

] + [
Er̃s(x) − Ers(x)

]
≡ As(x) + Bs(x) + Cs(x). (38)

Obviously,

As(x) = 1

nhn

n∑
i=1

Kj

(
xi − x

hn

)(
xi − x

hn

)s

[εi − ε̃i].

Since P(|εn| ≥ tn) ≤ t−2
n Eε2

1 = σ 2t−2
n ,

∑∞
n=1 P(|ε| ≥ tn) ≤ 2 + σ 2 ∑∞

n=3 t−2
n <

∞. By the Borel–Cantelli lemma, P(|εn| ≥ tn i.o.) = 0, or equivalently. P(εn 
=
ε̃n, i.o.) = 0. So there exists a full set 	0 (i.e., P(	0) = 1) such that for every
ω ∈ 	0 there exists a finite integer N(ω) > 0 with the property that: εn(ω) = ε̃n(ω)
when n ≥ N(ω). So for any ω ∈ 	0,

|As(x)| ≤ 1

nhn

N(ω)−1∑
i=1

Kj

(
xi − x

hn

)(
xi − x

hn

)s

|εi(ω) − ε̃i (ω)| ≤ C(N(ω), K)

nhn

,
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where C(N(ω), K) is a constant depending on ω and K , but not on x. Therefore

lim
n→∞ sup

x

√
nhn

ln n
|As(x)| = 0, a.s. (39)

For the term Cs(x) in (38), we have

|Cs(x)| = | 1

nhn

n∑
i=1

Kj

(
xi − x

hn

)(
xi − x

hn

)s

E(ε̃i − εi)|

≤ 1

nhn

n∑
i=1

Kj

(
xi − x

hn

)
E(| − εiI (|εi | ≥ ti)|)

≤ 1

nhn

n∑
i=1

Kj

(
xi − x

hn

)
1

ti
E(|εi |2I (|εi | ≥ ti)|)

≤ σ 2

nhn

n∑
i=1

Kj

(
xi − x

hn

)
1

ti
, since E(|εi |2I (|εi | ≥ ti)|) ≤ E(ε2

i ) = σ 2

= σ 2||K||
nhn

j0∑
i=i0+1

1

ti
,

where ‖K‖ = sup
x∈[−1/2,1/2]

|K(x)|, and where i0 ≤ j0 are two integers such that

{xi0+1, . . . , xj0−1} is the longest sequence of the design points at which the weights
K((xi − x)/hn) are non-zero. Obviously, j0 − i0 ≤ nhn + 2, 1/ti < 1/

√
i, and∑j0

i=i0+1
1√
i
≤ ∑�nhn+2�

i=1
1√
i
, where �x� denotes the integer part of x. So

|Cs(x)| ≤ σ 2||K||
nhn

�nhn+2�∑
i=1

1√
i

≤ σ 2||K||
nhn

[
1 +

∫ nhn+2

1

1√
u

du

]
, since

a∑
i=1

1√
i

≤ 1 +
∫ a

1

1√
u

du

≤ 2σ 2||K||
nhn

[
√

nhn + 2].

Therefore,

lim
n→∞ sup

x

√
nhn

ln n
|Cs(x)| ≤ 2σ 2||K|| lim

n→∞

(
nhn

nhn

√
ln n

+ 2√
nhn ln n

)
= 0 . (40)

To handle the term Bs(x), we define Gn = { i
dn

; i = 1, . . . , dn} with dn =
�
√

n2(ln ln n)1+δ

h3
n

�. Then for any x ∈ [0, 1], there exists v(x) ∈ Gn such that |x −
v(x)| ≤ d−1

n . We first write

r̃s (x) − Er̃s(x) = [
r̃s (x) − r̃s (v(x))

] + [
r̃s (v(x)) − Er̃s(v(x))

]
+ [

Er̃s(v(x)) − Er̃s(x)
]

≡ Q1,s(x) + Q2,s(v(x)) + Q3,s(x). (41)
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For Q1,s(x), by using the uniform Lipschitz continuity of Kj(x)xs we have

|Q1,s(x)| ≤ 1

nhn

n∑
i=1

∣∣∣∣ε̃i ||Kj

(
xi − x

hn

)(
xi − x

hn

)s

−Kj

(
xi − v(x)

hn

)(
xi − v(x)

hn

)s∣∣∣∣
≤ 1

nhn

n∑
i=1

tnCK

∣∣∣∣v(x) − x

hn

∣∣∣∣

≤ CK

nhn

n∑
i=1

tn

hndn

≤ CK

1

hn

√
n ln n(ln ln n)1+δh3

n

hn

√
n2(ln ln n)1+δ

≤ CK

√
ln n

nhn

,

where CK is a constant depending on K only. The same result is true for Q3,s(x),
since E|ε̃i | ≤ tn. Therefore

sup
x

√
nhn

ln n
|Q1,s(x)| = O(1), a.s., and sup

x

√
nhn

ln n
|Q3,s(x)| = O(1).

