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Abstract A new class of local mixture models called local scale mixture models
is introduced. This class is particularly suitable for the analysis of mixtures of
the exponential distribution. The affine structure revealed by specific asymp-
totic expansions is the motivation for the construction of these models. They
are shown to have very nice statistical properties which are exploited to make
inferences in a straightforward way. The effect on inference of a new type of
boundaries, called soft boundaries, is analyzed. A simple simulation study shows
the applicability of this type of models.

Keywords Mixture model · Local mixtures · Laplace expansion · Scale
dispersion models · Affine geometry

1 Introduction

Mixtures of the exponential distribution have received considerable attention in
the statistical literature. For example, Jewell (1982) discusses a characterization
of mixtures of Weibull distributions and also nonparametric maximum likeli-
hood estimation of the mixing distribution. Keilson and Steutel (1974) discuss
scale and power mixtures and applied their results to show that the squared
coefficient of variation of the mixing distribution is a measure of distance in the
space of mixtures of exponentials.
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Mixtures of the exponential distribution are characterized as being
completely monotone, see Jewell (1982) and Heckman and Walker (1990).
This implies, in particular, that the density has to be monotone decreasing, so
they do not exhibit multimodality.

Inference in mixture models is difficult in general. If the class of allowed
mixing distributions is restricted in a statistically natural way, then inferences
can be simplified without losing much of the flexibility of the resultant mixtures.
Local mixture models have already proved their efficacy in achieving such task
(see Critchley and Marriott, 2004; Marriott, 2003, 2002). A slightly different
version of local mixture models called local scale mixture models is introduced
here. This version is particularly suitable for the analysis of mixtures of the
exponential distribution. For more general versions see Anaya-Izquierdo and
Marriott (2006) and Anaya-Izquierdo (2006).

We are only interested in the case where the mixing distributions are contin-
uous. For discrete mixtures, see McLachlan and Peel (2001).

2 Scale dispersion mixtures

Unless otherwise stated, F will denote the family of exponential densities
parametrized by its mean μ, that is

F :=
{

f (x; μ) = 1
μ

exp

(
− x

μ

)
: μ > 0

}
.

We are interested in the following type of mixtures.

Definition 1 The family of scale dispersion mixtures of F is defined as the family
of densities of the form

g(x; Q(μ; m, ε)) =
∞∫

0

f (x; μ) dQ(μ; m, ε)

=
∞∫

0

1
μ

exp

(
− x

μ

)
a(ε)

1
μ

exp

(
−d0(μ/m)

2ε

)
dμ (1)

when Q is a regular scale dispersion model, that is, when the function d0(u) is
smooth, nonnegative with d0(u) = 0 if and only if u = 1 and there exist ε0 > 0,
such that

1
a(ε)

:=
∞∫

0

1
μ

exp

(
−d0(μ/m)

2ε

)
dμ

is finite for ε ∈ (0, ε0).
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The generality in this definition comes from the generality of the function d0(u).
The function d(μ, m) := d0(μ/m) is called the unit deviance and the parameters
m and ε represent position and dispersion, respectively. For details on dispersion
models see Jorgensen (1997).

Example 1 The generalized inverse gaussian distribution described in
Jorgensen (1997) is an example of a general class of scale dispersion models.
The unit deviance in such case is given by

dβ(μ; m) = 2β log

(
m
μ

)
+ μ

m
(1 + β) + m

μ
(1 − β) − 2

where m, ε > 0 and β ∈ [−1, 1]. This family defines a regular scale dispersion
model for each fixed value of β. The values β = ±1 correspond (by tak-
ing the appropriate limits) to the gamma distribution and reciprocal gamma
distribution, respectively, and the value β = 0 corresponds to the hyperbola
distribution. The Qβ -mixture g(x; Qβ) can be given in closed form by

(
1 + β

1 − β

) β
2ε

K β
ε
−1

(√
(1 + β)[2xε + m(1 − β)]

ε2 m

) [
2xε + m(1 − β)

m(1 + β)

] β−ε
2ε

mK β
ε

(√
1 − β2

ε

) ,

where Kν(z) is the modified Bessel function of the third kind with index ν. This
family contains the Pareto distribution family of the second kind, when β = −1,
which is well known for being a heavy tailed family, see Embrechts et al. (1997).

Example 2 As another example of a scale dispersion model consider the lognor-
mal distribution. The unit deviance in such case is given by d(μ; m) = log2(μ/m).
To the best of our knowledge, there is no closed form expression for the corre-
sponding mixture density.

3 Local scale mixture models

In this section we describe a class of models which captures the behavior of
scale dispersion mixtures of F particularly when the dispersion parameter ε is
small.

