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Abstract Current status data arises when a continuous response is reduced to an
indicator of whether the response is greater or less than a random threshold value.
In this article we consider adaptive penalized M-estimators (including the penal-
ized least squares estimators and the penalized maximum likelihood estimators)
for nonparametric and semiparametric models with current status data, under the
assumption that the unknown nonparametric parameters belong to unknown Sobo-
lev spaces. The Cox model is used as a representative of the semiparametric models.
It is shown that the modified penalized M-estimators of the nonparametric param-
eters can achieve adaptive convergence rates, even when the degrees of smoothing
are not known in advance.

√
n consistency, asymptotic normality and inference

based on the weighted bootstrap for the estimators of the regression parameter in
the Cox model are also established. A simulation study is conducted for the Cox
model to evaluate the finite sample efficacy of the proposed approach and to com-
pare it with the ordinary maximum likelihood estimator. It is demonstrated that the
proposed method is computationally superior.We apply the proposed approach to
the California Partner Study analysis.

Keywords Adaptive semiparametric estimation · Current status data · Penalized
M-estimator

1 Introduction

Current status data, which is also known as case I interval censored data, arises
in studies in which the target measurement is the time of occurrence of some

S. Ma (B)
Division of Biostatistics, Yale University, New Haven, CT 06520, USA
E-mail: shuanggema@yale.edu

M.R. Kosorok
Department of Biostatistics,
University of North Carolina, Chapel Hill, NC 27599, USA



512 S. Ma and M.R. Kosorok

event, but observations are limited to indicators of whether or not the event has
occurred at the time the sample is collected. Early examples of current status data
arose in demographic applications, with a common version occurring in studies
of the distribution of the age at weaning in various settings (Diamond et al. 1986;
Grummer-Strawn, 1993). Here, the event of interest is the age of a child at weaning,
but the only available information is the weaning status at the observation. Inaccu-
racy and bias for the measurement of age at weaning, even when weaning occurs
before the observation, led to the sole current status on age of weaning at age of
observation for the purpose of understanding the distribution of age at weaning.
Other examples of current status data arise in carcinogenicity testing when a tumor
under investigation is occult (Gart et al., 1986); in the study of infectious diseases,
particularly when infection is an unobservable event, as discussed in Jewell and
Shiboski (1990) and Shiboski (1998); and in the study of non-fatal human disease,
as in Keiding et al. (1996). For a detailed discussion of examples of current status
data, see Ma (2004).

Denote Y as the time to event of interest and T as the censoring time. Let
Y have a distribution function F . Parametric forms of F may be useful in some
situations. The focus of the current research is the study of nonparametric and semi-
parametric modeling of F because of the robustness and the flexibility. Over the
past decade, the asymptotic properties of estimators for nonparametric models with
current status data have drawn considerable attention from statistical researchers
(Groeneboom and Wellner, 1992; Van der Laan, 1995; Van der Laan et al. 1994).
Previous studies conclude that F̂ , the M-estimator of F , is L2 consistent, with
convergence rate n1/3. For any finite sample size, F̂ is a step function with jumps
at the observed T only. When there exist real valued covariates Z, semiparamet-
ric models are usually employed to model the relationship between Y and Z.
Examples include (but are not limited to) the Cox model in Huang (1996), the
accelerated failure time model in Shen (2000), and the partly linear transformation
model in Ma and Kosorok (2004b). It has been shown that the estimators of the
nonparametric parameters are L2 consistent with convergence rate n1/3, while the
regression parameters can still be estimated

√
n consistently and asymptotically

normally distributed under mild regularity conditions.
Our current study mainly arises from the following concerns. The estimators

of the nonparametric parameters for both the nonparametric models (Groeneboom
and Wellner, 1992) and the semiparametric models (Huang, 1996; Ma and Kosorok,
2004b) are step functions that converge only at the n1/3 rate with the L2 norm. As
pointed out by Hall and Huang (2001), the estimated step functions cannot be used
easily for other estimation or inference purposes. Another concern is that, without
making stronger continuity assumptions, we cannot achieve uniform consistency
even on a compact set (Ma and Kosorok, 2004b). If no differentiability assump-
tions are made, special computational algorithms for estimating the nonparametric
parameters, for example the greatest-convex-minorant algorithm in Huang (1996),
are usually needed. Computationally, the discontinuity of the estimated nonpara-
metric functions may cause larger variances for the M-estimators of the regression
parameters in semiparametric functions.

