
AISM (2006) 58: 647–674
DOI 10.1007/s10463-006-0041-0

Tomoyuki Sugimoto · Toshimitsu Hamasaki

Properties of estimators of baseline hazard
functions in a semiparametric cure model

Received: 14 September 2004 / Revised: 28 July 2005 / Published online: 7 September 2006
© The Institute of Statistical Mathematics, Tokyo 2006

Abstract We consider a semiparametric cure model combining the Cox model
with the logistic model. There are the two distinct methods for estimating the non-
parametric baseline hazard function of the model; one is based on a pseudo partial
likelihood and the other is to use an EM algorithm. In this paper, we discuss the
consistency and the asymptotic normality of the estimators from the two methods.
Then, we show that the estimator from the pseudo partial likelihood can be charac-
terized by the (forward) Volterra integral equation, and the estimator from the EM
algorithm by the Fredholm integral equation. These characterizations reveal differ-
ences in the properties between the estimators from the two methods. In addition,
a simulation study is performed to numerically confirm the results in several finite
samples.

Keywords Cox model · Logistic model · Nonparametric baseline hazard ·Volterra
integral equation · Fredholm integral equation · Asymptotic property

1 Introduction

In statistical analysis of time-to-event data, we may often face with a situation
in which some individuals never experience the event of interest on a finite time
interval. For example, in survival analysis, if the event of interest is restricted to
death by an original cancer, individuals achieving the cure from the cancer do not
have the event at all. Then, such cured individuals are observed as censoring at the
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end of the follow-up period. The standard Cox model (Cox, 1972) is extremely
useful tool in analysis of censored data, while it may be inappropriate to describe
a true structure of such data. To overcome this problem, the cure-mixture model
can be employed, where the model is formulated by assuming that population is a
mixture of susceptible and non-susceptible (cured) individuals.

The parametric cure-mixture models have received much attention earlier. Re-
cently, however, nonparametric modeling approaches with a cure rate have been
proposed by several authors (Kuk and Chen, 1992; Lu and Ying, 2004; Tsodikov,
1998). Especially, Kuk and Chen (1992) proposed the semiparametric generaliza-
tion of the cure-mixture model by Farewell (1986), which used the Cox model for
the latency distribution and the logistic model for cure fraction; we call this “the
Cox cure model”.

Several methods have been available for estimating regression parameters in
the Cox cure model. Kuk and Chen (1992) developed a method involving Monte
Carlo simulation for approximating a rank-based likelihood. Peng and Dear (2000)
and Sy and Taylor (2000) considered a method based on the EM algorithm to com-
pute the joint parametric–nonparametric likelihood. Furthermore, Sugimoto et al.
(2005) proposed a method based on the pseudo partial likelihood. Expect the for-
mulation of likelihood, major differences among the methods are caused by how
the nonparametric baseline hazard function is estimated or eliminated. Therefore,
the estimation of the baseline hazard function is the key in the Cox cure model and
it is surely important to know the properties of estimators for the baseline hazard.
However, unfortunately the properties of estimators for the baseline hazard have
not yet been established.

The two distinct methods have been proposed in estimating the baseline haz-
ard of the Cox cure model. One is based on the pseudo partial likelihood method
(referred to as the pseudo-estimation) and the other is to use the EM algorithm
(referred to as the EM-estimation). In this paper, we discuss properties of the two
estimators from the pseudo-estimation and the EM-estimation. This would throw
light on the background of the existence of the two estimators. The main purpose
of this paper is to investigate the asymptotic behaviors of the two estimators of
the baseline hazard. Especially, for given regression parameters, we establish the
strong consistency and asymptotic normality of the two estimators. Concurrently,
we formulate an attractive relationship between the two estimators by characteriz-
ing them using the (forward)Volterra and Fredholm integral equations, respectively.
Then, the Fredholm integral equation is altered into a backward Volterra under a
certain additional condition. This fact intuitionally suggests that the two estimators
would have the similar relationship to that in the forward and backward system in
a stochastic process.

This paper is structured as follows: in Sect. 2 we describe the key notation
and formulation of the model and the pseudo- and EM-estimations used in the
subsequence sections. In Sect. 3 we establish the large sample properties of the
two estimators for the baseline hazard including the strong consistency and asymp-
totic normality, and then we provide these proofs in Sects. 4 and 5. In Sect.
6 we perform a simulation study to confirm the results obtained in the
previous sections. Finally, in Sect. 7 we summarize some findings as concluding
remarks.
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2 Notation and formulation

2.1 The Cox cure model

Let Ti denote the i-th observable random variable min(T ∗
i , Ui), where T ∗

i and
Ui are the random variables of true survival and censoring, respectively. Sup-
pose that Ti and Ui are independent. Let �i denote the i-th censoring indicator
I (T ∗

i ≤ Ui), where I (·) is the indicator function. Let Xi and Zi be the i-th co-
variate vectors related to cure rate and uncured survival, respectively, where the
covariates Xi and Zi are usually random variables. In the Cox cure model, the data
of (Ti, �i, Xi, Zi) are supposed to be observed for i = 1, . . . , n. Also, as usual,
information on (Ti, �i) can be expressed as (Ni(t), Yi(t)), 0 ≤ t by the counting
and at-risk processes, where Ni(t) = I (Ti ≤ t, �i = 1) and Yi(t) = I (Ti ≥ t).

Let λi and ri be the i-th hazard function on given Zi and the i-th relative risk
function, respectively. Suppose that λi holds the proportional hazards model if the
i-th individual is uncured and λi is zero-hazard otherwise. That is, we define

λi(t) = λi(t, β) = Giλ0(t)ri(β) and ri = ri(β) = r(β ′Zi) = exp(β ′Zi),

where Gi = I (the i−th individual is uncured), λ0(t) is the baseline hazard function
and β is the parameter vector corresponding to Zi .

Let ci be the i-th cure rate function defined as

ci = ci(α) = c(α′Xi) = Pr(Gi = 0|Xi),

where α is the parameter vector corresponding to Xi and c(·) is a link function in the
terminology of generalized linear model, for example, c(x) = exp(x)/{1+exp(x)}
in the logistic model.

Let wi(t; θ, �0) be the conditional probability that the i-th individual will
eventually belong in the uncured group given (θ, �0) and Yi(t) = 1 for t , where
θ = (α′, β ′)′ and �0(t) is the cumulative baseline hazard

∫ t

0 λ0(s)ds. Suppose that
the censoring density Pr(Ui |Zi) and the conditional density Pr(Zi |Xi) of covariates
do not depend on Gi . Then wi is written as

wi(t; θ, �0) = (1 − ci(α))Si(t; β, �0)/{ci(α) + (1 − ci(α))Si(t; β, �0)},
where Si(t; β, �0) is the i-th survival function exp{−ri(β)�0(t)}.

For simplicity, we may occasionally omit θ when it is clear that a function
depends on θ , for example, ri = ri(β), ci = ci(α), Si(t; �0) = Si(t; β, �0) and
so on.

2.2 The estimator of baseline hazard from the pseudo-estimation

Here we briefly describe the pseudo-estimation for the estimator of baseline hazard.
Let �̂

�
0 be the estimator of cumulative baseline hazard function from the pseudo-

estimation, then we can write

�̂
�
0(t; θ) =

∑

{i:Ti≤t}

�i

∑n
j=1 Yj (Ti)rj (β)wj

(
Ti; θ, �̂

�
0

) . (1)
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Suppose that Ft− is the history just prior to t but does not include the infor-
mation on Gi, i = 1, . . . , n. Given Ft−, the conditional expectation of dNi(t) is

E[dNi(t)|Ft−] = Yi(t)ri(β)wi(t; θ, �0)d�0(t).

Hence, the processes Mi(t) = Ni(t) − ∫ t

0 Yi(s)ri(β)wi(s; θ, �0)d�0(s), i =
1, . . . , n are Ft -martingales if (θ, �0) is known. The (pseudo) full likelihood con-
structed from the counting processes in such filtration Ft is written as

Lpf(θ, �0) =
n∏

i=1

{λ0(Ti)ri(β)wi(Ti; θ, �0)}�i

× exp





−

Ti∫

0

ri(β)wi(t; θ, �0)d�0(t)





.

Then, we can find �̂
�
0(·; θ) in (1) as a Breslow’s estimate (Breslow, 1972) cor-

responding to Lpf . Substituting �̂
�
0(·; θ) into �0 in Lpf(θ, �0) leads to a partial

likelihood for θ :

Lpp

(
θ, �̂

�
0

)
=

n∏

i=1





ri(β)wi

(
Ti; θ, �̂

�
0

)
/

n∑

j=1

Yj (Ti)rj (β)wj

(
Ti; θ, �̂

�
0

)





�i

,

which we call the pseudo partial likelihood. The estimate of θ can be obtained by
maximizing Lpp(θ, �̂

�
0) over θ . For further discussions, see Sugimoto et al. (2005).

2.3 The estimator of baseline hazard from the EM-estimation

Here we briefly describe the EM-estimation for the estimator of baseline hazard.
Let �̂

�
0 be the estimator of cumulative baseline hazard function from the EM-esti-

mation, then we can write

�̂
�
0(t; θ) =

∑

{i:Ti≤t}

�i

∑n
j=1 Yj (Ti)rj (β)

{
�j + (1 − �j)wj

(
Tj ; θ, �̂

�
0

)} . (2)

The observed full (joint parametric–nonparametric) likelihood in the Cox cure
model is

Lmf(θ, �0) =
n∏

i=1

{λ0(Ti)ri(β)(1 − ci(α))Si(Ti; β, �0)}�i

× {ci(α) + (1 − ci(α))Si(Ti; β, �0)}1−�i .