Definition 2 The local scale mixture model of order d of the exponential distri-
bution F is defined as the parametric family

GF =
⎧⎨
⎩g(x; μ, γ ) = f (x; μ) +

d∑
k=2

μk γk

k! f (k)(x; μ) : μ > 0 , γ ∈ �μ

⎫⎬
⎭

if for every μ > 0 we have that �μ ⊂ R
d−1 is nonempty for all μ > 0.
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For each μ, �μ is the largest set of γ values for which g(x; μ, γ ) is nonnegative
for all x > 0. The set �μ is convex for all μ > 0. The boundary ∂(�μ) is called
the hard boundary of g(x; μ, γ ) at μ. Note that μ is a scale parameter for F so
μ is also a scale parameter for g(x; μ, γ ). Therefore �μ does not depend on μ

and we will just write �.
The motivation for the specific form of the densities in GF is rather technical

and also not crucial for the development of the rest of the paper, therefore some
details of it are placed in the appendix. The most important thing to remark
at this point, is the fact that local scale mixture models of the exponential
distribution are motivated by the asymptotic expansion in Theorem 3 of the
appendix.

In general, local scale mixture models can be considered only as generaliza-
tions of the exponential distribution F . It is not the aim of local scale mixture
models to approximate scale dispersion mixtures in any analytical sense. Our
philosophy is that we can capture some information of scale dispersion mix-
ing structure in the data by modeling using local scale mixture models of even
order.

Under such philosophy, the interpretation of these models is the following.
A local scale mixture model of the exponential distribution F of even order d
and μ = m, mimic the behavior of some scale dispersion mixture (with mean
m and small ε) in the sense of the asymptotic expansion of Theorem 3 with
d = 2r. Moreover, the parameters γi play the same role as the normalized cen-
tral moments of the mixing distribution, which clearly only depend on ε. In this
respect we will call such parameters pseudo-moments. In particular γ2 plays the
same role as the squared coefficient of variation of the mixing distribution.

In a sense, we are turning the nonparametric problem of estimating the whole
mixing distribution to the parametric one of estimating its moments which, as
argued in the appendix, very much determine the mixing distribution itself.

The geometry of a local scale mixture model is that of a −1 affine fibre bundle
and is easily understood in terms of the affine space

〈X, V, +〉 =
〈{

f :
∫

f (x) dx = 1
}

,
{

s :
∫

s(x) dx = 0
}

, +
〉

.

The space of positive densities is only a convex subset and + is the usual addi-
tion operator between real-valued functions. The affine structure of 〈X, V, +〉
agrees with Amari’s −1 geometry. See Amari and Nagaoka (2000). For each
fixed μ > 0 local scale mixture models are −1 flat with respect to this affine
space.

Note that local scale mixture models are simple reparametrizations of the
usual version of local mixture models (see Critchley and Marriott, 2004;
Marriott, 2003, 2002). The explicit dependence on μ of the parameters of the
derivative terms is introduced to give them a clear and easy interpretation in
terms of the mixing distribution. From the geometric point of view, the fiber
bundle structure is also taken into account in the sense that the dependence of
each fiber on μ is explicitly given. The absence of the first derivative term in
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Fig. 1 Geometry of local mixtures

this new version is now crucial for many statistical reasons including identifi-
ability (see Anaya-Izquierdo and Marriott, 2006). The geometric construction
of a local scale mixture model is explained graphically in Fig. 1.

As local scale mixture models are designed to perform like true mixtures, it
is natural to ask the question of whether they can be exact mixtures themselves.

Definition 3 A local scale mixture density g(x; μ, γ ) is a True Local Mixture den-
sity if it lies inside the convex hull of the family F in the affine space 〈X, V, +〉.
The following Theorem gives a characterization of general mixtures of the expo-
nential distribution. Therefore, it gives necessary and sufficient conditions for
a local scale mixture model to be a true local mixture model.

Theorem 1 Let S(x) be an absolutely continuous survival function such that
S(0) = 1. Then,

S(x) =
∞∫

0

exp

(
− x

μ

)
dQ(μ)

for some proper probability distribution Q if and only if

(−1)k ∂kS(x)

∂xk
≥ 0 , (2)

for all x ≥ 0 and all k ∈ N.

Proof See Feller (1970) p 439. �	
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4 Estimation in local scale mixture models

In this section we propose to use likelihood and moment based inference for
the statistical analysis of local scale mixture models. First, asymptotic likelihood
inference is straightforward due to the following result.

Theorem 2 Let F be the exponential distribution parametrized by its mean μ.
Then the local scale mixture model of F of order d has the following properties:

1. The model is identified in all its parameters (μ, γ2, . . . , γd)

2. For each fixed μ > 0, the log-likelihood of the parameter γ = (γ2, . . . , γd) is
concave over its convex domain �μ.

3. The parameters (μ, γ2, . . . , γd) are Fisher orthogonal at (μ, 0, . . . , 0) for all
μ > 0.

Proof See Anaya-Izquierdo and Marriott (2006).

If the parameter of interest is the mean μ then asymptotic inferences can be
performed using the profile log-likelihood for μ. Using property 2, the problem
of finding the maximum likelihood estimator of the parameter γ , for each fixed
μ > 0, is a well defined and known in nonlinear programming. That is, finding
the maximum of a concave function over a convex set. Moreover, using prop-
erty 3, the maximum likelihood estimator obtained for μ will be asymptotically
independent of the nuisance parameter γ giving a clean inferential separation.