(42)

The other term Q2,s(v(x)) can be written as

Q2,s(v(x)) = 1

nhn

n∑
i=1

(ε̃i − Eε̃i)Kj

(
xi − v(x)

hn

)(
xi − v(x)

hn

)s

≡ 1

n

n∑
i=1

Un,i .

Let us divide the sequence {Un,i; i = 1, . . . , n} into 2qn blocks of size ln each,
and a residual block of size < 2ln. Then n = 2qnln + νn with νn < 2ln. Let
ln = �

√
nhn

tn
√

ln n
� → 0 as n → ∞, and

Vn(m) = 1

n

mln∑
t=(m−1)ln+1

Un,t , W ′
n(v(x)) =

qn∑
m=1

Vn(2m − 1),

W ′′
n (v(x)) =

qn∑
m=1

Vn(2m), W ′′′
n (v(x)) = 1

n

n∑
t=2qnln+1

Un,t .

Then

Q2,s(v(x)) = W ′(v(x)) + W ′′(v(x)) + W ′′′(v(x)). (43)
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For any η > 0, since #Gn ≤ dn, we get

P(max
a∈Gn

|Q2,s(a)| > η) ≤ dn[max
a∈Gn

P (|W ′
n(a)| > η/3|) + max

a∈Gn

P (|W ′′
n (a)| > η/3|)

+ max
a∈Gn

P (|W ′′′
n (a)| > η/3|)],

≡ I1 + I2 + I3. (44)

We next study the three terms on the right-hand side of (44). First, notice that

|Vn(m)| ≤ ln2tn||K||
nhn

= 2||K||√
nhn ln n

and hence by choosing λn = 1
4||K||

√
nhn ln n, we have λn|Vn(m)| ≤ 1/2. Using

the inequalities exp(u) ≤ 1 +u+u2 for |u| ≤ 1/2, and 1 + x2 ≤ exp(x2), and the
fact that E(Un,t ) = 0, we get

exp(±λnVn(m)) ≤ 1 ± λnVn(m) + λ2
nV

2
n (m),

E(exp(±λnVn(2m − 1))) ≤ 1 + λ2
nE(V 2

n (2m − 1)) ≤ exp(λ2
nE(V 2

n (2m − 1))).

(45)

For any a ∈ Gn, by the Chebyshev’s inequality, we have

P(|W ′
n(a)| > η/3) = P(λn|W ′

n(a)| > λnη/3|)

≤ exp

(−λnη

3

)
E

(
exp

(
λn|

qn∑
m=1

Vn(2m − 1)|
))

≤ exp

(−λnη

3

){
E

(
exp

(
λn

qn∑
m=1

Vn(2m − 1)

))

+E

(
exp

(
−λn

qn∑
m=1

Vn(2m − 1)

))}

≤ 2 exp

(−λnη

3

)
exp

(
λ2

n

qn∑
m=1

E(V 2
n (2m − 1))

)
,
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where (45) and the fact that Vn’s are independent random variables have been used.
Furthermore,

qn∑
m=1

E(V 2
n (2m − 1)) = 1

n2

qn∑
m=1

E

⎛
⎝
⎛
⎝ (2m−1)ln∑

t=(2m−1−1)ln+1

Un,t

⎞
⎠

2⎞
⎠

≤ 1

n2

n∑
t=1

E(U 2
n,t )

≤ 1

n2h2
n

n∑
i=1

Kj

(
xi − v(x)

hn

)2 (
xi − v(x)

hn

)2s

σ 2

≤ σ 2
∫

Kj(u)2u2s du + O(1/nhn)

nhn

= A1 + o(1)

nhn

,

where A1 is a constant depending on K and σ 2. So we obtain

I1 ≤ 2dn exp

(−λnη

3
+ 2

λ2
n

nhn

A1

)
. (46)

The same bound can be found for I2 in (44). It works for I3 as well since

|W ′′′
n (v(x))| ≤ 1

n

n∑
t=2qnln+1

|Un,t | ≤ 2

nhn

‖|K|| 2 ln tn = 4||K|| 1√
nhn ln n

.

By (44) and (46), if we take η = A2

√
ln n
nhn

with A2 > 0, then we have

P

(√
nhn

ln n
max
a∈Gn

|Q2,s(a)| > A2

)

≤ 6dn exp

(
−1

12||K||
√

nhn ln nA2

√
ln n

nhn

+ 2A1

16||K||2
nhn ln n

nhn

)

= 6dn exp

( −A2

12||K|| ln n + A1

8||K||2 ln n

)

= 6dnn
−2A2 ||K||+3A1

24||K||2 .