The E-step transforms an incomplete element contributed as a marginal probability
ci + (1 − ci)Si(Ti; �0) into a complete-data form based on the EM algorithm. The
EM-type complete likelihood via the m-th E-step for Lmf is

LEM
f (θ, �0|w(m))=

n∏

i=1

ci(α)1−w
(m)
i (1−ci(α))w

(m)
i {λ0(Ti)ri(β)}�i Si(Ti; β, �0)

w
(m)
i ,
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where w
(m)
i = �i + (1 − �i)wi(Ti; θ(m), �

(m)
0 ) and (θ(m), �

(m)
0 ) is a pair of

current estimates in the m-th EM-iteration (m ≥ 0). In the m-th M-step, we find a
Breslow’s estimate �̂

�
0(t |β, w(m)) = ∑

{i:Ti≤t} �i/
∑n

j=1 Yj (Ti)rj (β)w
(m)
j for �0.

Substituting �̂
�
0(·|β, w(m)) into �0 in LEM

f (θ, �0|w(m)) leads to a partial likelihood
for θ :

LEM
p (θ |w(m))=

n∏

i=1

ci(α)1−w
(m)
i (1 − ci(α))w

(m)
i





ri(β)

/
n∑

j=1

Yj (Ti)rj (β)w
(m)
j






�i

.

The M-step of LEM
f (θ, �0|w(m)) on (θ, �0) is replaced by maximizing

LEM
p (θ |w(m)) over only θ in cases where �0 is nonparametric nuisance, so that we

have θ(m+1) = argmaxθL
EM
p (θ |w(m)) and �

(m+1)
0 (·) = �̂

�
0(·|β(m+1), w(m)). For the

next (m+1)-th E-step, w(m) is updated to w(m+1).We can search θ(m) by maximizing
Lmf(θ

(m), �
(m)
0 ) with the above EM-iterations. Also, this EM-estimation is usually

equivalent to achieving (θ(m), �
(m)
0 ) = (θ(m+1), �

(m+1)
0 ). Then, since w(m) =

w(m+1), we have �
(m+1)
0 (·) = �̂

�
0(·|β(m+1), w(m+1)) = �̂

�
0(·|θ(m+1), �

(m+1)
0 ). For

such θ = θ(m+1) and �̂
�
0 = �

(m+1)
0 , we can find �̂

�
0(t; θ) = �̂

�
0(t |θ, �̂

�
0) described

in (2). For further discussions, see Sugimoto and Goto (1999), Peng and Dear
(2000) and Sy and Taylor (2000).

3 Main results

We shall observe the survival time on the interval [0, τe], where τe is finite and
the largest follow-up time. Let λ∗

0(·) be the true function of λ0(·). Also, let α∗
and β∗ be the true parameters of α and β. We define the subdistribution function
N(t) = Pr(T ≤ t, � = 1), then we can write

N(t) = E [I (T ≤ t, � = 1|X, Z)]

= E




t∫

0

λ∗
0(T )r∗(1 − c∗)S∗(T )S∗

C(T ; X, Z)dT



 ,

where c∗ = c(α∗′X), r∗ = r(β∗′Z), S∗(t) = exp{−r∗�∗
0(t)}, �∗

0(t) = ∫ t

0 λ∗
0(s)ds

and S∗
C(t; X, Z) is the true survival function of censoring. We assume S∗

C(t; X, Z)
is Lipschitz continuous on t ∈ [0, τe) and, for simplicity, we write S∗

C(t) =
S∗

C(t; X, Z). Differentiating N(t) with respect to t , we have the relationship

λ∗
0(t)dt = dN(t)

/
E
[
r∗(1 − c∗)S∗(t)S∗

C(t)
]

. (3)

Convergence almost surely (→a.s.), convergence in probability (→p) and conver-
gence in distribution (→D) are relative to the probability measures parameterized
by λ∗

0, α
∗, β∗, and S∗

C .
Let Nn(t) be the empirical estimate of N(t). Then we can find the following

expressions
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Nn(t) = En




t∫

0

dNi(s)



 = En [(1 − Yi(t))�i] = En [I (Ti ≤ t, �i = 1)] ,

where En[f (Ri)] = n−1∑n
i=1 f (Ri) is the empirical expectation corresponding

to the theoretical expectation E[f (R)] of a random function f (R). In this paper,
we consistently use this notation.

3.1 On the estimator �̂
�
0 from the pseudo-estimation

First, we define the important notations:

S
�
n(t; θ, �0) = En[rj (β)wj (t; θ, �0)Yj (t)] and

S
�(t; θ, �0) = E[r(β)w(t; θ, �0)Y (t)].

The empirical expectation expression of (1) is

�̂
�
0(t; θ) =

t∫

0

dNn(s)
/

S
�
n

(
s; θ, �̂

�
0

)
. (4)

To compute �̂
�
0(·), we can solve (4) as follows: given �̂

�
0(T(i−1)), the next �̂

�
0(T(i))

is found from x = �̂
�
0(T(i))−�̂

�
0(T(i−1)) such that x −�(i)/

∑
j Yj (T(i))rjwj (T(i);

�̂
�
0(T(i−1))+x) = 0, where (T(1), . . . , T(k)) is the order statistic of observed failure

times of (T1, . . . , Tn) and T(0) = 0.
The heuristic limit of (4) is

�
�
0(t; θ) =

t∫

0

dN(s)
/

S
�
(
s; θ, �

�
0

)
. (5)

Note that we can write S
�(s; θ, �0) = E

[
r(β)w(s; θ, �0){c∗ + (1 − c∗)S∗(s)}

S∗
C(s)

]
since the conditional expectation of Y (s) given (X, Z) is {c∗ + (1 −

c∗)S∗(s)}S∗
C(s). So, when θ = θ∗, one solution of �

�
0(·; θ∗) is �∗

0(·) using (3)
since we have S

�(t; θ∗, �∗
0) = E[r∗w∗(s){c∗ + (1 − c∗)S∗(s)}S∗

C(s)] = E[r∗(1 −
c∗)S∗(t)S∗

C(t)]. To see this uniqueness, we consider the following equation derived
from a Taylor expansion of (5) around �∗

0:

�
�
0(t; θ∗) − �∗

0(t) =
t∫

0

(
�

�
0(s; θ∗) − �∗

0(s)
)

B̃∗�(s)d�∗
0(s)

/
S

�
(
s; θ∗, ��

0

)
,

where B̃∗�(s) = E[r∗2w(s; θ∗, �̃0)(1 − w(s; θ∗, �̃0))Y (s)] and �̃0(s) is on the
line segment between �

�
0(s; θ∗) and �∗

0(s) for all s ∈ [0, τe]. For a similar detailed
discussion, see Sect. 4.1. This is a Volterra integral equation, so that it can be
uniquely solved by Theorem A.1 when τe < ∞ and sups∈[0,τe] |B̃∗�(s)d�∗

0(s)/S
�

(s; θ∗, ��
0)| < ∞.
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Now we shall summarize the results that �̂
�
0(·; θ) converges almost surely to

the true functional form �
�
0(·; θ) and the asymptotic distribution of

√
n(�̂

�
0(·; θ)−

�
�
0(·; θ)) is a Gaussian martingale under the true parameter θ∗.

Conditions (�) Let 
 be a neighborhood of θ∗. �
�
0 is a cumulative hazard defined

in (5).

(0) E
[
r(β)2

]
< ∞ on β ∈ 
.

(I�) S
�(t; θ, �

�
0) is bounded away from zero on (θ, t) ∈ 
 × [0, τe].

(II�) supθ∈
,t∈[0,τe]

∣
∣
∣S�

n(t; θ, �
�
0) − S

�(t; θ, �
�
0)]
∣
∣
∣→a.s. 0 (as n → ∞).

(III�)
√

n
{
S

�
n(t; θ∗, ��

0) − S
�(t; θ∗, ��

0)]
}

converges weakly to a zero-mean

Gaussian process on t ∈ [0, τe] (as n → ∞).

Lemma 1 Suppose that Conditions (0), (I�), and (II�) are satisfied. Then, as n→∞
sup

θ∈
,t∈[0,τe]
|�̂�

0(t; θ) − �
�
0(t; θ)| →a.s. 0.

Lemma 2 Suppose that Conditions (0), (I�), and (III�) are satisfied at θ = θ∗.
Then, as n → ∞,

√
n(�̂

�
0(t; θ∗)−�∗

0(t)) converges weakly to a zero-mean Gauss-
ian martingale process on t ∈ [0, τe] with the covariance function given in (12).

The proofs of Lemmas 1 and 2 are given in Sects. 4.2 and 4.3, respectively.Also, the
derivations of the covariance function and the martingale property are discussed in
Sect. 4.4.

3.2 On the estimator �̂
�
0 from the EM-estimation

First, we define the important notations:

S
�
n(t; θ, �0) = En

[
rj (β){�j + (1 − �j)wj (Tj ; θ, �0)}Yj (t)

]
and

S
�(t; θ, �0) = E [r(β){� + (1 − �)w(T ; θ, �0)}Y (t)] .

The empirical expectation expression of (2) is

�̂
�
0(t; θ) =

t∫

0

dNn(s)
/

S
�
n

(
s; θ, �̂

�
0

)
. (6)

Also, by the process expression, S
�
n can be written as

S
�
n

(
s; θ, �̂

�
0

)
= En




τe∫

s

rj (β)dNj(x)



+ En




τe∫

s

rj (β)wj

(
x; θ, �̂

�
0

)
dNC

j (x)



 ,

where NC
j (x) = I (Tj ≤ x, �j = 0). From these expressions, we can find that

�̂
�
0(t; θ) depends on future values �̂

�
0(x; θ) for all x > t included in w(x; θ, �̂

�
0).
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To avoid such dependencies, and to obtain an easier expression to compute the
estimate, using a backward procedure, we can rewrite �̂

�
0(t; θ) by

�̂
�
0(t; θ) = �̂

�
0(τe; θ) −

τe∫

t+
dNn(s)

/



En




τe∫

s

rj (β)dNj(x)





+ En




τe∫

s

rj (β)wj

(
x; θ, �̂

�
0

)
dNC

j (x)









.

Therefore, given a value of �̂
�
0(T(k); θ), the use of this new expression can automat-

ically provide a sequence of �̂
�
0(T(k−1); θ), . . . , �̂�

0(T(1); θ) and �̂
�
0(T(0); θ) in turn.