On the other hand, the first four central moments of a local scale mixture
model are given by

E[X; μ, γ ] = μ

V[X; μ, γ ] = μ2 [1 + 2γ2
]

E[(X − μ)3; μ, γ ] = 2μ3 [1 + 6γ2 + 3γ3
]

E[(X − μ)4; μ, γ ] = 9μ4 [1 + 84/9 γ2 + 72/9 γ3 + 24/9 γ4
]

(3)

Therefore, simple moment based estimators for (μ, γ ) can be obtained from
these expressions. Strong similarities with some of the results of Lindsay (1989)
arise. Note that the behavior of the moments is that of inflating the correspond-
ing moments of the exponential distribution. These expressions give an idea of
why local scale mixture models are particularly effective in detecting mixture
structure through moments.

5 Modeling

To keep the presentation focused, we only study the two particular local scale
mixture models when d = 2 and d = 4, but much of the spirit of our analyzes
can be extended to more general models.
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The local scale mixture model of order d = 2 can be written as

g(x; μ, γ2) = 1
μ

exp

(
− x

μ

)[
1 + γ2

[
1 − 2x

μ
+ x2

2μ2

]]
. (4)

The parameter space for γ2 is simply given by � = [0, 1]. The hard boundary
{0, 1} has a nice and simple interpretation, it says that the local scale mixture
model is a proper density when the pseudo squared coefficient of variation γ2 is
on the interval [0, 1]. Keilson and Steutel (1974) show that the squared coeffi-
cient of variation of the mixing distribution in the exponential case is a formal
distance between a mixture of F and the unmixed F . Assume, for example, that
the mixing model is a gamma distribution with mean m and dispersion ε. The
squared coefficient of variation is ε. If ε ≥ 1, this mixing family has a unique
mode at zero, but if 0 < ε < 1 then the mode is positive and the density shrinks
to m as ε → 0. Being inside the hard boundary, in this case means that the local
mixture is only going to be able to model the behavior of this mixture when
the squared coefficient of variation of the mixing distribution is small and in
particular, less than one.

More generally, we can interpret the hard boundary for this local scale mix-
ture model as follows. This model is going to be able to model the behavior of
the scale dispersion mixture when the variance function of the mixing distribu-
tion (in this case is approximately μ2γ2) is smaller than the variance function
of the exponential distribution, that is μ2γ2 ≤ μ2 for all μ > 0. As any vari-
ance has to be nonnegative, this gives the other inequality. Obviously, we are
assuming the mean of the exponential distribution model is also the mean of the
mixing distribution. Finally, note the variance of the local scale mixture model
is bounded in the following way: μ2 ≤ V[X; μ, γ2] ≤ 3μ2.

Let us now check for which parameters values, the local scale mixture model
(4) is a true local mixture model. The answer is the empty set as the following
theorem shows.

Corollary 1 Local scale mixture model (4) is not a true local mixture for any
value of its parameters.

Proof We need to check that the survival function satisfies conditions (2) of the
theorem. Note that, for k = 1, the condition is just the nonnegativity condition
that defines the hard boundary and therefore is always satisfied. It is easy to
check that the other conditions are equivalent to

0 ≤ γ2 ≤ 2
k + 1

k = 2, 3, . . . .

So, the model can never be a genuine mixture as the only parameter values for
that to happen are any μ > 0 but γ2 = 0, which correspond to a degenerate
mixing distribution. �	

As this theorem states that the local scale mixture model (4) cannot be rep-
resented as a mixture of F exactly, then it makes sense to restrict its parameter
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values to satisfy relevant necessary conditions for being an exact mixture. See
for example Lindsay, (1995) for a range of such conditions. This lead us to the
following definition.

Definition 4 A soft boundary for a local scale mixture model GF is the boundary
of any set contained in �.

Example 3 The k = 2 condition in (2) implies that mixtures of exponentials
must have a non-increasing density. In Fig. 2 we plot some densities of model
(4) for a fixed value of μ. As can be seen from the plots, some of them have
a small bump and therefore are not monotone. This happens for values of γ2
close to 1. Then, restricting the local scale mixture model using the soft boundary
imposed by the k = 2 condition on Theorem 1, allows only for non-increasing
densities. That is, by using the parameter space [0, 2/3] for γ2. Then here 2/3 is
an example of a soft boundary. We can further restrict the natural parameter
space by using a larger k, but the interpretation of the resulting boundary is not
easy.

If g(x; Q) is a mixture of F with mean μ̄ then R(x) = g(x; Q)/f (x; μ̄) − 1 is
convex (see Shaked, 1980) and has the sign sequence (+, −, +) as x transverses
the real axis. For model (4) we have

R(x) = μ2γ2

2

(
f (2)(x; μ)

f (x; μ)

)
= γ2

(
1 − 2x

μ
+ x2

2μ2

)

which is clearly convex for all μ > 0 and γ ∈ [0, 1]. In fact, we can explicitly
see the sign changes in Fig. 2. The unmixed exponential density is plotted for
reference as a solid line.

0 

Fig. 2 Some densities of model (4) (solid is the unmixed exponential)
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Moreover, if g(x; Q) is a mixture of F then we must have

Eg[Xr] ≥ Ef [Xr] , r ≥ 2 ,

when g is a mixture with the same mean as f . This is true in this case as the
function xk for k ≥ 1 is convex on the positive real line. For model (4) we have

Eg[Xr] = μr
[

r! + r(r − 1)

2
γ2

]
,

so the previous set of inequalities translates to γ2 ≥ 0 which is always true. So,
for the local mixture model (4), that set of moments is always bigger than the
corresponding set of the unmixed model.