By choosing A2 such that
∑∞

n=1 P(

√
nhn

ln n
maxa∈Gn

|Q2(a)| > A2) ≤ ∑∞
n=1

6dnn
−2A2 ||K||+3A1

24||K||2 < ∞, we have P(maxa∈Gn

√
nhn

ln n
|Q2(a)| > A2, i.o) = 0. This

means that

max
a∈Gn

√
nhn

ln n
|Q2,s(a)| = O(1), a.s. (47)
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Combining (41), (42) and (47), we have

sup
x

√
nhn

ln n
|Bs(x)| = O(1), a.s. (48)

By (38), (39), (40) and (48), we get

sup
x

√
nhn

ln n
|rs(x)| = O(1), a.s. (49)

From (34), (36) and (49), we get

sup
x∈(hn/2,1−hn/2)

|̂ac,0(x) − Eâc,0(x)| = O

(√
ln n

nhn

)
, a.s.

sup
x∈(hn/2,1]

|̂al,0(x) − Eâl,0(x)| = O

(√
ln n

nhn

)
, a.s. (50)

sup
x∈[0,1−hn/2)

|̂ar,0(x) − Eâr,0(x)| = O

(√
ln n

nhn

)
, a.s.

Finally, by (34), (51) and the condition that
√

nh5
n

ln n
→ 0, we can conclude that

(√
nhn

ln n

)
sup

x∈(hn/2,1−hn/2)

|̂ac,0(x) − f (x)| = O(1), a.s.

and analogue statements for âl,0(x) and âr,0(x). This completes the proof of The-
orem 3.1. 
�

Proof of Theorem 3.2.

We can rewrite the estimate f̂3(x), defined in (17), as:

f̂3(x) = âc,0(x)I (An(x)) + âl,0(x)I (Bn(x)) + âr,0(x)I (Cn(x))

+ âl,0(x) + âr,0(x)

2
I (Dn(x)), (51)

where An(x), Bn(x), Cn(x) and Dn(x) are the corresponding inequalities in its
definition. Clearly, for any x ∈ [0, 1],

I (An(x)) + I (Bn(x)) + I (Cn(x)) + I (Dn(x)) = 1. (52)

Therefore one and only one inequality is true in all cases.
Recall that the remainder terms Rn,a,i(x) in Propositions 2.1 and 2.2, for

a = c, l, r and i = 1, 2, 3, tend to zero almost surely and uniformly with re-
spect to x. So there exists a full set 	1 such that for every ω ∈ 	1, limn→∞
supx∈[ρ,1−ρ]; a=c,l,r;i=1,2,3 Rn,a,i(x, ω) = 0 (for convenience of explanation, we
sometimes make ω explicit in the notation).

The remaining part of the proof is divided into three parts, which correspond
to the three regions defined in (20).



268 I. Gijbels et al.

Part one
First, let us consider x ∈ D1. Then x is in a continuity region of f and it is at
least hn/2 away from any jump point. By similar arguments to those in the proof
of Theorem 3.1,

√
nhn

ln n
sup
x∈D1

|̂ac,0(x) − f (x)| ≤ C, a.s.

where C is a constant. We find the same statement for âl,0(x) and âr,0(x) involving
the same constant C. Then we have

sup
x∈D1

√
ln n

nhn

|f̂3(x) − f (x)| = sup
x∈D1

√
ln n

nhn

|̂ac,0(x) − f (x)|I (An(x))

+ sup
x∈D1

√
ln n

nhn

|̂al,0(x) − f (x)|I (Bn(x))

+ sup
x∈D1

√
ln n

nhn

|̂ar,0(x) − f (x)|I (Cn(x))

+ sup
x∈D1

√
ln n

nhn

∣∣∣∣ âl,0(x) + âr,0(x) − 2f (x)

2

∣∣∣∣ I (Dn(x))

≤ 4C, a.s.

So

sup
x∈D1

√
ln n

nhn

|f̂3(x) − f (x)| = O(1), a.s.

Part two
In this part, we prove the uniform consistency of f̂3 in D2,δ with 0 < δ < 1/4,
which consists of two mutually exclusive sets: D2,δ,l and D2,δ,r, defined by

D2,δ,l =
m⋃

j=1

[sj − (1/2 − δ)hn, sj − δhn],

D2,δ,r =
m⋃

j=1

[sj + δhn, sj + (1/2 − δ)hn].