Theoretically, it is reasonable to assume the nonparametric parameters are con-
tinuously differentiable in certain situations. One possibility is to assume they
belong to certain unknown Sobolev spaces (seeWahba, 1990 for reference). Ideally,
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the gain of making stronger smoothing assumptions would be sharper conver-
gence rates for the estimators of the nonparametric parameters. For semiparamet-
ric models, more computationally stable estimators of the regression parameters
are expected. Similar smoothness assumptions have been investigated with right
censored and interval censored data with penalized splines by Cai and Betensky
(2003) and Gu (2002). A difficulty with these approaches is that they are built
based on the assumption that the Sobolev spaces are known in advance, which is
practically not possible.

The goal of this paper is to take advantage of the smoothness assumptions of the
nonparametric parameters, without having to know the underlying Sobolev spaces
in advance. To accomplish this, we introduce a modified penalized approach that
can yield M-estimators with adaptive convergence rates for estimating the non-
parametric parameters. It is shown for semiparametric models that, although the
estimators of the nonparametric parameters converge more slowly than

√
n, we

can still achieve
√

n convergence rates and asymptotic normality for estimators of
the regression parameters.

The rest of the paper is organized as follows: In Sect. 2, we introduce the modi-
fied penalized M-estimators for nonparametric models with current status data and
investigate their asymptotic properties. We use the Cox model as a representative
of the semiparametric models and study similar penalized estimators in Sect. 3.
The focus of Sect. 3 is the asymptotic behaviors of the estimators of the regres-
sion parameters. We discuss computational issues in Sect. 4. For illustration, we
apply our approach to a small simulation study and to the California Partner Study
analysis in the same section. Concluding remarks are in Sect. 5. Some proofs are
provided in the Appendix.

2 Modified penalized M-estimation for nonparametric models

Denote Y as the time to event of interest with unknown distribution function F0,

where F0 ∈ �s0 =
{
F :
∫ u

l

(
F (s0)(Y )

)2
dY < ∞

}
, the Sobolev space indexed by

the order of derivative s0 for an unknown integer s0. Superscripts denote derivatives
of smooth functions throughout this paper. Suppose observation of Y is subject to
censoring T , which is generated from an unknown distribution G. One observa-
tion is then composed of X = (T , �(Y≤T )), where � is the status indicator. The
following data and model assumptions are made.

2.1 Data and model assumptions

It is assumed that:

A1. The censoring time T and event time Y are independent.
A2. T ∈ [τl, τu], where 0 < τl < τu < ∞.
A3. There exists a fixed M > 0, such that 1/M < F0.
A4. F0 ∈ �s0 and there exists a known integer smax, such that 1 ≤ s0 ≤ smax.

Condition A1–A3 are standard model assumptions for the nonparametric mod-
els with current status data, as discussed in Huang (1996) and Jewell and Van
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der Laan (2002). It is worth pointing out that condition A3 is necessary only for
the maximum likelihood estimator. Assumptions weaker than A2 and A3 can be
made for the least squares estimator. Condition A4 is a fairly weak assumption for
smooth functions. Under this assumption, the estimates proposed in section 2.2 are
at most s th

max order differentiable. However, there exist “super” smooth functions,
i.e., F0 ∈ �s for any integer s (for example, the exponential function defined on
a compact set). We will discuss this case later. Other smoothness assumptions,
for example F0 belongs to the functional class of local polynomials, can be made.
Sobolev spaces are considered here because of their popularity, successes with data
analysis, and appealing computational properties (Wahba, 1990).

2.2 The modified penalized M-estimators

Suppose n i.i.d. observations X1 = (T1, δ1 = δ(Y1≤T1)), . . . , Xn = (Tn, δn =
δ(Yn≤Tn)) are generated from the nonparametric model discussed at the beginning
of Sect. 2. Based on the n observations, the conditional log-likelihood function
takes the form log(l(F )) = ∑n

i=1{δi log(F (Ti)) + (1 − δi) log(1 − F(Ti))}. In-
spired by previous research by Wahba and Wendelberger (1980) and Van de Geer
(2001), we consider the following modified penalized maximum likelihood esti-
mator (MPMLE) F̂MLE, where

F̂MLE = argmax1≤s≤smax

{
argmaxF

(
log(l(F )) − pen2(F )

)}
(1)

or the modified penalized least squares estimator (MPLSE) F̂LSE, where

F̂LSE = argmin1≤s≤smax

{
argminF

[(
n∑

i=1

(δi − F(Ti))
2

)
+ pen2(F )

]}
(2)