Model (4) has been implicitly used in many papers related to testing for
the presence of mixing in the exponential model. Some relevant references
are Mosler and Seidel (2003), Jaggia (1997), Chang and Suchindran (1997) and
Kiefer (1984). Model (4) is implicitly used to construct a dispersion score test
statistic. For example, Kiefer assumes a mixture model of the form

g(x; Q1) =
∫

f̃ (x; ϕ + u)dQ1(u),

where Q1 has mean zero and f̃ (x; φ) = f (x; e−φ). That is, φ is the logarithm of
the reciprocal of the mean. Jaggia assumes a mixture of the form

g(x; Q2) =
∫ ˜̃f (x; ϑ v)dQ2(v),

where now Q2 has mean one and˜̃f (x; θ) = f (x; 1/θ). That is, θ is the rate param-
eter. Using a Taylor expansion argument they obtain the following approxima-
tions to g(x; Q1) and g(x; Q2), respectively,

f̃ (x; ϕ) + v1

2
f̃ (2)(x; ϕ) = f̃ (x; ϕ)

[
1 + v1

2

{
1 − 3xeϕ + x2e2ϕ

}]

˜̃f (x; ϑ) + v2

2
˜̃f (2)

(x; ϑ) = ˜̃f (x; ϑ)

[
1 + v2

2

{
ϑx2 − 2x

ϑ

}]
,

where v1 := VarQ1 [φ] and v2 := VarQ2 [θ ]. These expressions define local mix-
ture models closely related to (4). They correspond to simple reparametriza-
tions of a local scale mixture model as in Definition 2 but where the family
F is reparametrized using the log reciprocal mean and the rate parameter,
respectively.
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Using these approximations, Kiefer (1984) and Jaggia (1997), obtain the
corresponding dispersion score statistics, which are given by

DS1(x) = 1
n

n∑
i=1

[
1 − 3xieϕ̂ + x2

i e2ϕ̂
]

= 1
n

∑n
i=1(xi − x̄)2

x̄2 − 1,

DS2(x) = 1
n

n∑
i=1

[
ϑ̂x2

i − 2xi

ϑ̂

]
= 1

n

n∑
i=1

(xi − x̄)2 − x̄2

where ϕ̂ and ϑ̂ are the maximum likelihood estimates of ϕ and ϑ , respectively,
under the assumption of no mixing, that is, under the assumption that each
observation in the sample follows an exponential distribution with unknown
mean e−ϕ and 1/ϑ , respectively.

Both statistics have a simple interpretation. DS1(x) is the relative difference
between the sample variance and the variance under the model, and DS2(x) is
the absolute difference between the sample variance and the variance under
the model. So, when the sample variance exceeds the variance under the model
we have empirical evidence of mixing. If fact, if F is extended to be an exponen-
tial family expressed in its natural parametrization, then the dispersion score
always has the form

1
n

n∑
i=1

(xi − x̄)2 − V(x̄) ,

where V is the variance function of F . Lindsay (1989) shows that in the case
when F is a natural exponential family with quadratic variance function, it
is more informative to use the mean parametrization in the following sense.
Lindsay shows that, for any known μ0 and k = 1, 2, . . .

m̂0,k = 1
n

n∑
i=1

k!
ak

Pk(xi; μ0)

is an unbiased estimator of

m0,k := EQ[(μ − μ0)
k]

for any mixing distribution Q and some constants ak. The functions Pk(xi; μ0)

are the orthogonal polynomials associated with the natural exponential family.
In our exponential case we have

m̂0,2 = 1
2n

n∑
i=1

[
2μ2

0 − 4μ0xi + x2
i

]
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is an unbiased estimator of EQ[(μ − μ0)
2]. Since we want to estimate the vari-

ance, substituting μ0 by x̄ we obtain DS2(x)/2. So, the dispersion score DS2(x)

can be regarded as an estimator of the variance of the mixing distribution.
At this point, it is convenient to consider the following reparametrization of

Model (4). Define η2 = μ2γ2. Clearly, η2 will play the same role as the vari-
ance of the mixing distribution. Simple moment estimators of μ and η2 can be
obtained, namely

μ̂mom = x̄

η̂mom
2 = 1

2

[
1
n

n∑
i=1

(xi − x̄)2 − x̄2

]
= DS2(x)

2
.

Clearly, we also have

γ̂2
mom = 1

2

[
1
n

∑n
i=1(xi − x̄)2

x̄2 − 1

]
= DS1(x)

2
.

It is now clear that DS1(x) can be considered as a simple moment estimator of
the squared of the coefficient of variation of the mixing distribution. However,
we can restrict the values of this estimator to be inside the interval [0, 2/3]
although this is not part of the definition of the dispersion score. Moreover,
Darling (1953) shows that

∑n
i=1(xi − x̄)2

x̄2 = n[DS1(x) + 1]

defines a (right sided) locally most powerful test against mixtures of expo-
nentials and also derives its asymptotic distribution under the hypothesis of
no mixing. See also O’Reilly and Stephens (1982) for other tests of fit of the
exponential distribution.