Then, the sequence from �̂
�
0(T(k); θ) which gives �̂

�
0(T(0); θ) = 0 is the solution

of (6).
The heuristic limit of (6) is

�
�
0(t; θ) =

t∫

0

dN(s)
/

S
�
(
s; θ, �

�
0

)
. (7)

Also, using a process expression as well as S
�
n, we rewrite

S
�
(
s; θ, �

�
0

)
= E




τe∫

s

r(β)dN(x)



+ E




τe∫

s

r(β)w
(
x; θ, �

�
0

)
dNC(x)



 .

Note that E[dN(x)|X, Z] = (1−c∗)S∗(x)S∗
C(x)r∗d�∗

0(x) and E[dNC(x)|X, Z] =
{c∗ + (1 − c∗)S∗(x)} S∗

C(x)d�∗
C(x), where �∗

C is the cumulative hazard corre-
sponding to S∗

C . So, when θ = θ∗, one solution of �
�
0(·; θ∗) is �∗

0(·) using (3)
since we have

S
�(s; θ∗, �∗

0) = E



r∗
τe∫

s

(1 − c∗)S∗(x)S∗
C(x)r∗d�∗

0(x)





+E



r∗
τe∫

s

w∗(x)
{
c∗ + (1 − c∗)S∗(x)

}
S∗

C(x)d�∗
C(x)





= E



r∗(1 − c∗)

τe∫

s

S∗(x)S∗
C(x){r∗d�∗

0(x) + d�∗
C(x)}





= E
[
r∗(1 − c∗)S∗(s)S∗

C(s)
]
.

To see this uniqueness, we consider the following equation derived from a Taylor
expansion of (7) around �∗

0:
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�
�
0(t; θ∗) − �∗

0(t) =
τe∫

0

(
�

�
0(s; θ∗) − �∗

0(s)
)

dB̃∗�(s)

×





min(s,t)∫

0

d�∗
0(u)

/
S

�
(
u; θ∗, ��

0

)




,

where dB̃∗�(s) = E[r∗2w(s; θ∗, �̃0)(1 − w(s; θ∗, �̃0))dNC(s)] and �̃0(s) is on
the line segment between �

�
0(s; θ∗) and �∗

0(s) for all s ∈ [0, τe]. For a similar
detailed discussion, see Sect. 5.1. This is a Fredholm integral equation, so that it is
solved by Theorem A.2. For the Fredholm determinant D(ξ) defined in Theorem

A.2 with K�(t, s)ds = dB̃∗�(s)
{∫ min(s,t)

0 d�∗
0(u)/S

�(u; θ∗, ��
0)
}

, let D
�
θ∗ = D(1).

When we can assume D
�
θ∗ 	= 0, the solution is unique by Theorem A.2. Simi-

larly, this fact is held in the Fredholm determinant D(1) corresponding to cases of
some finite n-sample or θ 	= θ∗. For simplicity, suppose that the uniquenesses of
�̂

�
0(·; θ) and �

�
0(·; θ) described by such Fredholm determinant are held without

further investigation in this paper.
Now we shall summarize the results that �̂

�
0(·; θ) converges almost surely to

the true functional form �
�
0(·; θ) and the asymptotic distribution of

√
n(�̂

�
0(·; θ)−

�
�
0(·; θ)) is Gaussian under the true parameter θ∗.

Conditions (�) Let 
 be a neighborhood of θ∗. �
�
0 is a cumulative hazard defined

in (7).

(0) E
[
r(β)2

]
< ∞ on β ∈ 
.

(I�) S
�(t; θ, �

�
0) is bounded away from zero on (θ, t) ∈ 
 × [0, τe].

(II�) supθ∈
,t∈[0,τe]

∣
∣
∣S�

n(t; θ, �
�
0) − S

�(t; θ, �
�
0)

∣
∣
∣→a.s. 0 (as n → ∞).

(III�)
√

n
{
S

�
n(t; θ∗, ��

0) − S
�(t; θ∗, ��

0)
}

converges weakly to a zero-mean

Gaussian process on t ∈ [0, τe] (as n → ∞).

Lemma 3 Suppose that Conditions (0), (I�), and (II�) are satisfied. Let �̂
�
0(·; θ)

and �
�
0(·; θ) be unique. Then, as n → ∞,

sup
θ∈
,t∈[0,τe]

∣
∣
∣�̂�

0(t; θ) − �
�
0(t; θ)

∣
∣
∣→a.s. 0.

Lemma 4 Suppose that Conditions (0), (I�), and (III�) are satisfied at θ = θ∗. Let
�̂

�
0(·; θ∗) and �

�
0(·; θ∗) be unique. Then, as n → ∞,

√
n(�̂

�
0(t; θ∗) − �∗

0(t)) con-
verges weakly to a zero-mean Gaussian process on t ∈ [0, τe] with the covariance
function given in (16)

The proofs of Lemmas 3 and 4 are given in Sects. 5.2 and 5.3, respectively. The
derivation of the covariance function is discussed in Sect. 5.4.
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3.3 Identically distributed covariates

Conditions (�) and Conditions (�) given in the previous sections are formed to
conveniently use in the proof of Lemmas 1, 2, 3, and 4. However, the Conditions
may appear to be not so direct for the random variables included in the model.
In this section, we consider the i.i.d. case of covariates and provide elementary
conditions corresponding to Conditions (�) and Conditions (�).

Conditions (i.i.d.) In the i.i.d. case with finite dimensional vectors (Xi, Zi, Ti, �i)
left continuous with right hand limits, Conditions (�) and Conditions (�) are satis-
fied if Pr(Y (τe) = 1) > 0 and there exists a neighborhood 
 of θ∗ such that 
 is
compact and

�
�
0(τe; θ) < ∞, �

�
0(τe; θ) < ∞, 0 < E[r(β)2] < ∞, and E[c(α)] < 1.

Proof Let S�

i (t, θ) = ri(β)wi(t; θ, �
�
0)Yi(t) and S�

i (t, θ) = ri(β){�i + (1 −
�i)wi(Ti; θ, �

�
0)}Yi(t), i = 1, . . . , n, which are also i.i.d. elements of the pro-

cesses indexed by [0, τe] × 
.
By E[c(α)]<1, E[r(β)]<∞ and�



0(τe; θ)<∞, we have E[w(τe; θ, �


0)] > 0
( = �, �). Also, by Pr(Y (τe) = 1) > 0 and E[r(β)2] > 0, we have E[Y (τe)] > 0
and E[r(β)] > 0, respectively. Hence, since the probability of S

i (t, θ) = 0 ( =
�, �) is not zero at each t ∈ [0, τe], (I�) and (I�) are satisfied.

For (II�) and (II�), we use a strong law of large numbers (SLLN) brought
from the Glivenko–Cantelli. Here, we can refer the SLLN on space of right-con-
tinuous functions on [0, τe] with left limits taking values in a separable Banach
space (Andersen and Gill, 1982, Theorem III.1). Since S�

i (t, θ) and S�

i (t, θ) are
continuous functions on compact 
 and we have E supt∈[0,τe],θ∈
 |S

i (t, θ)| ≤
E supθ∈
 |S

i (0, θ)| < ∞ ( = �, �), (II�) and (II�) are proved by direct use of
the SLLN.

For (III�) and (III�), we use a central limit theorem (CLT) brought from the
Donsker. Here, we can refer the CLT in van der Vaart and Wellner (1996, The-
orem 2.11.9). Since sample paths t 
→ S

i (t, θ∗) of the processes S

i (·, θ∗) are
non-increasing ( = �, �), the envelop functions of S

i (·, θ∗) are S

i (0, θ∗) and are
square integrable by E[r(β)2] < ∞, so that Lindeberg’s condition for the envelops
in the CLT is satisfied. Also, the entropy condition in the CLT is satisfied using
Example 2.11.16 in van der Vaart and Wellner (1996) because of the right-continu-
ity with left limits and the monotoneity of sample paths t 
→ S

i (t, θ∗) ( = �, �).
Therefore, (III�) and (III�) are proved by use of the CLT. ��

4 The asymptotic behavior of �̂
�
0 from the pseudo-estimation

For simplicity, for some θ ∈ 
, we write �
�
0(t) = �

�
0(t; θ) and �̂

�
0(t) = �̂

�
0(t; θ)

by dropping θ . Also, we write ŵ�(t) = w(t; θ, �̂
�
0) and w�(t) = w(t; θ, �

�
0).

4.1 A derivation of the Volterra integral equation

In this section, we show that the estimator from the pseudo-estimation is charac-
terized by the (forward) Volterra integral equation. This fact can be used for the
proofs of Lemmas 1 and 2.
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The difference �̂
�
0(t) − �

�
0(t) can be divided into the two terms as follows:

�̂
�
0(t) − �

�
0(t) = A�

n(t) +
t∫

0

(
dNn(s)

/
S

�
n

(
s; θ, �̂

�
0

)
− dNn(s)

/
S

�
n

(
s; θ, �

�
0

))
,

where

A�
n(t) =

t∫

0

dNn(s)
/

S
�
n

(
s; θ, �

�
0

)
−

t∫

0

dN(s)
/

S
�
(
s; θ, �

�
0

)
.

Then, a first-order Taylor expansion of ŵ�(s) in �̂
�
0(s) around �

�
0(s) gives ŵ�(s) =

w�(s) − r(β)w̃�(s)(1 − w̃�(s))(�̂
�
0(s) − �

�
0(s)), where w̃�(s) = w(s; θ, �̃

�
0) and

�̃
�
0(s) is on the line segment between �̂

�
0(s) and �

�
0(s) for all s ∈ [0, τe]. So, let

B̃
�
n(s) = En[rj (β)2w̃

�

j (s)(1 − w̃
�

j (s))Yj (s)], then we have

1
/

S
�
n

(
s; θ, �̂

�
0

)
− 1

/
S

�
n

(
s; θ, �

�
0

)

= B̃�
n(s)

(
�̂

�
0(s) − �

�
0(s)

)/
S

�
n

(
s; θ, �̂

�
0

)
S

�
n

(
s; θ, �

�
0

)
.