Denote F(t) = ∫ t

0 f (u)du = ∫ t

0 exp(a(u))du, when s > 1. It is easy to see that
a ∈ �s−1. The penalty pen2(F ) in Eqs. (1) and (2) is defined as pen2

s (F ) =
λ2

n(s)(J
2
s (F ) + λ2

0), where λn(s) is a data-driven smoothing parameter, J 2
s (F ) =

1{s = 1} ∫ τr

τl

(
F (1)/F

)2
dt + 1{s �= 1} ∫ τr

τl

(
a(s−1)(t)

)2
dt , and λ0 is a model depen-

dent constant that will be discussed later in the proof of Lemma 2.1. The above
penalty is modified from ordinary spline settings by including an extra model
dependent constant λ2

0, which plays an important role in controlling the size of the
nonparametric estimators. It is also assumed that

B1. λn(s) = Op(n−s/(2s+1)).
B2. Js(F̂MLE,LSE) = op(n1/12).

Condition B1 is usually assumed for estimations of spline functions. In most
smoothing spline settings, it is possible to show Js(F̂ ) = Op(1). Although this
result has not been proved for our model, it is believed that Condition B2, which
requires the penalty on smoothness to grow at a slow rate with the sample size n,
can be achieved under most reasonable circumstances.
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2.3 Asymptotic properties

The main asymptotic properties of the MPLSE defined in Eq. (2) can be summa-
rized into the following lemma:

Lemma 2.1 (Adaptive convergence rate of the MPLSE) Under model assumptions

A1-A4 and B1-B2, ||F̂LSE − F0||2n ≡ ∑n
i=1

(
F̂LSE(ti) − F0(ti)

)2
∼ n−2s0/(2s0+1).

The following definition and technical result are firstly needed:

Definition 2.1 Let S be a subset of a metric space. The δ-covering number N(δ, S)
is defined as the number of balls with radius δ needed to cover S. The δ-entropy is
defined as H(δ, S) = log N(δ, S) ∨ 0. Denote I (δ, S) = ∫ δ

0 H 1/2(δ, S)dδ.

Technical Tool 2.1 For all δ, M and integer s,

H(u, {F : ||F − F0|| ≤ δ, Js(F ) ≤ M})
≤ s log

(
5(δ + M)

u

)
+ sA2(M/u)1/s,

for 0 < u ≤ δ and some constant A not depending on s.

Proof Fix δ > 0. Since λ0 is a constant and λn(s) = n−s/(2s+1), then for n large
enough, λn(s) ≤ δ/λ0 for all 1 ≤ s ≤ smax. From the results shown in the Technical
tool, we can see that

H(u, {F : ||F − F0||2 + pen2(F ) ≤ δ2})

≤
smax∑
s=1

sA2

(
δ

uλs

)1/s

+ smax log

(
10δ

uλsmax

)
.

From the definition of I , we have

I (δ, {F : ||F − F0||2 + pen2(F ) ≤ δ2})

≤
smax∑
s=1

δ∫

0

2A
√

s(
δ

uλs

)1/2sdu + √
smax

δ∫

0

log1/2(
10δ

uλmax
)du

≤ 2As3/2
maxδ(

1

λ1
)1/2 + A0

√
smaxδ

√
log n

≤ 2As3/2
max

√
nδ2

λ0
+ A0

√
smaxδ

√
log n, (3)

where A0 = ∫ 1
0 log1/2 (10/u) du.

Denote ri = δi − F0(Ti), for i = 1, . . . , n. From the boundedness conditions
of δi and F0, we know 0 ≤ ri ≤ 1, for all i. So for any K ≥ (log(2))−1/2, we
have max1≤i≤nEer2

i /K2 ≤ 2. From Theorem 2.1 of Van de Geer (2001), we can then
conclude that there exists a constant c, which is a function of K only, such that for√

nδ2
n ≥ cI (δ, {F : ||F − F0||2 + pen2(F ) ≤ δ2}), we have for all δ ≥ δn,

P(||F̂LSE − F0||2 + pen2(F̂LSE) ≥ 2(pen2(F0) + δ2) ≤ c × exp(−nδ2

c2
). (4)
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So we can see if we take

λ2
0 ≥ 4c2A2s2

max, and δn = 2cA0

√
smax log

n

n
,

we can conclude that

E||F̂LSE − F0||2n + λ2
n(s)(J

2
s (F̂LSE) + λ2

0) ≤ 2λ2
n(s0)(J

2
s0
(F0) + λ2

0) + d2
n + d0

n
,

(5)

by combining the results in Eq. (3) and (4) with Theorem 2.1 ofVan de Geer (2001).
In Eq. (5) dn = 2A0