Now, the local scale mixture model of order d = 4 can be written as

g(x; μ, γ2, γ3, γ4) = 1
μ

exp

(
− x

μ

)
p4(x; μ, γ2, γ3, γ4) , (5)

where p4(x; μ, γ2, γ3, γ4) is the quartic polynomial

( γ4

24

) x4

μ4 +
(

γ3

6
− 2γ4

3

)
x3

μ3 +
(

γ2

2
− 3γ3

2
+ 3γ4

)
x2

μ2

+ (−2γ2 + 3γ3 − 4γ4)
x
μ

+ (1 + γ2 − γ3 + γ4) .
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It is straightforward to prove that this model is also a true local mixture
model only if γ2 = γ3 = γ4 = 0. In fact, it is a general result that local scale
mixture models of the exponential distribution are never true local mixtures.

The parameter space for (γ2, γ3, γ4) contains negative values of γ2. So, the
first soft boundary we are going to impose is the obvious one γ2 ≥ 0, since the
squared coefficient of variation of any distribution must be positive. In model
(4) we got this boundary for free.

From expansions (11) at the end of the proof of Theorem 3, we observe that

EQ[(μ − EQ[μ])4]
(EQ[μ])4 ∼ 3

[
EQ[(μ − EQ[μ])2]

(EQ[μ])2

]2

+ O(ε3).

So, the normalized moments behave like that for small ε. We can therefore
restrict the parameter values by

γ4 = 3 γ 2
2 . (6)

It is interesting to note that this restriction is forcing the pseudo coefficient
of kurtosis to be zero, as in the normal distribution. Clearly, for each μ, the
resulting model is a curved model embedded in model (5). Note this restriction
automatically makes γ4 positive as desired.

The parameter space for (γ2, γ3) can be easily characterized using the results
of Ulrich and Watson, (1994). The hard boundary for the parameters (γ2, γ3) is
plotted with a thick line in Fig. 3. Also in Fig. 3 we plotted the k = 2 soft bound-
ary described by Theorem 1. Recall this boundary implies monotone decreasing
densities.

The parametrization in terms of (γ2, γ3) has a drawback, as it takes into ac-
count values which corresponds to small variance but relatively high skewness of
the mixing distribution. One such case is indicated with a cross in Fig. 3. Clearly,
those parameters values are not compatible with the small mixing assumption.

Note that a mixing distribution can be small in two quite different ways. It is
convenient to denote the distinction with two separate classes. The first will be
called Laplace type mixing where the mixing distribution is of small variance
and unimodal. The second type will be called contamination type mixing where,
although the variance is small, there can be a small proportion of the realized
values a long way from the mean. Such a class can have more than one mode and
in general show high skewness. For small enough ε, proper dispersion models
are of the Laplace type because they are asymptotically normal (see Jorgensen,
1997). We have distinguished this contamination type because empirically we
want to avoid this latter kind of mixing in our models by imposing soft bound-
aries such as the following.

Consider the following reparametrization of the model defined by (6)

γ2 = α

γ3 = (3 − β) α2. (7)
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Fig. 3 Boundaries of model (5) with γ4 = 3γ 2
2

Note that, for each fixed value of μ and β, the induced subfamily is a curved
subfamily embedded in model (5) via the mapping

α → (α, (3 − β)α2, 3α2).

Note that this is exactly mimicking the behavior (up to O(ε3)) of the normal-
ized moments of a scale dispersion mixing model for small ε according to the
expansions in (11).

Those subfamilies are plotted with dashed curves for a range of values of β

in Fig. 4. Then it is clear from the figure that restricting the values of the param-
eters β to a specific interval of the form [C1, C2] will avoid contamination type
mixing distributions. One important fact is that each of these curved mixture
families is converging very slowly to the boundary γ2 = 0, so not very extreme
values of C1 and C2 are enough to capture the local behavior of a big range of
scale dispersion mixing models.

For instance, the interval [C1, C2] = [−1, 1] covers the behavior of the gen-
eralized inverse gaussian distribution. This family satisfies d(3)

0 = 2β − 6. Also,
from (11) we observe that

EQβ
[(μ − EQβ

[μ])3]
(EQβ

[μ])3 ∼ −d(3)
0

2

[
EQβ

[(μ − EQβ
[μ])2]

(EQβ
[μ])2

]2

+ O(ε3) ,
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Fig. 4 Visual representation of reparametrization (7)

which justifies the particular form of parametrization (7) above. But param-
etrization (7) is just a matter of convenience. Actually, a single value of d(3)

0
might correspond to different distributions. For example, if β = 0, the value
of d(3)

0 = −6 corresponds to either the lognormal (which is not included in the
generalized inverse gaussian family) or the hyperbola distribution.

Finally, we can alternatively impose soft boundaries by using, for example, the
inequality obtained by Klaassen et al. (2000), relating the normalized moments
of a unimodal distribution. For the model defined by (6), this inequality results
in the cusp

γ 2
3 ≤ γ4γ2 − 3

2
γ 3

2 = 3
2

γ 3
2 . (8)

This soft boundary also avoids contamination type mixing distributions.