Using this, we have a (forward) Volterra integral equation

�̂
�
0(t) − �

�
0(t) = A�

n(t) +
t∫

0

(
�̂

�
0(s) − �

�
0(s)

)
B̃�

n(s)dĈ�
n(s), (8)

where dĈ
�
n(s) = d�̄

�
0(s)/S

�
n(s; θ, �̂

�
0) and d�̄

�
0(s) = dNn(s)/S

�
n(s; θ, �

�
0).

4.2 Consistency : proof of Lemma 1

The Volterra integral equation of (8) can be uniquely solved by Theorem A.1. For

�(t, s, ξ) defined with the kernel K�(t, s)ds = B̃

�
n(s)dĈ

�
n(s) in Theorem A.1, let



�
n(t, s) = 
�(t, s, 1) and K

�
n(t, s) = K�(t, s). Since we can apply Proposition

A.1 in a discrete Volterra integral equation, we have


�
n(t, s)ds = B̃

�
n(s)dĈ

�
n(s)

π u∈[s,t]

(
1 − B̃

�
n(u)dĈ

�
n(u)

) ,

where π denotes the product integral. Then, the solution of (8) is

�̂
�
0(t) − �

�
0(t) = A�

n(t) +
t∫

0

A�
n(s)


�
n(t, s)ds. (9)

The discussion of the limit of A
�
n(·) is the same as that of the Cox model

with time-dependent covariates. That is, by Conditions (I�) and (II�), we have
supθ∈
,t∈[0,τe] |A�

n(t)| = supθ∈
,t∈[0,τe] |�̄�
0(t) − �

�
0(t)| →a.s. 0.
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We easily show �
�
0(τe) < ∞ by Condition (I�), so that we have almost

surely S
�
n(τe; θ, �

�
0) > 0 on 
 from Condition (II�). This gives almost surely

En[Yj (τe)rj (β)] > 0, so that S
�
n(t; θ, �̂

�
0) > 0 is almost surely held under �̂

�
0(t) <

∞. Using the mathematical induction to the estimation process of �̂
�
0(·), we have

almost surely �̂
�
0(τe) < ∞ on 
.

We finally discuss the boundedness of kernel K
�
n(·). B̃

�
n(·) is almost surely

bounded on [0, τe] × 
 by Condition (0). S
�
n(s; θ, �̂

�
0) is almost surely bounded

away from zero on [0, τe] × 
 under �̂
�
0(τe) < ∞. d�̄

�
0(s)/ds is almost surely

bounded on [0, τe] in each θ ∈ 
 by the Lipschitz property of �
�
0(·), where the

notation d�̄
�
0(s)/ds includes {�̄�

0(T(i)) − �̄
�
0(T(i−1))}/(T(i) − T(i−1)) under a finite

n (i = 1, . . . , k). Therefore, K
�
n(·) is almost surely bounded on [0, τe] × 
, so

that 

�
n(·, ·) is almost surely bounded on [0, τe]2 ×
 by applying Proposition A.2.

Consequently, since we have almost surely |�̂�
0(t) − �

�
0(t)| ≤ M supt |A�

n(t)| for
some M < ∞ from (9), it follows that supθ∈
,t∈[0,τe] |�̂�

0(t) − �
�
0(t)| →a.s. 0. ��

4.3 Asymptotic normality: proof of Lemma 2

Note that �∗
0(t) = �

�
0(t; θ∗), so that we write w∗(t) = w(t; θ∗, ��

0), S
∗�
n (t) =

S
�
n(t; θ∗, ��

0) and S
∗�(t) = S

�(t; θ∗, ��
0). Also, to specify the case of θ = θ∗

considered here, we write �̂
�
0(t; θ∗) = �̂

�
0(t)|θ=θ∗ , �̄

�
0(t; θ∗) = �̄

�
0(t)|θ=θ∗ , and

w̃�(s; θ∗) = w̃�(s)|θ=θ∗ without dropping θ . Also, let Condition (II�m): supt∈[0,τe]

|S∗�
n (t) − S

∗�(t)| →p 0, then (III�) includes (II�m). So the results obtained in Sect.
4.2 are held in a version of convergence in probability.

From (9) with θ = θ∗, we have

√
n
(
�̂

�
0(t; θ∗) − �∗

0(t)
)

= √
nA∗�

n (t) +
t∫

0

√
nA∗�

n (s)
∗�
n (t, s)ds, (10)

where A
∗�
n (·) = A

�
n(·)|θ=θ∗ and 


∗�
n (·, ·) = 


�
n(·, ·)|θ=θ∗ . For a proof to converge

to a Gaussian process, we discuss that
√

nA
∗�
n (·) converges weakly to a Gaussian

process and 

�
n(·, ·) converges in probability to a deterministic function.

The discussion on the asymptotic normality of
√

nA
∗�
n (·) is similar to that of the

Cox model with time-dependent covariates. From Conditions (I�) and (III�) and a
delta method or martingale approach, we have

√
nA

∗�
n (·) →D G

�

A(·), where G
�

A(·)
is a zero-mean Gaussian martingale process.

Let B̃
∗�
n (·)= B̃

�
n(·)|θ=θ∗, Ĉ

∗�
n (·) = Ĉ

�
n(·)|θ=θ∗ , and K

∗�
n (t, s)ds = B̃

∗�
n (s)dĈ

∗�
n (s).

Here, to prove the result on 

∗�
n (·, ·), we discuss supt∈[0,τe] |

∫ t

0 K
�
n(t, s)ds −∫ t

0 K∗�

(t, s)ds| →p 0, where K∗�(t, s)ds = B∗�(s)dC∗�(s), B∗�(s) = E[r∗2w∗(s)
(1 − w∗(s))Y (s)] and dC∗�(s) = d�∗

0(s)/S
∗�(s).

We consider |B̃∗�
n (·)−B∗�(·)| ≤ b

�
1(·)+b

�
2(·) obtained via the triangle inequal-

ity, where
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b
�
1(t) =

∣
∣
∣En

[
r∗2
j w̃

�

j (t; θ∗)
(

1 − w̃
�

j (t; θ∗)
)

Yj (t)
]

− En

[
r∗2
j w∗

j (t)
(
1 − w∗

j (t)
)
Yj (t)

]∣∣ ,

b
�
2(t) = ∣∣En

[
r∗2
j w∗

j (t)
(
1 − w∗

j (t)
)
Yj (t)

]− E
[
r∗2w∗(t)

(
1 − w∗(t)

)
Y (t)

]∣∣ .

A Taylor expansion provides |w̃�(t; θ∗)m − w∗(t)m| ≤ r∗w̌(t; θ∗)|�̃�
0(t; θ∗) −

�∗
0(t)|(m = 1, 2), where w̌(t; θ∗) = w̃�(t; θ∗)|

�̃
�
0=�̌0

and min(�̃
�
0(t; θ∗), �∗

0(t))<

�̌0(t) < max(�̃
�
0(t; θ), �∗

0(t)). We have r∗w̌(t; θ∗) < �̌0(t)
−1 using xe−xy ≤

e−1y−1(x, y ≥ 0). For some ηn such that supt |�̃0(t; θ∗) − �∗
0(t)| ≤ η2

n, let
tηn

= inf{t : �̌0(t) ≥ ηn}, then we have b
�
1(t) ≤ ηnEn[r∗2

j ] in t ∈ [tηn
, τe]. Hence,

supt b
�
1(t) →p 0 is shown by Condition (0) and ηn →p 0 and tηn

→p 0 obtained
from (II�m). Next, in the discussion on b

�
2, we use Condition (III�). From the exis-

tence of covariance function of the Gaussian process in (III�), we have uniformly
En[r∗2

j w∗
j (·)2Yj (·)] →p E[r∗2w∗(·)2Y (·)] and En[r∗2

j w∗
j (·)(1 − c∗

j )Yj (·)] →p

E[r∗2w∗(·)(1− c∗
j )Y (·)]. Also, the latter result and the Glivenko–Cantelli property

provide uniformly En[r∗2
j w∗

j (·)Yj (·)] →p E[r∗2w∗(·)Y (·)]. Hence, supt b
�
2(t) →p

0 is obtained from these results, so that supt∈[0,τe] |B̃∗�
n (t)−B∗�(t)| →p 0 is shown.

Also, we have uniformly S
�
n(·; θ∗, �̂�

0) →p S
�
n(·; θ∗, ��

0) similarly to the discus-
sion of sup b

�
1 →p 0 and obtain supt |�̄�

0(t; θ∗) − �∗
0(t)| →p 0 and �∗

0(τe) < ∞
from results in Sect. 4.2 with (II�m). Hence supt |Ĉ∗�

n (t) − C∗�(t)| →p 0 is shown
by these results, Conditions (I�) and (II�m) and the continuous mapping property.

From the above discussion, we conclude supt |
∫ t

0 K
�
n(t, s)ds − ∫ t

0 K∗�(t, s)
ds| →p 0 via the triangle inequality. Therefore, by applying Proposition A.4, we
have supt,s∈[0,τe] |
∗�

n (t, s) − 
∗�(t, s)| →p 0, where 
∗�(·, ·) is a bounded deter-
ministic function such that


∗�(t, s) = B∗�(s)dC∗�(s)

π x∈[s,t]
(
1 − B∗�(x)dC∗�(x)

) .

Therefore, from Slutsky’s lemma and asymptotically tightness of
√

nA
∗�
n (·)
∗�

n

(·, ·), we show that
√

nA
∗�
n (s1)


∗�
n (t, s1), . . . ,

√
nA

∗�
n (sm)


∗�
n (t, sm) converge

weakly to zero-mean normal distributions G
�

A(s1)

∗�(t, s1), . . . , G

�

A(sm)
∗�(t, sm)
for every finite set s1, . . . , sm ∈ [0, t](0 ≤ t ≤ τe). Since a tight, Borel measurable
Gaussian process is transformed to some Gaussian process by every continuous
linear map into a Banach space,

√
n(�̂

�
0(·; θ∗) − �∗

0(·)) converges weakly to a
zero-mean Gaussian process G

�

A(·) + ∫ ·
0 G

�

A(s)
∗�(·, s)ds. ��

4.4 Covariance function

Here, we discuss the derivation of the covariance function and martingale property
in Lemma 2.
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The asymptotic covariance function of
√

n(�̂
�
0(·; θ∗) − �∗

0(·)) is conveniently
derived by using a martingale calculus. This is one of the advantages of the pseudo-
estimation. From Sect. 2.2, the first step is to find that A

∗�
n (t) is an Ft -martingale

such that

A∗�
n (t) =

t∫

0

dNn(s)
/

S
∗�
n (s) −

t∫

0

En

[
Yi(s)r

∗
i w∗

i (s)d�∗
0(s)

] /
S

∗�
n (s)

=
t∫

0

dM̄(s)
/
nS

∗�
n (s),

where M̄(s) =∑n
i=1 Mi(s) and dMi(s) = dNi(s) − Yi(s)r

∗
i w∗

i (s)d�∗
0(s).