We first focus on D2,δ,l. Any point x in this set has the expression x = s + τhn

where τ ∈ [−1/2 + δ, −δ] and s is one of sj ’s. We know that in this region

supx∈D2,δ,l

√
nhn

ln n
|̂al,0(x) − f (x)| = O(1), a.s. So we can find a full set 	2 ⊂ 	1

such that for any ω ∈ 	2 there exists an integer n(ω) =: n1 which has the property

that when n ≥ n1, we have supx∈D2,δ,l

√
nhn

ln n
|̂al,0(x, ω) − f (x)| ≤ C.
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For any x ∈ D2,δ,l and ω ∈ 	2, the r.v. diff(x, ω) defined in (18) becomes

diff(x, ω) = max(d2C2
τ,c + Rn,c,2(x, ω) − Rn,l,2(x, ω), d2[C2

τ,c − C2
τ,r]

+Rn,c,2(x, ω) − Rn,r,2(x, ω)),

where d2C2
τ,c, d

2C2
τ,r > 0 for τ ∈ (−1/2, 0). Since ω ∈ 	2 ⊂ 	1, we have

lim
n→∞

[
d2C2

τ,c + Rn,c,2(x, ω) − Rn,l,2(x, ω)
] = d2C2

τ,c =: aτ

lim
n→∞

[
d2[C2

τ,c − C2
τ,r] + Rn,c,2(x, ω) − Rn,r,2(x, ω)

] = d2[C2
τ,c − C2

τ,r]

=: aτ − bτ =: cτ ,

which implies that

lim
n→∞ diff(x, ω) = max(aτ , cτ ) = aτ .

So for any η > 0, there exists n(ω, η) > 0 such that when n ≥ n(ω, η)

| diff(x, ω) − aτ | < η, or equivalently, aτ − η < diff(x, ω) < aτ + η.

Moreover, we have aτ ≥ bτ ≥ b, where b = infτ∈(−1/2+δ,−δ) bτ = infτ∈(δ,1/2−δ)

bτ > 0, which is demonstrated by Fig. 10.
Let us take η = b

2 . Then when n ≥ n(ω, b
2 ) =: n2,

diff(x, ω) > aτ − b

2
≥ b

2
.

Moreover, since un → 0, for any ζ > 0 there exists n(ζ ) > 0 such that when
n ≥ n(ζ )

−ζ < un < ζ.
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Fig. 10 A graphical illustration of the definition of b used in the proof of Theorem 3.2
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If we take ζ = b
4 , we have, for n ≥ n3 = max(n2, n( b

4 )),

diff(x, ω) − un >
b

2
− un >

b

2
− b

4
= b

4
> 0

which is equivalent to

I (An(x, ω)) = 0.

Now let us investigate whether the conditions Cn(x, ω) and Dn(x, ω) hold in
such cases, which are equivalent to

diff(x, ω) > un

WRMSl(x, ω) ≥ WRMSr(x, ω).

By the above argument, the first inequality is true when n ≥ n3. The second
inequality can be written as :

bτ = d2C2
τ,r ≤ Rn,l,2(x, ω) − Rn,r,2(x, ω).

Since ω ∈ 	1, for any κ > 0 there exists an integer n(ω, κ) > 0 such that for
n ≥ n(ω, κ)

|Rn,l,2(x, ω) − Rn,r,2(x, ω)| < κ.

Let κ = b
2 . Then when n ≥ n4 := max(n3, n(ω, b

2 )), we have

diff(x, ω) > un

Rn,l,2(x, ω) − Rn,r,2(x, ω) <
b

2
< bτ = d2C2

τ,r.

Thus the conditions An(x, ω), Cn(x, ω) and Dn(x, ω) cannot be satisfied, which
implies that I (An(x, ω)) = I (Cn(x, ω)) = I (Dn(x, ω)) = 0. By (52), we have
I (Bn(x, ω)) = 1. Therefore when n ≥ n5 := max(n4, n1),

sup
D2,δ,l

√
nhn

ln n
|f̂3(x, ω) − f (x)| = sup

D2,δ,l

√
nhn

ln n
|̂al,0(x, ω) − f (x)| ≤ C.

Similarly, we can prove that

sup
D2,δ,r

√
nhn

ln n
|f̂3(x) − f (x)| = O(1), a.s.

So

sup
D2,δ

√
nhn

ln n
|f̂3(x) − f (x)| = O(1), a.s.
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Part three
When x ∈ D2\D2,δ , f̂3 can be proved to be strong consistent in a similar way to
the above arguments. But the consistency is not uniform with respect to x because
we cannot find a unique, strictly positive, lower bound for aτ and bτ in such cases
(cf. Figure 10). 
�
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