6 Simulation study

For illustration purposes, we focus here only on the local scale mixture model
defined by (6). As a simple simulation exercise, we generated 10,000 indepen-
dent replications of a random sample of size n = 1, 000 from a scale dispersion
mixture with Reciprocal Gamma mixing distribution with mean equal to 5 and
squared coefficient of variation γ2 = 0.1 and γ2 = 0.25.

For small to moderate sample sizes, there will typically be insufficient infor-
mation in the data to estimate the parameters γi (large samples be necessary
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Fig. 5 MLE’s for (μ, γ2, γ3)

for that). But this is not very important if interest is centered, for example, in
the mean of the mixture distribution.

Figure 5 shows the histograms of the maximum likelihood estimators of μ, γ2
and γ3 under model (6) in both situations. The correct value of the parameter is
plotted with a dashed vertical line. It is clear that the local scale mixture model
only makes sense as an approximation of a genuine scale dispersion mixture when
the mixing distribution has small squared coefficient of variation γ2. Otherwise,
it can be considered simply as a generalization of the base family F . The local
scale mixture model is clearly trying to fit a mixing distribution with smaller
coefficient of variation and smaller third normalized moment in the case where
γ2 = 0.25 and this produces the biases shown in Fig. 5.

This underestimation property is not a big disadvantage of local scale mix-
ture models as generally the information obtained about the pseudo squared
coefficient of variation is enough (as shown below) to draw some conclusions
about the presence of mixing, which is usually of interest in applications.

Also note that, when the true γ2 = 0.25, inferences about μ remain essen-
tially the same. That is, even though the local scale mixture is underestimating
the dispersion structure, inferences about the mean does not change. This is
a result of the orthogonality property in Theorem 2, as well as the fact that
the parameter μ (the mean of the unmixed negative exponential) retains its
meaning under the local scale mixture model [recall first equation in (3)].
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Fig. 6 Gamma mixing with μ = 5 and γ2 = 0.1. Sample size 1,000

We also generated 10,000 independent replications of a random sample of
size n = 1,000 from scale dispersion mixtures with Gamma mixing distributions
of mean μ = 5 and squared coefficient of variation γ2 = 0.1. Some results of
both sets of simulations are presented in Figs. 6 and 7.

In the first row of each figure, we show the scatter plots of the estimators
(γ̂ mle

2 , γ̂ mom
2 ) and (γ̂ mle

3 , γ̂ mom
3 ). We found a good agreement between both esti-

mators only for small values. Recall that γ̂ mom
2 is equivalent to a score test sta-

tistic. This means that, that the mle’s of γ2 and γ3 contain valuable information
in testing for the presence of mixing. In comparison to traditional application of
score tests statistics, our estimators have the advantage of incorporating infor-
mation about the skewness and possibly higher order moments of the mixing
distribution.

Also, in the same row, is the scatter plot of (γ̂ mle
2 , γ̂ mle

3 ). To explain this plot
we first need to mention how we calculated the mle’s. We judiciously chose
as soft boundary for the parameter β the interval [C1, C2] = [−20, 20]. For
example, the generalized inverse Gaussian family is, by far, contained in such
an interval. In practice, we will be required to fix an interval of that form if we
really want to model local mixtures in a meaningful way, so the interval we have
chosen seems reasonable.
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Fig. 7 Reciprocal gamma mixing with μ = 5 and γ2 = 0.1. Sample size 1,000

We plotted with a thick line the hard boundary for (γ2, γ3) and with a dotted
line the k = 2 boundary. With a dashed line is plotted the −20 ≤ β ≤ 20
boundary. The joint distribution of the mle of (γ2, γ3) can reasonably be well
approximated by a distribution with elliptic contours. It is clear also, that there
exists a positive correlation between both estimators. This is just a consequence
of the fact that, under the mixing distribution, there exists a relationship of the
same kind between the squared coefficient of variation and the third normal-
ized moment for small values of the dispersion parameter ε. The points that
stick into the soft boundaries correspond to samples which are discordant with
the small mixing assumption, for example, that have large upper order statistics
and therefore represent evidence of contamination type mixing. In this sense,
those soft boundaries can be used as a simple diagnostic for detecting non-local
mixing.

In the last row of each figure we present the scatter plots of (μ̂mle, γ̂ mle
2 ) and

(μ̂mle, γ̂ mle
3 ). We found evidence of elliptically contoured joint distributions and

approximate orthogonality between the estimators. Finally, we mention that we
found similar results to the previous simulations using other local scale mixture
models not presented in this paper.
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7 Discussion

The essential idea of a local mixture model is that the mixing is only responsible
for a relatively small amount of variation in the model. In many practical appli-
cations, the unmixed model F explains most of the variation and the mixing
only adds a small component to improve the fit of the baseline model.

In the case of local scale mixture models of the exponential distribution, the
implicit assumption of a scale dispersion mixing, seems reasonable from this
point of view and also, because most of the behavior of a general mixture of
exponentials is essentially determined by the coefficient of variation of the mix-
ing distribution (Keilson and Steutel, 1974). The locality implicit in our models
should always has to be in mind when trying to make more global conclusions
about the mixture structure. For an extension of local mixture models, to cover
global properties of mixtures, see the paper by Marriott in this volume.