Exchanging the order of integration of
∫ t

0

√
nA

∗�
n (s)


∗�
n (t, s)ds, we can write

t∫

0

√
nA∗�

n (s)
∗�
n (t, s)ds =

t∫

0




s∫

0

dM̄(u)
/√

nS
∗�
n (u)




∗�
n (t, s)ds

=
t∫

0

��(s, t)dM̄(s)
/√

nS
∗�
n (s)

+
t∫

0




t∫

s


∗�
n (t, u)du − ��(s, t)



 dM̄(s)/
√

nS
∗�
n (s),

(11)

where ��(s, t)(s ≤ t) denotes the deterministic function (predictable process)
such that

��(s, t) =
t∫

s


∗�(t, u)du, sup
0≤s≤t≤τe

∣
∣
∣
∣
∣
∣
��(s, t) −

t∫

s


∗�
n (t, u)du

∣
∣
∣
∣
∣
∣
→p 0.

Also, when B∗� and dC∗� are continuous, we have

��(s, t) =
∫ t

s
B∗�(u)dC∗�(u)

π[u,t]

(
1 − B∗�(x)dC∗�(x)

)

= −1 + exp






t∫

s

B∗�(x)dC∗�(x)





.

As for the second term of (11), we have

|the second term of (11)|

≤ sup
s ′,t ′

∣
∣
∣
∣
∣
∣

t ′∫

s ′


∗�(t ′, u)du − ��(s ′, t ′)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

t∫

0

dM̄(s)
/√

nS
∗�
n (s)

∣
∣
∣
∣
∣
∣
.
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Applying Lenglart’s inequality to the right-hand side of this inequality, we have

Pr



sup t∈[0,τe]

∣
∣
∣
∣
∣
∣

t∫

0

dM̄(s)
/√

nS
∗�
n (s)

∣
∣ > η





≤ δ/η2 + Pr




t∫

0

λ∗
0(s)ds

/
S

∗�
n (s) > δ



 .

Then, the probability of the left-hand side tends to zero as n → ∞ by letting δ <

η →∞ for sufficiently large δ. Hence, since
∣
∣
∣
∫ t

0

[∫ t

s



∗�
n (u)du − ��(s, t)

]
dM̄(s)/

√
nS

∗�
n (s)

∣
∣
∣ = oP (1), we have

√
n
(
�̂

�
0(t; θ∗) − �∗

0(t)
)

=
t∫

0

(��(s, t) + 1)dM̄(s)
/√

nS
∗�
n (s) + oP (1) .

Therefore, we conclude that the limit process of
√

n(�̂
�
0(t; θ∗) − �

�
0(t; θ∗)) is the

Gaussian martingale process G
�
�(t) = G

�

A(t) + ∫ t

0 G
�

A(s)
∗�(t, s)ds and has the
covariance function

Cov
(
G

�
�(t), G

�
�(u)

)
=

t∧u∫

0

exp





2

t∧u∫

s

B∗�(x)d�∗
0(x)

/
S

∗�(x)





d�∗

0(s)
/

S
∗�(s) .

(12)

5 The asymptotic behavior of �̂�
0 from the EM-estimation

For simplicity, for some θ ∈ 
, we write �
�
0(t) = �

�
0(t; θ) and �̂

�
0(t) = �̂

�
0(t; θ)

by dropping θ . Also, we write ŵ�(t) = w(t; θ, �̂
�
0) and w�(t) = w(t; θ, �

�
0).

5.1 A derivation of the Fredholm integral equation

In this section, we show that the estimator from the EM-estimation is characterized
by the Fredholm integral equation. This fact can be used for the proofs of Lemmas 3
and 4. Also, we provide that the estimator can be described by a backward Volterra
integral equation under a certain condition.

The difference �̂
�
0(t) − �

�
0(t) can be divided into the two terms as follows:

�̂
�
0(t) − �

�
0(t) = A�

n(t) +
t∫

0

(
dNn(s)

/
S

�
n

(
s; θ, �̂

�
0

)

− dNn(s)
/

S
�
n

(
s; θ, �

�
0

))
,
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where

A�
n(t) =

t∫

0

dNn(s)
/

S
�
n

(
s; θ, �

�
0

)
−

t∫

0

dN(s)
/

S
�
(
s; θ, �

�
0

)
.

A first-order Taylor expansion of ŵ�(s) in �̂
�
0(s) around �

�
0(s) gives ŵ�(s) =

w�(s) − r(β)w̃�(s)(1 − w̃�(s))(�̂
�
0(s) − �

�
0(s)), where w̃�(s) = w(s; θ, �̃

�
0) and

�̃
�
0(s) is on the line segment between �̂

�
0(s) and �

�
0(s) for all s ∈ [0, τe]. So, let

dB̃
�
n(s) = En[rj (β)2w̃

�

j (s)(1 − w̃
�

j (s))dNC
j (s)], then we have

1/S
�
n

(
s; θ, �̂

�
0

)
− 1/S

�
n

(
s; θ, �

�
0

)

= En




τe∫

s

rj (β){w�

j (u) − ŵ
�

j (u)}dNC
j (u)




/

S
�
n

(
s; θ, �̂

�
0

)
S

�
n

(
s; θ, �

�
0

)

=
τe∫

s

(�̂
�
0(u) − �

�
0(u))dB̃�

n(u)
/

S
�
n

(
s; θ, �̂

�
0

)
S

�
n

(
s; θ, �

�
0

)
.

Using this, we have

�̂
�
0(t) − �

�
0(t) = A�

n(t) +
t∫

0






τe∫

s

(
�̂

�
0(u) − �

�
0(u)

)
dB̃�

n(u)





dĈ�

n(s),

where dĈ
�
n(s) = d�̄

�
0(s)/S

�
n(s; θ, �̂

�
0) and d�̄

�
0(s) = dNn(s)/S

�
n(s; θ, �

�
0). Fur-

ther, this can be rewritten by exchanging the order of integration as follows:

�̂
�
0(t) − �

�
0(t) = A�

n(t)

+
τe∫

0

I (s ≤ t)dĈ�
n(s)

τe∫

0

I (s ≤ u)
(
�̂

�
0(u) − �

�
0(u)

)
dB̃�

n(u)

= A�
n(t) +

τe∫

0

(
�̂

�
0(s) − �

�
0(s)

)
Ĉ�

n(s ∧ t)dB̃�
n(s). (13)

This is a Fredholm integral equation.
We investigate a viewpoint as a Volterra integral equation of (13). Providing

t = 0 in (13), we have

0 = �̂
�
0(0) − �

�
0(0) =

τe∫

0

(
�̂

�
0(s) − �

�
0(s)

)





s∫

0

dĈ�
n(u)





dB̃�

n(s).

Using this, we transform (13) into

�̂
�
0(t) − �

�
0(t) = A−

n (t, τe) −
τe∫

t+

(
�̂

�
0(s) − �

�
0(s)

)





s∫

t+

dĈ�
n(u)





dB̃�

n(s).
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This is a backward Volterra integral equation if �̂
�
0(τe) − �

�
0(τe) is fixed, where

A−
n (t, τe) = �̂

�
0(τe) − �

�
0(τe) − {A�

n(τe) − A
�
n(t)}. However, since we cannot usu-

ally fix �̂
�
0(τe) − �

�
0(τe), a solution of (13) follows the manner of the Fredholm

integral equation.

5.2 Consistency: proof of Lemma 3

The Fredholm integral equation of (13) can be uniquely solved under the Fredholm
determinant 	= 0 by Theorem A.2. For 
�(t, s, ξ), D(ξ) and D(t, s, ξ) defined in
Theorem A.2 with K�(t, s)ds = dB̃

�
n(s)Ĉ

�
n(s ∧ t) and ξ = 1, let 


�
n(t, s) =


�(t, s, 1), D
�
n = D(1), D

�
n(t, s) = D(t, s, 1) and K

�
n(t, s) = K�(t, s). The

uniqueness condition provides D
�
n 	= 0. Then, the solution of (13) is

�̂
�
0(t) − �

�
0(t) = A�

n(t) +
τe∫

0

A�
n(s)


�
n(t, s)ds. (14)

The limit of A
�
n(·) can be discussed within the framework of the standard empir-

ical processes. By results on stochastic integrals and Conditions (I�) and (II�), we
have supθ∈
,t∈[0,τe] |A�

n(t)| = supθ∈
,t∈[0,τe] |�̄�
0(t) − �

�
0(t)| →a.s. 0.

We easily have �
�
0(τe) < ∞ by Condition (I�), so that we have almost surely

S
�
n(τe; θ, �

�
0) > 0 on 
 from Condition (II�). This gives almost surely

En[Yj (τe)rj (β)] > 0, so that S
�
n(t; θ, �̂

�
0) > 0 is almost surely held under �̂

�
0(t) <

∞. Using the reductive absurdity to the estimation process of �̂
�
0(·), we have almost

surely �̂
�
0(τe) < ∞ on 
.