√
smax log(n)/n, and d0 is a constant that does not depend on

the data or on n. It is obvious that the right hand side of Eq. (5) is dominated by
λ2

n(s0). So Lemma 2.1 holds. �
As discussed in Wahba (1990), the optimal convergence rate for estimators

of smooth functions in �s0 is n−s0/(2s0+1). So the proposed estimator has adaptive
convergence rate with respect to the smoothness assumption. The optimal conver-
gence rate for estimating smooth monotone functions depends on the entropy of the
corresponding functional set. Unfortunately, that entropy result is still unknown.
For s > 1, the Sobolev space indexed by s has much smaller size (measured by
entropy) compared with the set composed of monotone functions. So it appears
likely that the subset of monotone functions in a Sobolev space should have entropy
of the same order as the unconstrained Sobolev space. If this conjecture is true,
then the proposed estimator has optimal convergence rate. When s0 > 1, the penal-
ized estimator of F has faster convergence rate than the ordinary MLE, which has
convergence rate n1/3, as discussed in Huang (1996). There exist functions, such
as the exponential function defined on finite intervals, that belong to �s for any s.
In this case, for any prespecified smax, ||F̂LSE −F0||2n ∼ n−2smax/(2smax+1). So theoret-
ically although we do not have full adaptivity in this case, we can achieve the best
possible rate (with respect to the smoothness assumption) based on our knowledge
in terms of smax of the smooth functions. Computationally, as suggested in Wahba
and Wendelberger (1980), taking smax = 5 or 6 will yield satisfactory results in
most situations.

We now investigate the properties of the MPMLE. As can be seen from the
proof of Lemma 2.1, the adaptive convergence rate of the penalized least squares
estimator for F0 depends on the entropy results and certain maximal inequalities.
Van de Geer (2000) and Ma and Kosorok (2004a) show that for a great variety of
semiparametric models the asymptotic behaviors of least squares estimators and
MLE are quite similar, if they can be determined by the entropy results. So it is
believed that with minor modifications of the proof of Lemma 2.1, we can also

show that ||F̂MLE − F0||22 ≡ ∫ τu

τl

(
F̂MLE(t) − F0(t)

)2
dt ∼ n−2s0/(2s0+1).

2.4 Tuning parameter selection

There are two unknown tuning parameters λn(s) and λ0 in the proposed penalization
approach. For our study of asymptotic properties, we require λn(s) to be only of the
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correct order. From the proof of Lemma 2.1, we can see that λ0 depends on the con-
stants c and A. A can be determined by closely investigating the entropy bounds,
while c is the universal constant in the maximal inequalities (see Lemmas 2.3
and 8.4 of Van de Geer, 2000). Theoretically, these two constants can be deter-
mined exactly. On the other hand, it can be seen that if we fix smax, then any
non-zero finite λ0 results in the same asymptotic convergence rates.

Computationally, data driven tuning parameters are expected to better reflect
the variability of the data. We propose the following two-step approach based on
two fold cross validation. Let Ĩ (1)

n ⊂ {1, . . . , n} be a random half of the indices of
the observations, and let Ĩ (2)

n be the remaining half. When n is odd, the sizes of these
two sets will not be equal, but this will not pose any problems. For a given choice
of λ0 and λ1, let F̂

(j)

λ0,λ1
denote the penalized estimator of F using the objective

function in (1) for the data consisting of the observations with indices in Ĩ
(j)
n and

using tuning parameters λ0 and λn(s) = λ1n
−1/(2s+1), for j = 1, 2. Now compute

K̃λ0,λ1 =
2∑

j=1

∑

i∈Ĩ
(j)
n

{
δi log

[
F̂

(3−j)

λ0,λ1
(Ti)

]
+ (1 − δi) log

[
1 − F̂

(3−j)

λ0,λ1
(Ti)

]}
.

We now minimize K̃λ0,λ1 over λ0 and λ1 to obtain the cross-validated tuning param-
eters λ̃0 and λ̃1. Because we only need to achieve the correct scale and not the exact
minimizers, we need only vary λ0 and λ1 over integral powers of 2. After obtaining
λ̃0 and λ̃1 in this manner, we estimate F using the full data with tuning parameters
λ0 = λ̃0 and λn(s) = λ̃1n

−1/(2s+1).
The above idea can be similarly applied to the least-squares setting and also

generalized from two fold to V -fold cross validation. Theoretical studies of V -fold
cross validation in other contexts can be found in Smyth (2001). A two-dimen-
sional V -fold cross validation approach somewhat similar to the one we propose
has been considered in Gui and Li (2004). For a great variety of spline models,
it has been proved that data driven tuning parameters obtained through cross val-
idation can achieve optimal convergence rates. We anticipate that our proposed
tuning parameter selection procedure will also yield optimal adaptive rates, but a
theoretical verification of this is beyond the scope of the present paper.