In this paper, we showed that simple likelihood and moment inference meth-
ods can give considerable insight in the analysis of mixtures of the exponen-
tial distribution. Alternatively, Bayesian inference can be easily implemented
to give also very informative inference summaries. See Marriott (2002) and
Anaya-Izquierdo and Marriott (2006).

Local scale mixtures of the exponential distribution are related with other
typical models to analyze positive data. For example, the relationship with the
Weibull distribution can be understood within the framework of example 1
applying an appropriate limit. See chapter 4 of Anaya-Izquierdo (2006) for
more details. A less clear relation with the gamma distribution arises, for exam-
ple, when one notes that the model in expression (4) can be written as an
affine combination of three different models: a exponential distribution with
mean μ, a gamma distribution with mean 2μ and a gamma distribution with
mean 3μ.

Finally, our results can be modified to handle natural exponential families
with quadratic variance function other than the exponential distribution. See
Anaya-Izquierdo and Marriott (2006).
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A Appendix on asymptotic expansions

Here we describe the asymptotic behavior of scale dispersion mixtures of F
when ε ↓ 0. To find an asymptotic expansion of (1) it is tempting to expand
the density f (x; μ) in a Taylor series around μ = m and then perform termwise
integration, but such procedure is only justified when the integrand is exponen-
tially decaying. In this respect, note that any scale dispersion mixture can be
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expressed as the ratio of two integrals of the form

Ix,m(ε) =
∞∫

0

H(x, μ) exp

(
−hm(μ)

ε

)
dμ (9)

for some positive functions H and hm. The important issue is that, for each
m, the function hm(μ) has an absolute minimum at μ = m. This structure is
particularly suitable for the application of Laplace’s Method. Laplace’s method
gives an asymptotic series expansion for Ix,m(ε) valid when ε ↓ 0. For details on
Laplace’s method see Wong (2001).

So, we can always obtain an asymptotic series expansion for each numerator
and denominator and then divide those to obtain an expansion for any scale
dispersion mixture as the following theorem shows. Here, f (i)(x; m) denotes the
derivatives of f (x; μ) with respect to μ evaluated at μ = m.

Theorem 3 Let F = { f (x; μ) : μ > 0} be the exponential distribution. Then,
for any r ∈ N, the scale dispersion mixture g(x; Q(·, m, ε)) has the following
asymptotic expansion:

f (x; M1(m, ε)) +
2r∑

i=2

[M1(m, ε)]i Ni(ε)

i! f (i)(x; M1(m, ε)) + Ox,m(εr+1) (10)

as ε ↓ 0. The functions M1(m, ε) and Ni(ε) satisfy

EQ[μ] ∼ M1(m, ε) = m
[
1 + O(ε)

]
,

Ni(ε) = O(εu(i)),

EQ[(μ − EQ[μ])i]
(EQ[μ])i ∼ Ni(ε) + O(εr+1), i = 2, 3, . . . , 2r

as ε ↓ 0 and where u(i) = �(i + 1)/2�. Here �x� means rounding towards −∞.

Proof This is just a slightly different version of one of the Theorems in Anaya-
Izquierdo and Marriott (2006). We will only prove the case r = 2. Using
Laplace’s method in both numerator and denominator of g(x; Q(μ, m, ε)) and
then dividing the two series, one obtains, (after a considerable amount of
algebra),

g(x; Q(μ; m, ε)) ∼ f (x; m) +
4∑

i=1

miA∗
i (ε)f

(i)(x; m) + Ox,m(ε3)
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as ε ↓ 0 where

A∗
1(ε) = −ε

(
1 + d(3)

0

4

)

+ ε2

(
d(3)

0 d(4)
0

6
− 2 + d(4)

0

4
− d(5)

0

16
− 3d(3)

0

4
− 5[d(3)

0 ]3

64
− [d(3)

0 ]2

4

)

A∗
2(ε) = ε

2
+ ε2

(
5[d(3)

0 ]2

32
+ 1 − d(4)

0

8
+ d(3)

0

2

)

A∗
3(ε) = −ε2

(
1
2

+ 5d(3)
0

24

)

A∗
4(ε) = ε2

8
,

and d(i)
0 for i = 3, 4, 5 are the derivatives of d0(u) evaluated at u = 1. Now we

define

M∗
1(m, ε) := m

[
1 + δ(ε)

]

M2(ε) := ε

2
+ ε2

[
[d(3)

0 ]2

8
+ 1

2
− d(4)

0

8
+ d(3)

0

4

]

M3(ε) := −ε2d(3)
0

12

M4(ε) := ε2

8
,

where δ(ε) := A∗
1(ε) + O(ε3). Using Taylor’s Theorem on f (x; M∗

1(m, ε)) and
f (i)(x; M∗

1(m, ε)), we obtain that for small δ(ε)

f (x; M∗
1(m, ε)) +

4∑
i=2

miMi(ε) f (i)(x; M∗
1(m, ε))

= f (x; m[1 + δ(ε)]) +
4∑

i=2

miMi(ε) f (i)(x; m[1 + δ(ε)])

∼ f (x; m) +
4∑

i=1

miA∗
i (ε)f

(i)(x; m) + Ox,m(ε3) .
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Now

f (x; M∗
1(m, ε)) +

4∑
i=2

miMi(ε) f (i)(x; M∗
1(m, ε))

= f (x; M∗
1(m, ε)) +

4∑
i=2

[
M∗

1(m, ε)
]i Mi(ε)[

1 + δ(ε)
]i f (i)(x; M∗

1(m, ε)) .