Here we finally discuss the boundedness of kernel K�
n(·, ·). dB̃

�
n(s)/ds is almost

surely bounded on [0, τe] in each θ ∈ 
 by Condition (0) and the Lipschitz prop-
erty of SC(·), where dB̃

�
n(s)/ds includes En[r2

j w̃
�

j (T(i))(1−w̃
�

j (T(i))){NC
j (T(i+1))−

NC
j (T(i))}/(T(i+1) − T(i))] under a finite n (i = 1, . . . , k) and T(k+1) = τe + ε for

some ε > 0. S
�
(
s; θ, �̂

�
0

)
is almost surely bounded away from zero on [0, τe]×


by Condition (I�) under �̂
�
0(τe) < ∞. �̄�

0(·) is almost surely bounded on [0, τe]×


by �̄
�
0(τe) →a.s. �

�
0(τe). Therefore, K�

n(·, ·) is almost surely bounded on [0, τe]2 ×

, so that 


�
n(·, ·) is almost surely bounded by applying Proposition A.3 and

D
�
n 	=0. Consequently, since we have almost surely |�̂�

0(t)−�
�
0(t)|≤M supt |A�

n(t)|
for some M < ∞ from (14), it follows that supθ∈
,t∈[0,τe] |�̂�

0(t)−�
�
0(t)| →a.s. 0.

��

5.3 Asymptotic normality: proof of Lemma 4

Note that �∗
0(t) = �

�
0(t; θ∗), so that we write w∗(t) = w(t; θ∗, ��

0), S
∗�
n (t) =

S
�
n(t; θ∗, ��

0) and S
∗�(t) = S

�(t; θ∗, ��
0). To specify the case of θ = θ∗ considered

here, we write �̂
�
0(t; θ∗) = �̂

�
0(t)|θ=θ∗ , �̄

�
0(t; θ∗) = �̄

�
0(t)|θ=θ∗ and w̃�(s; θ∗) =
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w̃�(s)|θ=θ∗ without dropping θ .Also, let Condition (II�m): supt∈[0,τe] |S∗�
n (t)−S

∗�(t)|
→p 0, then (III�) includes (II�m). So the results obtained in Sect. 5.2 are held in a
version of convergence in probability.

From (14) with θ = θ∗, we have

√
n
(
�̂

�
0(t; θ∗) − �∗

0(t)
)

= √
nA∗�

n (t) +
τe∫

0

√
nA∗�

n (s)
∗�
n (t, s)ds, (15)

where A
∗�
n (·) = A

�
n(·)|θ=θ∗ and 


∗�
n (·, ·) = 


�
n(·, ·)|θ=θ∗ . For a proof to converge

to a Gaussian process, we discuss that
√

nA
∗�
n (·) converges weakly to a Gaussian

process and 

�
n(·, ·) converges in probability to a deterministic function.

The discussion on the asymptotic normality of
√

nA
∗�
n (·) is based on a delta

method. Recall that A
∗�
n (t) = ∫ t

0 dNn(s)
/

S
∗�
n (s) − ∫ t

0 dN(s)
/

S
∗�(s). Using a func-

tional delta method (see van derVaart and Wellner (1996, p. 384)) under Conditions
(I�) and (III�), we have

√
nA∗�

n (·) = √
n
(
�̄

�
0(·; θ∗) − �∗

0(·)
)

→D G
�

A(·) =
·∫

0

dGN(s)
/

S
∗�(s) −

·∫

0

G
�

S
(s)dN(s)

/
S

∗�(s)2,

where GN and G
�

S
are zero-mean Gaussian processes such that

√
n
(
Nn(·) − N(·), S

∗�
n (·) − S

∗�(·))→D

(
GN(·), G

�

S
(·)
)

,

which are guaranteed by the Donsker theorem and (III�). Therefore,
√

nA
∗�
n (·)

converges weakly to a zero-mean Gaussian G
�

A(·).
Let B̃

∗�
n (·) = B̃

�
n(·)|θ=θ∗ , Ĉ

∗�
n (·) = Ĉ

�
n(·)|θ=θ∗ and K

∗�
n (t, s)ds = dB̃

∗�
n (s)Ĉ

∗�
n

(s ∧ t). Here, to prove the result on 

∗�
n (·, ·), we discuss supt∈[0,τe] |

∫ t

0 K
�
n(t, s)ds −

∫ t

0 K∗�(t, s)ds|→p 0, where K∗�(t, s)ds = dB∗�(s)C∗�(s∧t), dB∗�(s) = E[r∗2w∗

(s)(1 − w∗(s))dNC(s)] and C∗�(s ∧ t) = ∫ s∧t

0 d�∗
0(u)/S

∗�(u).

We consider | ∫ τe

t
dB̃

∗�
n (s)−∫ τe

t
dB∗�(s)| ≤ b

�
1(t)+b

�
2(t) obtained via the trian-

gle inequality, where (recall that En[
∫ τe

t
fj (s)dNC

j (s)] = En[fj (Tj )(1−�j)Yj (t)])

b
�
1(t) =

∣
∣
∣
∣
∣
∣
En




τe∫

t

r∗2
j w̃

�

j (s; θ∗)
(

1 − w̃
�

j (s; θ∗)
)

dNC
j (s)





− En




τe∫

t

r∗2
j w∗

j (s)
(
1 − w∗

j (s)
)

dNC
j (s)





∣
∣
∣
∣
∣
∣
,

b
�
2(t) = ∣∣En

[
r∗2
j w∗

j (Tj )
(
1 − w∗

j (Tj )
)
(1 − �j)Yj (t)

]

− E
[
r∗2w∗(T )(1 − w∗(T ))(1 − �)Y(t)

]∣∣ .
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For b
�
1, we can use the similar discussion to that to evaluate supt b

�
1(t) →p 0 in

Sect. 4.3, so that supt b
�
1(t) →p 0 is shown by Conditions (0) and (II�m). From

the existence of covariance function of the Gaussian process in Condition (III�),
we have uniformly En[r∗2

j w∗
j (Tj )

2(1 − �j)Yj (·)] →p E[r∗2w∗(T )2(1 − �)Y(·)].
This result and the Glivenko–Cantelli property provide supt b

�
2(t) →p 0. Hence,

supt∈[0,τe] |
∫ τe

t
dB̃

∗�
n (s) − ∫ τe

t
dB∗�(s)| →p 0 is shown. Also, we have uniformly

S
�
n(·; θ∗, �̂�

0) →p S
�
n(·; θ∗, ��

0) similarly to the discussion of sup b
�
1 →p 0 and

obtain supt |�̄�
0(t; θ∗) − �∗

0(t)| →p 0 and �∗
0(τe) < ∞ from results in Sect. 5.2

with (II�m). Hence supt |Ĉ∗�
n (t)−C∗�(t)| →p 0 is shown by these results, Conditions

(I�) and (II�m) and the continuous mapping property.
From the above discussion, we conclude supt |

∫ t

0 K
�
n(t, s)ds − ∫ t

0 K∗�(t, s)ds|
→p 0 via the triangle inequality. Therefore, by applying Proposition A.4, we have
supt,s∈[0,τe] |
∗�

n (t, s)−
∗�(t, s)| →p 0, where 
∗�(·, ·) is a bounded deterministic
function.

Therefore, by Slutsky’s lemma and asymptotically tightness of
√

nA
∗�
n (·)
∗�

n

(·, ·), we show that
√

nA
∗�
n (s1)


∗�
n (t, s1), . . . ,

√
nA

∗�
n (sm)


∗�
n (t, sm) converge

weakly to zero-mean normal distributions G
�

A(s1)

∗�(t, s1), . . . , G

�

A(sm)
∗�(t, sm)
for every finite set s1, . . . , sm ∈ [0, τe](0 ≤ t ≤ τe). Since a tight, Borel measurable
Gaussian process is transformed to some Gaussian process by every continuous
linear map into a Banach space,

√
n(�̂

�
0(·; θ∗) − �∗

0(·)) converges weakly to a
zero-mean Gaussian process G

�

A(·) + ∫ τe

0 G
�

A(s)
∗�(·, s)ds. ��

5.4 Covariance function

Here, we discuss the derivation of the covariance function in Lemma 4.
The derivation of the asymptotic covariance function of

√
n(�̂

�
0(·; θ∗)−�∗

0(·))
is not easy so as in case of �̂

�
0(·; θ∗). One of the reasons is complexity of operator


∗�(·, ·), another is intricacy of covariance of
√

nA
∗�
n (·). To describe the estimated

covariance easily, we explain the covariance function using an infinite matrix.
Let Ẑi = √

n(�̂
�
0(T(i); θ∗)−�∗

0(T(i))), Âi = √
nA

∗�
n (T(i)), Bi = B∗�(T(i+1))−

B∗�(T(i)), and Ci = C∗�(T(i)) (i = 1, . . . , k). A limit form of (13) is written as the
discrete type of Fredholm integral equation Ẑi = Âi +∑k

j=1 ẐjCmin(i,j)Bj . For

Ẑ
k = (Ẑ1, . . . , Ẑk)

′ and Â
k = (Â1, . . . , Âk)

′, this matrix representation is

Ẑ
k = Â

k +








B1C1 B2C1 B3C1 · · · BkC1
B1C1 B2C2 B3C2 · · · BkC2
B1C1 B2C2 B3C3 · · · BkC3

.

.

.
.
.
.

.

.

.
...

.

.

.
B1C1 B2C2 B3C3 · · · BkCk








Ẑ
k = Â

k + KkẐ
k.

Hence, this equation can be solved as Ẑ
k = (Ik − Kk)

−1
Â

k , so that the covariance
of Ẑi and Ẑj is
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E[ẐiẐj ]=(Ik−Kk)
−1
(i)






E[Â2
1] E[Â2Â1] · · · E[ÂkÂ1]

...

E[Â1Âk] E[Â2Âk] · · · E[Â2
k]





{
(Ik−Kk)

−1
(j)

}′
,

where (Ik − Kk)
−1
(i) is the i-th row vector of the matrix (Ik − Kk)

−1. Since Âi =√
nA

∗�
n (ti) converges weakly to a zero-mean normal distribution G

�

A(ti), we have
E[ÂiÂj ] →p E[G�

A(ti)G
�

A(tj )].
In the following sentence, we derive the concrete form of E[G�

A(ti)G
�

A(tj )]. We
write

G
�

A(t) =
t∫

0

H(x)dG
�
a(x),

where

G
�
a(x) = GN(x) −

x∫

a

G
�

S
(y)d�∗

0(y) and H(x) = 1/S
∗�(x).