For computational simplicity, we set λn(s) = n−s/(2s+1) and λ0 = 1 for the
empirical studies in Sects. 4 and 5. Our own limited numerical studies show that
fixing the tuning parameters in this manner usually yields satisfactory results.

3 Semiparametric models with current status data

The adaptive convergence rate achieved by using the modified penalized M-estima-
tors for nonparametric models can be naturally extended to semiparametric models.
In this section, we use the Cox model (Cox, 1972) with current status data as an
example. Most of the results and corresponding proofs do not depend on the special
format of the model.

Again let Y and T denote the event time of interest and censoring time, respec-
tively. Moreover, we assume for each subject, a d-dimensional covariate Z is ob-
served. Then a data observation consists of X = (T , �, Z) ∈ R

+ × {0, 1} × R
d .
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The density of X is proportional to

pβ,�(x) =
(

1 − exp(−eβ ′z�(t))
)δ (

exp(−eβ ′z�(t))
)1−δ

, (6)

where � denotes the unknown cumulative baseline hazard function and β is the
unknown d-dimensional regression parameter. Following the same argument as for
the nonparametric model, we assume the smooth function � ∈ �s with unknown
s. The main interest here lies in estimation of (β, �) and inference for β.

Model Eq. (6) is studied under the following model assumptions:

A1′. The censoring time T and event time Y are conditionally independent given
Z.

A2′. T ∈ [τl, τu], where 0 < τl < τu < ∞.
A3′. There exists a fixed M > 0, such that 1/M < �0 < M .
A4′. �0 ∈ �s0 , the Sobolev space indexed by the unknown order of derivative s0,

and there exists a known integer smax, such that 1 ≤ s0 ≤ smax.
A5. β0 ∈ B1 and Z ∈ B2, where B1, B2 are known compact sets of R

d .

Assumptions A1′ − A4′ are parallel to assumptions A1 − A4 for the nonpara-
metric model shown in Sect. 2. Assumption A5 is the compactness assumption,
which will be used for identifiability and entropy control purposes (see Huang,
1996; Ma and Kosorok, 2004b for reference). Following the same scheme as in
Sect. 2, we consider the following two M-estimators: the MPMLE defined by

(β̂MLE, �̂MLE) =

argmax1≤s≤smax

{
argmaxβ,�

(
n∑

i=1

log(pβ,�(xi)) − pen2(�)

)}
, (7)

and the MPLSE defined by

(β̂LSE, �̂LSE) =

argmin1≤s≤smax

{
argminβ,�

(
n∑

i=1

(
1 − δi − exp(−eβ ′zi �(ti))

)2
+ pen2(�)

)}
.

(8)

3.1 Adaptive convergence rate of the semiparametric M-estimators

Semiparametric M-estimators share the same adaptive convergence rate properties
as those for the nonparametric model. This is shown below in Lemma 3.1.

Lemma 3.1 (Adaptive convergence rate of the semiparametric M-estimators) Un-
der assumptions A1′ − A4′, A5, B1 and

B2′. Js(�̂MLE,LSE) = op(n1/12),

it can be proved that ||�̂LSE − �0||2n ≡ ∑n
i=1

(
�̂LSE(ti) − �0(ti)

)2

= Op(n−2s0/(2s0+1)), and ||�̂MLE − �0||22 ≡ ∫ τu

τl

(
�̂MLE(t) − �0(t)

)2
dt = Op

× (n−2s0/(2s0+1)).
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Under the compactness assumption A5, it can be shown that the same entropy
result as in the proof of Lemma 2.1 holds (see Lemma 3.1 of Huang, 1996). So the
adaptive convergence rate for semiparametric models can be proved following the
same reasonings as for Lemma 2.1. The details are omitted here.

3.2 Asymptotic behaviors of the estimators of β

A necessary (but not sufficient) condition for the
√

n consistency and asymptotic
normality result for the estimators of the regression parameter is that the variance
of the limiting distribution is nonsingular and finite. The variances I1 and I2 of the
limiting distributions are calculated in the Appendix A. It is assumed that

C1. 0 < det(I1) < ∞,
C1′. 0 < det(I2) < ∞,

where det is the determinant of a square matrix.