By defining

N∗
i (ε) := i! Mi(ε)[

1 + δ(ε)
]i ,

it is easy to check that simple expansions of N∗
i (ε) for small ε, coincide (up to

O(ε3)) with the following expansions,

EQ[(θ − EQ[θ ])2]
(EQ[θ ])2 ∼ ε +

[
12 + 4d(3)

0 − d(4)
0 + [d(3)

0 ]2

4

]
ε2 + O(ε3)

EQ[(θ − EQ[θ ])3]
(EQ[θ ])3 ∼ −d(3)

0

2
ε2 + O(ε3)

EQ[(θ − EQ[θ ])4]
(EQ[θ ])4 ∼ 3ε2 + O(ε3). (11)

�	
Under a reparametrization of F , the scale dispersion structure of the mixing

distribution can be lost but the dispersion structure is preserved, see Jorgensen
(1997) for details. In such a case, an appropriate variant of Theorem 3 holds.
See Anaya-Izquierdo and Marriott (2006).

We are not very concerned about the behavior of the remainder terms,
because it is not our aim to use these expansions to approximate scale disper-
sion mixtures in any analytical sense. We are only interested in the behavior of
scale dispersion mixtures when ε is small. So, according to Theorem 3, up to
an specific asymptotic order, the asymptotic behavior of this kind of mixtures
depends on

1. the behavior of f (x; μ) near the mean of the mixing distribution through its
higher order derivatives and

2. the mixing distribution only through the set {M1(m, ε), N2(ε), . . . , N2r(ε)}
which is related to its moments.

The second point makes sense as when the mixing distribution is unimodal
and sufficiently concentrated, then it can be very much determined by its first
few moments. See Johnson and Rogers (1951) and Janson (1988). Laplace’s
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expansions are modal expansions, but here we modify them to obtain a mean
centered expansion. This explains the absence of the first derivative term.
Details are in the proof. The pairing of asymptotic orders is explained by the
scale dispersion mixing structure. In any scale dispersion model, the difference
between the mean and the position m and also the coefficient of variation are
of order ε. The third and fourth normalized moments are of order ε2 and so on.

It is well known that the moment structure of any mixture is determined by
the moment structure of the mixing distribution. A relevant reference being
Lindsay (1989). The linear structure of the expansions, given by Theorem 3,
gives a simple description of how the moments of the mixing distributions
affects the moments of the observed random variable X. To clarify ideas, con-
sider the following example.

Example 4 (Example 1 revisited) In the case where the mixing distribution is
the reciprocal Gamma (β = −1), we obtain the following expansions by apply-
ing Theorem 3. For simplicity in notation, here we suppress the dependence of
M1, f (i) and the remainders on x, m and ε. We also write gβ for g(x; Qβ). For the
mean we obtain M1 ∼ m

[
1 + ε + ε2 + O(ε3)

]
and when r = 1, 2, 3 we obtain,

respectively,

g−1 ∼ f + M2
1

[ ε

2!
]

f (2) + O(ε2)

g−1 ∼ f + M2
1

[
ε + 2ε2

2!
]

f (2) + M3
1

[
4ε2

3!
]

f (3) + M4
1

[
3ε2

4!
]

f (4) + O(ε3)

g−1 ∼ f + M2
1

[
ε + 2ε2 + 4ε3

2!
]

f (2) + M3
1

[
4ε2 + 20ε3

3!
]

f (3)

+ M4
1

[
3ε2 + 42ε3

4!
]

f (4) + M5
1

[
40ε3

5!
]

f (5) + M6
1

[
15ε3

6!
]

f (6) + O(ε4).

For the Hyperbola case (β = 0), we obtain M1 ∼ m
[
1 + ε/2 − ε2/8 + O(ε3)

]
and for r = 1, 2, 3, respectively.

g0 ∼ f + M2
1

[ ε

2!
]

f (2) + O(ε2)

g0 ∼ f + M2
1

[ ε

2!
]

f (2) + M3
1

[
3ε2

3!
]

f (3) + M4
1

[
3ε2

4!
]

f (4) + O(ε3)

g0 ∼ f + M2
1

[
ε − 3/8ε3

2!
]

f (2) + M3
1

[
3ε2 − ε3/2

3!
]

f (3)

+ M4
1

[
3ε2 + 15ε3

4!
]

f (4) + M5
1

[
30ε3

5!
]

f (5) + M6
1

[
15ε3

6!
]

f (6) + O(ε4)
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What we can learn from this example is that (for sufficiently small ε) the
asymptotic expansions given by Theorem 3 can be very similar to each other
(with the same value of r), even if the mixing distribution is different. More-
over, a small value of r can describe well the asymptotic behavior of the mixture
because the higher order moments become negligible for a big value of r.
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