Then, we have

E
[
G

�

A(s)G
�

A(t)
]

= H(s)H(t)E
[
G

�
a(s)G

�
a(t)
]

+
t∫

0

s∫

0

E
[
G

�
a(x)G�

a(y)
]

dH(x)dH(y)

−H(t)

s∫

0

E
[
G

�
a(t)G

�
a(x)

]
dH(x)

−H(s)

t∫

0

E
[
G

�
a(s)G

�
a(y)

]
dH(y).

Each term in the above equation includes E[G�
a(·)G�

a(·)], which is divided such
that

E
[
G

�
a(s)G

�
a(t)
] = E [GN(s)GN(t)] +

t∫

0

s∫

0

E
[
G

�

S
(x)G

�

S
(y)
]

d�∗
0(x)d�∗

0(y)

−
s∫

0

E
[
GN(t)G

�

S
(x)
]

d�∗
0(x) −

t∫

0

E
[
GN(s)G

�

S
(y)
]

d�∗
0(y),
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whose elements include the following expectations

E [GN(s)GN(t)] = µN(1, s ∧ t) − µN(1, s)µN(1, t)

E
[
G

�

S
(s)G

�

S
(t)
]

= µS(e
β∗′Z, s ∨ t) − µS(1, s)µS(1, t) − µB(s ∨ t)

E
[
G

�

S
(s)GN(t)

]
= −µN(eβ∗′Z, s ∧ t) + µN(eβ∗′Z, t) − µN(1, s)µS(1, t),

where µN(g(Z), t) = E[g(Z)�(1−Y (t))], µB(t) = E[r∗2w∗(T )(1−w∗(T ))(1−
�)Y(t)], and µS(g(Z), t) = E[g(Z)r∗{�+(1−�)w∗(T )}Y (t)]. Then, using these
notations and the relation (19) between µN and µS, we have

E
[
G

�
a(s)G

�
a(t)
] = µN(s ∧ t) −

s∧t∫

0

µB(y)�∗
0(y)d�∗

0(y)

−
s∨t∫

0

µB(y)�∗
0(y)d�∗

0(y).

To express E[G�

A(·)G�

A(·)] more simply, let dµ(x)=dµN(x)−µB(x)�∗
0(x)d�∗

0(x)

and dε(x) = µB(x)�∗
0(x)d�∗

0(x), then E[G�
a(s)G

�
a(t)] = µ(s∧t)−ε(s∨t). Using

this, we can write

E
[
G

�

A(s)G
�

A(t)
]

=
s∧t∫

0

H 2(x)dµ(x) − H(s)H(t)ε(s ∨ t)

−
s∧t∫

0

ε(y)H(y)dH(y) −
s∨t∫

0

ε(y)H(y)dH(y)

+H(t)

s∫

0

ε(t ∨ y)dH(y) + H(s)

t∫

0

ε(s ∨ x)dH(x).

Further, the other expression under t ≥ s is

E
[
G

�

A(s)G
�

A(t)
]

=
s∫

0

H 2(x)dµ(x)+H(s)H(t)ε(t)− 1

2
ε(s)H 2(s)− 1

2
ε(t)H 2(t)

+1

2

s∫

0

H 2(x)dε(x) + 1

2

t∫

0

H 2(x)dε(x)

−H(s)

t∫

s

H(x)dε(x) − H(0){H(t)ε(t) + H(s)ε(s)}.
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Therefore, we conclude that the limit process of
√

n(�̂
�
0(t; θ∗) − �∗

0(t)) is the
Gaussian process G

�
�(t) = G

�

A(t) + ∫ τe

0 G
�

A(s)
∗�(t, s)ds and has the covariance
function for t = ti and u = tj

Cov
(
G

�
�(t), G

�
�(u)

)

= lim
n→∞ (Ik − Kk)

−1
(i)








E
[
G

�

A(t1)
2
]

E
[
G

�

A(t2)G
�

A(t1)
]

· · · E
[
G

�

A(tk)G
�

A(t1)
]

.

.

.

E
[
G

�

A(t1)G
�

A(tk)
]

E
[
G

�

A(t2)G
�

A(tk)
]

· · · E
[
G

�

A(tk)
2
]








×
{
(Ik − Kk)

−1
(j)

}′
. (16)

6 Simulation

We conduct the simulation study to examine how well a large sample theory for
the two estimators of the baseline hazard derived in this paper works under some
situations of finite-sample. For the simulation design, we use the same configuration
as discussed by Kuk and Chen (1992) and Peng and Dear (2000), where the datasets
of two groups with the same size of sample in each for n = 100, 300, 500, 1,000,
and 2,000 are generated. We set (α∗

0 , α
∗
1) = (−0.5, 0.5), which provides the cure

rate of 38 and 50% in each group. We use the standard exponential distribution as
the baseline survival distribution for uncured individuals and β∗ = 0.5 log(0.5).
The censoring times are generated according to a uniform distribution on [0, τe]
with τe = 4. Under these settings, we generate 1,000 set of simulated data.

We provide the values of two biases (Bias1,Bias2) and MSE of �̂
�
0(·) and �̂

�
0(·)

from the simulated data in Table 1, where the Bias1 denotes E[supt∈[0,τe]|�̂

0(t; θ∗)−
�∗

0(t)|], the Bias2 denotes supt∈[0,τe] |E[�̂

0(t; θ∗)] − �∗
0(t)| and the MSE denotes

E[
∫ τe

0 (�̂


0(t; θ∗) − �∗
0(t))

2dt] ( = �, �). The Bias1 is the important measure
for Lemmas 1 and 3 and the Bias2 for the mean of the asymptotic distribution
in Lemmas 2 and 4. In addition, we provide the values of the PCIa which mea-
sures the number of the true �∗

0(·) falling into an a% confidence intervals for
�̂

�
0(·; θ∗) and �̂

�
0(·; θ∗). The intervals are constructed by substituting empirical

estimates and estimated values corresponding to theoretical values in (12) and (16),
based on Lemmas 2, and 4. For example, the substitutions of �∗

0(·), B∗ (·), and
E[f (w∗(·), N(·), Y (·), �, Z, X)] are �̂



0(·; θ∗), B̂∗
n (·), and En[f (wi(·; θ∗, �̂

0),
Ni(·), Yi(·), �i, Zi, Xi)], respectively ( = �, �). For simplicity, the intervals con-
structed here are the pointwise confidence intervals using the form only of variance
functions, so that the PCIa counts the average rate of �∗

0(T1), . . . , �
∗
0(Tn) falling

into the intervals constructed marginally at each time.
The result of the biases shows that the values of Bias1 for �̂

�
0 are larger than

those for �̂
�
0 for all cases of sample size n, while the values of Bias2 for �̂

�
0 are

smaller than those for �̂
�
0 ignoring the sign of values and all values of Bias2 for

�̂
�
0 are negative. The differences in the values of Bias1 and Bias2 between the two



Two nonparametric hazards in a cure model 669

Table 1 Two biases, MSE, and PCI90 of �̂
�
0(·) and �̂

�
0(·)

Estimation n = 100 n = 300 n = 500 n = 1,000 n = 2,000

Bias1 Pseudo 1.3047 1.0746 0.9824 0.8175 0.6530
EM 0.6945 0.6364 0.6113 0.6104 0.5428

Bias2 Pseudo −0.1067 −0.0118 0.1565 0.0880 0.0362
EM −0.6372 −0.4773 −0.3252 −0.2544 −0.1838

MSE Pseudo 0.2075 0.0621 0.0396 0.0201 0.0095
EM 0.0697 0.0319 0.0198 0.0126 0.0070

PCI90 (%) Pseudo 92.24 91.93 91.80 91.19 90.43
EM 89.57 – – – –

estimators become smaller as n is larger. The result of MSE shows that the values
for �̂

�
0 are larger than those for �̂

�
0 and the differences between the two estima-

tors become smaller as n is larger. The result of PCI90 shows that the values for
the pseudo-estimation are sightly larger than the true value of 90% and become
closely toward 90% as n is larger. However, in the EM-estimation, it is not possible
to compute the inverse of higher dimensional matrix with larger n in the standard
manner.

7 Concluding remarks

We discuss the two distinct estimators of the nonparametric baseline hazard func-
tion in the Cox cure model. We show that the estimator from the pseudo-estimation
can be characterized by the (forward) Volterra integral equation, and the estima-
tor from the EM-estimation by the redholm integral equation. Then, we establish,
for given regression parameters, the strong consistency and asymptotic normality
of the two estimators. Such characterizations by the integral equations reveal the
background of existence of the two estimators. The results of simulation study
not only ensure the asymptotic results but also draw the differences of behaviors
between the two estimators in small and moderate samples.

The asymptotic results in this paper will provide the fundamental and important
step to establish the large sample theory on the estimators θ̂ of θ in the Cox cure
model. In fact, the nuisances �̂

�
0 and �̂

�
0 are included in the criterions Lpp and LEM

p ,
respectively, though this problem did not occur in the standard Cox model since
the nuisance is perfectly eliminated in Cox’s partial likelihood. If the asymptotic
distributions of the estimators θ̂ are established, the asymptotic distributions of
�̂

�
0(·; θ̂ ) and �̂

�
0(·; θ̂ ) and these corresponding survival functions with θ̂ will be

easily obtained by using a delta method and the results in this paper, such as

√
n
(
�̂



0(t; θ̂ ) − �∗
0(t)
)

≈ √
n
(
θ̂ − θ∗

)
∂�̂



0(t; θ)/∂θ

+√
n
(
�̂



0(t; θ∗) − �∗
0(t)
)

( = �, �).