Lemma 3.2 (
√

n consistency and asymptotic normality) Under model assump-
tions A1′ − A4′, A5, B1′ − B2′ and C1 (C1′), it can be shown that

√
n(β̂MLE − β0) →d N(0, I1), and

√
n(β̂LSE − β0) →d N(0, I2).

Moreover, β̂MLE is efficient in the sense that any regular estimator has asymptotic
variance no less than that of β̂MLE .

We now consider inference for β̂LSE,MLE. Standard methods of semiparamet-
ric inferences that depend on the likelihood, such as Huang (1996) and Murphy
and Van der Vaart (2000), are not applicable to penalized M-estimators, since the
penalty terms are not asymptotically of the order o(n−1), as required by the likeli-
hood based approaches. However, the following weighted bootstrap with positive
random weights is still valid.

Let w1, . . . , wn be n i.i.d. positive random weights independent of the data.
Denote (β̂∗

MLE, �̂∗
MLE) as the weighted penalized MLE, i.e.,

(β̂∗
MLE, �̂∗

MLE)

= argmaxs≤smax

{
argmax�∈�s ,β∈B1

(
n∑

i=1

wi log(pβ,�(xi)) − pen2(�)

)}
.

We can define (β̂∗
LSE, �̂∗

LSE) in a similar manner.

Lemma 3.3 (Validity of the weighted bootstrap) Assume that the positive random
weights w1, . . . , wn satisfy E(W) = 1 and var(W) = v0, where 0 < v0 < ∞ is a
known constant.We also assume there exists a constantC such that 0 < W < C < ∞.
Then

(√
n/v0(β̂

∗
MLE,LSE − β̂MLE,LSE)

∣∣∣X
)

→d

√
n(β̂MLE,LSE − β0).

So the weighted bootstrap provides a valid inference tool.
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The validity of the weighted bootstrap depends on the asymptotic behaviors
of the weighted penalized M-estimators, which can be verified by applying the
techniques used in the proofs of examples 1 and 2 of Ma and Kosorok (2004a).
The details are omitted here. The weighted bootstrap with parametric models and
semiparametric models with all parameters estimable at the

√
n rate has been

investigated in Barbe and Bertail (1995).
Although we study only the Cox model in detail here, it can be seen that the

same technique can be applied to the study of other semiparametric models with
current status data, for example the accelerated failure time model (Shen, 2000) and
the proportional odds model (Rossini and Tsiatis, 1996). It is expected that under
similar model assumptions, the adaptive convergence rate of the nonparametric
parameter estimation,

√
n consistency and asymptotic normality of the estima-

tors of the regression parameters, and validity of inference based on the weighted
bootstrap will all follow.

4 Numerical studies

We discuss the computational algorithm and employ a small simulation study with
the Cox model discussed in Sect. 3. Similar numerical properties hold for the non-
parametric model discussed in Sect. 2. The California Partner Study, where the
Cox model is assumed, is analyzed with the proposed penalized approach.

4.1 Computational algorithm

As suggested by Xiang and Wahba (1997), for any fixed s, the maximization over
the Sobolev space �s can be achieved by a sieve approach, which states that the
sieve estimate, with the number of basis functions growing at least at the rate n1/5,
can achieve the same asymptotic efficiency as the full space. The K-mean cluster-
ing technique is used to select the proper knot positions. Denote k as the number
of knots and τ1, . . . , τk as the k data-driven knots. Computationally, we propose
k = max(20, n1/5). For s = 1, it is assumed that �(t) = ea0 + ea1 t +∑k

m = 1 ebm(t −
τm)+, where (t−τm)+ = max(0, t−τm) and a0, a1 and bm are unknown coefficients.
For s > 1, we assume that f = ∑k

m = 1 cmBm(τm), where Bm(τm) are the B-spline
basis functions, which can be easily generated by R (http://www.r−project.org)
or S-Plus (http://www.insightf ul.com) and cms are unknown coefficients. Since
smoothing splines are used here, the same computational concerns as discussed in
Wahba (1990) are applicable.

The Newton–Raphson algorithm is applied to maximize over β and the un-
known coefficients of �. Only simple computations are needed. As shown in the
proof of Lemma 3.2, we require our estimators to only “nearly” maximize (mini-
mize) the objective functions. So the Newton–Raphson iterations can be stopped
after a finite number of steps.

Besides the desirable asymptotic properties, the proposed approach provides a
computationally unified way of estimating semiparametric models with current sta-
tus data. The Newton–Raphson based algorithm can be applied to various models
with only minor modifications.
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4.2 Simulation study

We conduct a simulation study to evaluate the performance of the new proce-
dure. We compare our estimator with the MLE studied in Huang (1996). Only
the MPMLE is considered here. For simplicity, we consider only a one dimen-
sional covariate. The event times are generated from model Eq. (6), with β0 = 1,
Z ∼ Unif[−1.3, 1.3] and �0(t) = ∫ t

0 exp(u2/32 − 1)du. The censoring times are
assumed to be exponentially distributed, independent of the event times. Our obser-
vations are limited to the time interval [0.2, 5]. We simulate 200 realizations for
sample sizes equal to 200 and 400. We take λ0 = 1.

Figures 1 and 2 show the plot of estimators of β and � for sample size equal
to 400, based on 200 realizations. The histogram of β̂MLE shows clearly that the
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Fig. 1 The histogram of MPMLE β̂MLE. Sample size is equal to 400, with 200 realizations
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Fig. 2 Simulation study with sample size equal to 400, based on 200 realizations. The plot of
the MPMLE and MLE of � versus time. The solid line is the true cumulative baseline hazard.
The dashed lines are the MPMLE and corresponding point-wise 95% confidence intervals. The
dot-dashed lines are the MLE and corresponding point-wise 95% confidence intervals
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marginal distribution appears to be Gaussian, as expected. The plot of �̂MLE ver-
sus time and corresponding point-wise 95% confidence intervals shows satisfying
coverage. It can also be seen that the MPMLE has tighter confidence intervals for
estimating �.

Inference based on the weighted bootstrap is applied. Weights are generated
randomly from the exponential distribution with rate equal to 1. The empirical 95%
confidence intervals have coverage ratios 0.96 and 0.955 for sample size equal to
200 and 400, respectively, based on 200 bootstraps for each data set. Simulation
studies under other data settings show similar satisfactory results.

4.3 Data analysis

Consider the California Partner Study (CPS) of HIV infection (Jewell and Shiboski,
1990). The most straightforward partner study occurs when HIV infection data is
collected on both partners in a long-term sexual relationship. Suppose Y denotes
the time from infection of the infected case to the infection of the susceptible part-
ner, and that the partnership is evaluated at a single time T after infection of the
infected case. Then the infection status of the susceptible partner provides current
status data on Y at time T . A schematic representation is available in Encyclopedia
of Biostatistics.

The partial HIV partner dataset we analyze consists of 302 observations of part-
ners with the male partners as the index cases. The following data analysis is carried
out with 295 complete records only. The follow-up time for the 295 partners ranges
from 0.08 to 14.9 years. Fifty-five partners developed HIV when monitored. The
covariate effect of interest is the average sexual contact rate. A previous analysis
in Jewell and Shiboski (1990) suggests log transformation of the covariate. The
Cox model has been previously assumed for this study (Jewell and Van der Laan,
2002; Ma, 2004).

We take λ0 = 1 and the number of knots k = 20. We apply the modified penal-
ized maximum likelihood approach with smax = 6. The MPMLE gives β̂ = 0.231.
Using the weighted bootstrap with random weights generated from the exponential
distribution with rate 1, the estimated standard error of the estimator is 0.077. These
values are close to the MLE values, which are 0.203 and 0.085, respectively. As
happened in the simulation study, we obtain a tighter confidence interval for the
estimation of β.

5 Concluding remarks

We have proposed a penalized approach that has adaptive convergence rate for
estimating the nonparametric parameters for nonparametric and semiparametric
models with current status data. The adaptive convergence rate for estimation
of functions in Sobolev spaces, together with the efficiency for estimation of
the regression parameter, make this penalized approach a valuable alternative to
traditional MLE. The adaptive convergence rate achieved by using the modified
penalized M-estimators marks significant progress since Gu (2002). The proposed
approach also provides a computationally unified way of analyzing semiparametric
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models with current status data. Computational issues like those discussed in Cai
and Betensky (2003) will be investigated in the future.

While our theoretical results are valid for λ0 = 1 and λn(s) = n−1/(2s+1), some
improvement for finite samples may be possible by using the two-step, V -fold
cross validation procedure proposed in Sect. 2.4. Future studies will be needed
to validate this procedure both empirically and theoretically. Based on previous
studies of V -fold cross validation in similar penalized contexts Gu, 2002; Wahba,
1990, we expect the proposed procedure to perform satisfactorily.

Our approach and proofs can be applied to right censored and other interval
censored data, especially case II interval censored data, with only minor modifica-
tions. General transformation models with current status data, right censored data,
and interval censored data can also be studied with this penalized approach.

Appendix A

Information calculation

We give the results for the variances of the limiting distributions below. Detailed
calculations can be found in Ma and Kosorok (2004a).