Furthermore, the twin relationship between the two estimators of the baseline
hazard may be useful as a common framework included in other emiparametric
counting process model with incomplete data, such as a forward and backward
system in a stochastic process.
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Appendix A

A.1 The integral equations

Theorem A.1 (Volterra integral equation). Let ξ be a given parameter (ξ < ∞).
Let f (t) and K�(t, s) be given functions for t, s ∈ [a, b] with supt |f (t)| < ∞
and supt,s |K�(t, s)| < ∞ (|a|, |b| < ∞). The Volterra equation of the form

φ(t) = f (t) + ξ

t∫

a

K�(t, s)φ(s)ds (17)

is solved uniquely as

φ(t) = f (t) + ξ

t∫

a


�(t, s, ξ)f (s)ds,

where


�(t, s, ξ) =
∞∑

m=0

ξmKm+1(t, s), Km(t, s) =
t∫

s

K�(t, u)Km−1(u, s)du.

Comment There are many books on the Volterra integral equation. In settings of
this theorem, K, f , and φ are defined as elements in space L∞[a, b]. Also, this
theorem is held in discrete cases such that the integration becomes the summation,
which is allowed as a Legesgue–Stieltjes’s integration. In more larger space, for
example L2[a, b], the same result is held. See Hochstadt (1973, p. 33), etc.

Proposition A.1 (The solution for a discrete Volterra integral equation). A discrete
Volterra integral equation φi = fi +

∑i
j=1 K

�

jφj (i = 1, . . . , n) uniquely gives the

solution φi = fi +∑i
j=1 fjK

�

j

/∏i
l=j

(
1 − K

�

l

)
.

Proof This is easily proved from mathematical induction and Theorem A.1. ��
For 
� defined in Theorem A.1, we draw a result found in a proof of Theorem

A.1 for this paper.

Proposition A.2 For 
� and K� defined in Theorem A.1, if supt,s∈[a,b] |K�(t, s)| <

∞ and |b − a| < ∞, then supt,s∈[a,b] |
�(t, s, ξ)| < ∞.

Proof Let ‖K�‖∞ = supt,s∈[a,b] |K�(t, s)|. By the induction |Km(t, s)| ≤ (t − s)m

‖K�‖m
∞/m!. So, we have |
�(t, s, ξ)| ≤ ξ−1∑∞

m=1 ξm|Km(t, s)| ≤ ξ−1[exp
{ξ‖K�‖∞(t − s)} − 1]. ��
Theorem A.2 (Fredholm integral equation). Let ξ be a given parameter (ξ < ∞).
Let f (t) and K�(t, s) be given functions for t, s ∈ [a, b] with supt |f (t)| < ∞ and
supt,s |K�(t, s)| < ∞. The Fredholm equation of the form

φ(t) = f (t) + ξ

b∫

a

K�(t, s)φ(s)ds (18)
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is solved uniquely as

φ(t) = f (t) + ξ

b∫

a


�(t, s, ξ)f (s)ds

if D(ξ) 	= 0, where 
�(t, s, ξ) = D(t, s, ξ)/D(ξ), when K� is a continuous kernel
or f and K� are finite-dimensional discrete functions, D(t, s, ξ) and D(ξ) are
written as

D(ξ) =
∞∑

m=0

ξmDm, D(t, s, ξ) =
∞∑

m=0

ξmDm(t, s),

Dm = (−1)m

m!

b∫

a

· · ·
b∫

a

K

(
x1 · · · xm

x1 · · · xm

)

dx1· · ·dxm (D0 =1),

Dm(t, s) = (−1)m

m!

b∫

a

· · ·
b∫

a

K

(
t x1 · · · xm

s x1 · · · xm

)

dx1· · ·dxm

(D0(t, s) = K�(t, s)), and

K

(
t1 t2 · · · tm
s1 s2 · · · sm

)

=

∣
∣
∣
∣
∣
∣
∣
∣

K�(t1, s1) K�(t1, s2) · · · K�(t1, sm)

K�(t2, s1) K�(t2, s2) · · · K�(t2, sm)
...

. . .
. . .

...

K�(tm, s1) K�(tm, s2) · · · K�(tm, sm)

∣
∣
∣
∣
∣
∣
∣
∣

.

Comment There are many books on the Fredholm integral equation as well as
the Volttera. Here K, f , and φ are defined as elements in space L∞[a, b] (Pipkin,
1991, p. 41-2). D(ξ) and D(t, s, ξ) are called the Fredholm determinat and the first
Fredholm minor, respectively. Also, this theorem is allowed as the framework of
a Legesgue-Stieltjes’s integration. In more general L2[a, b], Dm, and Dm(t, s) are
slightly modified (see Hochstadt, 1973, p. 108, p. 241; Smithies, 1958). However,
we do not have to use such modifications in this paper.

For D(ξ) and D(t, s, ξ) defined in Theorem A.2, we draw a result found in a
proof of Theorem A.2 for this paper.

Proposition A.3 For 
� and K� defined in Theorem A.2, if supt,s∈[a,b] |K�(t, s)| <
∞ and |b − a| < ∞, then |D(ξ)| < ∞ and supt,s∈[a,b] |D(t, s, ξ)| < ∞.

Proof Let ‖K�‖∞ = supt,s |K�(t, s)| < ∞. Then by Hadamard’s inequality,
|Dm| ≤ ‖K�‖m

∞(b−a)mm1/2m/m! and |Dm−1(t, s)| ≤ ‖K�‖m
∞(b−a)mm1/2m/(m−

1)!. For cm = ‖K�‖m
∞(b−a)mm1/2m/m! or cm = ‖K�‖m

∞(b−a)mm1/2m/(m−1)!,∑∞
m=0 cmξm converges to some finite quantity on R by limm cm+1/cm → 0. ��
We give an original result for the Volterra and Fredholm integral equations

with a kernel which converges in probability to a deterministic continuous
function.
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Proposition A.4 Let (K
�
n(t, s), K

�(t, s)) and (K
�
n(t, s), K�(t, s)) be pairs of ker-

nels of the Volterra and Fredholm integral equations defined in t, s ∈ [a, b], respec-
tively. Suppose that K(t, s) ( = �, �) is continuous for all s, t ∈ [a, b] and
|b−a| < ∞. If supt |

∫ t

a
{K

n (t, s)−K(t, s)}ds| →p 0 (as n → ∞) under D(ξ) 	=
0 in case of a Fredholm integral equation, then supt,s |


n(t, s) − 
(t, s)| →p 0

(as n → ∞) ( = �, �), where 

�
n and 
� are 
� defined in Theorem A.1 in which

K� is substituted by K
�
n and K�, and 


�
n and 
� are 
� defined in Theorem A.2 in

which K� is substituted by K
�
n and K�, respectively.

Proof For every supt |f (t)| < ∞, we define φ
f
n and φf by an integral equa-

tion φ
f
n (t) = f (t) + ξ

∫ b(t)

a
φ

f
n (s)K


n (t, s)ds and φf (t) = f (t) + ξ

∫ b(t)

a
φf (s)

K (t, s)ds, respectively ( = �, �), where b(t) = t in case of a Volterra integral
equation and b(t) = b in case of a Fredholm. These solutions can be given by
φ

f
n (t) = f (t) + ξ

∫ b(t)

a




n(t, s, ξ)f (s)ds and φf (t) = f (t) + ξ

∫ b(t)

a

 (t, s, ξ)

f (s)ds from TheoremA.1 orA.2. By PropositionA.2 orA.3, we have supt |φf (t)|<
∞ and supt |φf

n (t)| < ∞ in probability because of supt,s |K
n (t, s)| < ∞ in prob-

ability. The difference φ
f
n (t) − φf (t) can be divided as

φf
n (t) − φf (t) = ξ

b(t)∫

a

φf
n (t)

(
K

n (t, s) − K(t, s)
)

ds

+ξ

b(t)∫

a

K (t, s)
(
φf

n (s) − φf (s)
)

ds.

We can treat this expression as another integral equation φ
f
n (t) − φf (t) = op(1)

(b(t)) + ξ
∫ b(t)

a
K (t, s)(φ

f
n (s) − φf (s))ds, so that we have its solution φ

f
n

(t) − φf (t) = op(1)(b(t)) + ξ
∫ b(t)

a

 (t, s, ξ)op(1)(b(s))ds. Therefore, supt |φf

n

(t) − φf (t)| →p 0. By combination this result with solutions of φ
f
n (t) and

φf (t), we have supt |
∫ b(t)

a
{


n(t, s, ξ) − 
(t, s, ξ)}f (s)ds|→p 0. Here consider
f (s) = ±1[


n(t,s,ξ)−
 (t,s,ξ)], where ±1[a] is 1 if a > 0 and −1 otherwise. Such
f (·)’s lead supt,s |


n(t, s, ξ) − 
(t, s, ξ)| →p 0. ��

A.2 The relationship between N and �∗

For a function g(T , X, Z) into R1 from (T , X, Z), we define

N(g, t) = E




t∫

0

g(T , X, Z)r∗(1 − c∗)S∗(T )S∗
C(T )d�∗

0(T )



 .

Then, we obtain a relation

d�∗
0(t) = dN(g, t)

/
E
[
g(t, X, Z)r∗(1 − c∗)S∗(t)S∗

C(t)
]

,



Two nonparametric hazards in a cure model 673

which is an extension for N(t) and (3). As the other expression of N(g, t), we have

N(g, t) = E [g(T , Z, X)I (T ≤ t, � = 1)] = E [g(T , Z, X){1 − Y (t)}�] .

Hence, we find µN(g(T , Z, X), t) = N(g, t) in the notation defined in Sect. 5.4.
On the other hand, µS(g(t, Z, X), t) is computed as follows

µS(g(t, Z, X), t) = E
[
g(t, Z, X)r∗Y (t)�

]+E
[
g(t, Z, X)r∗Y (t)(1 − �)w∗(T )

]

= E



g(t, Z, X)r∗
∞∫

t

(1 − c∗)r∗S∗(T )S∗
C(T )d�∗

0(T )





+E



g(t, Z, X)r∗
∞∫

t

w∗(T ){c∗+(1−c∗)S∗(T )}S∗
C(T )d�∗

C(T )





= E
[
g(t, Z, X)r∗(1 − c∗)S∗(t)S∗

C(t)
]
.

Therefore, for µN(g(X, Z), t) and µS(g(X, Z), t), we have a relationship

dµN(g(X, Z), t) = µS(g(X, Z), t)d�∗
0(t). (19)
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