For the case of the penalized MLE, we denote

Qβ,� = eβ ′Z

[
δ

exp(−eβ ′Z�)

1 − exp(−eβ ′Z�)
− (1 − δ)

]
and aβ,� = �

E(ZQ2
β,�|Y )

E(Q2
β,�|Y )

.

Then I1 = {
P[(z�0 − aβ0,�0)Qβ0,�0 ]⊗2

}−1
.

For the penalized least square estimator, we first make the following notations:

m1 = 2zeβ ′z� exp(−eβ ′z�)(1 − δ − exp(−eβ ′z�)),

m2[a] = 2eβ ′z exp(−eβ ′z�)(1 − δ − exp(−eβ ′z�))a,

L(β, �) ≡ 2zeβ ′z exp(−eβ ′z�)

×
(
(1 − �eβ ′z)(1 − δ − exp(−eβ ′z�)) + �eβ ′z exp(−eβ ′z�)

)
,

N(β, �) ≡ −2e2β ′z exp(−eβ ′z�)
[
1 − δ − 2 exp(−eβ ′z�)

]
, and

A∗ = E(L(β, �)|Y )/E(N(β, �)|Y ).

We also set

m11 = 2z2�eβ ′z exp(−eβ ′z�)
[
(1 − �eβ ′z)(1 − δ − exp(−eβ ′z�))

+�eβ ′z exp(−eβ ′z�)
]

and m21[a] = L(β, �)a. Then I2 = {P(m11 − m21[A∗])}−1P[m1 − m2[A∗]]2

{P(m11 − m21[A∗])}−1.
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Table 1 Comparison of MPMLE with MLE: relative bias and empirical standard errors for β0,
�(1.25), �(2.50) and �(3.75) at n=200 and n= 400

n = 200 n = 400

β �(1.25) �(2.50) �(3.75) β �(1.25) �(2.50) �(3.75)

MPMLE
bias −0.025 0.021 0.064 −0.017 0.008 0.008 0.043 0.086
S.E. 0.202 0.074 0.196 0.456 0.137 0.050 0.156 0.368

MLE
bias 0.025 0.042 0.081 0.183 0.008 0.021 0.016 −0.0 04
S.E. 0.212 0.140 0.310 0.655 0.141 0.105 0.193 0.446

S·E: standard error

Appendix B

Proof of Lemma 3.2

The
√

n consistency and asymptotic normality of β̂LSE and β̂MLE can be proved with
the general theorem in Ma and Kosorok (2004a). For simplicity of notation, we
consider β̂LSE only. The proof for β̂MLE can be obtained with minor modifications.

Under the assumption B1–B2, we have for any 1 ≤ s ≤ smax, λ
2
n(s)(J

2
s (�̂1

n) +
λ2

0) = op(n−1/2). So the MPLSE “nearly” minimizes the objective function.
We now check the conditions of Corollary 1 of Ma and Kosorok (2004a). Con-

dition B1, which requires consistency of β̂LSE and the convergence rate of �̂LSE to
be nc1 , is satisfied from Lemma 2.1 with c1 = s0/(2s0 + 1). Condition B2, which
requires finite variance for the limiting distribution, is satisfied by Assumption C1′.
The smoothness of the model condition B4 can be verified via Taylor expansion
techniques for functionals. Since all third derivatives of the objective functions
are bounded in a neighborhood of the unknown true value, the smoothness of the
model requirement holds with c2 = 2 (in condition B4). For a detailed discussion,
see remark 5 of Ma and Kosorok (2004a).

So we need to check only condition B3, the stochastic equicontinuity con-
dition. Denote the functional sets consisting of m1(β, �) and m2[A∗](β, �) (for
(β, �) ∈ S1 defined below) as M1 and M2, respectively. Consider the following
functional set composed of the LSE estimators

S1 = {(β, �) : |β − β0| ≤ p1n
−s0/(2s0+1),

||� − �0||n ≤ p2n
−s0/(2s0+1) and Js(�) = op(n1/12)},

for two fixed constants p1 > 0 and p2 > 0. Since β belongs to a compact subset
of R

d , it can be proved that S1 has the same entropy result as in Eq. (3). Since
m1(β, �) and m2[A∗](β, �) defined in the information calculation are differentia-
ble functions of β and �, we can conclude that M1 and M2 have the same entropy
results as S1, following the same argument as in Lemma 3.1 of Huang (1996). So
the stochastic equicontinuity can be proved by applying Theorem 2.14.1 of Van
der Vaart and Wellner (1996).
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