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Abstract The density ratio model specifies that the log-likelihood ratio of two
unknown densities is of known linear form which depends on some finite dimen-
sional parameters. The model can be broadened to allow for m-samples in a quite
natural way. Estimation of both parametric and nonparametric part of the model
is carried out by the method of empirical likelihood. However the assumed lin-
ear form has an impact on the estimation and testing for the parametric part. The
goal of this study is to quantify the effect of choosing an incorrect linear form and
its impact to inference. The issue of misspecification is addressed by embedding
the unknown linear form to some parametric transformation family which yields
ultimately to its identification. Simulated examples and data analysis integrate the
presentation.

Keywords Biased sampling · Empirical likelihood · Box–Cox transformation ·
Mean square error · Bias · Power

1 Introduction

The subject matter of this study is the so called density ratio model which is speci-
fied by assuming that the log-ratio of two unknown probability density functions is
linear in some parameters. The model is motivated by considering a binary random
variable Y , which assumes two values, say 1 and 2—where “1” denotes success—
and X, a p-dimensional vector of covariates, see Cox and Snell (1989) for example.

K. Fokianos (B)
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia,
Cyprus
E-mail: fokianos@ucy.ac.cy

I. Kaimi
Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK



476 K. Fokianos and I. Kaimi

Then the logistic regression model expresses the probability of the event {Y = 1}
as a function of X by

P [Y = 1 | x] = exp
(
α�

1 + β ′
1x
)

1 + exp
(
α�

1 + β ′
1x
) , (1)

where α�
1 is a scalar parameter and β1 is a p × 1 vector of regression coefficients.

Eq. 11 leads to the density ratio model when considering case–control or retrospec-
tive sampling, Prentice and Pyke (1979). Suppose that X11, . . . , X1n1 is a random
sample from F(x | Y = 1) and X21, . . . , X2n2 is another independent sample from
F(x | Y = 2). Set π = P [Y = 1] and f (x | Y = i) = dF(x | Y = i)/dx, for the
conditional probability density function of X given Y = i, i = 1, 2. Bayes’ theorem
yields to

f (x | Y = 1) = P [Y = 1 | x] fX(x)

π
,

and

f (x | Y = 2) = (1 − P [Y = 1 | x]) fX(x)

1 − π
,

where the marginal density of X, say fX(x), is left unspecified. The last two equa-
tions, when combined with (1), show that

f (x | Y = 1)

f (x | Y = 2)
= 1 − π

π
exp

(
α�

1 + β ′
1x
)

= exp
(
α1 + β ′

1x
)
,

with α1 = α�
1 + log{(1 − π)/π}. The preceding display justifies the term density

ratio model: the densities of the observations are related by a parametric exponential
tilt, but otherwise are unknown. Switch notation by setting gi(x) ≡ f (x | Y = i),
i = 1, 2 to derive the following two independent samples semiparametric problem

X11, . . . , X1n1 is a random sample from g1(x) = exp
(
α1 + β ′

1h(x)
)
g2(x),

X21, . . . , X2n2 is a random sample from g2(x)
(2)

by employing analogous arguments (Qin and Zhang 1997, Qin 1998) and inserting
a more general linear form in Eq. 1. In what follows, assume that X is univariate
but h(.) is a p-dimensional vector function which is assumed to be known and
consists of functions of X—a fact that is of central importance in the rest of the
article.

Example 1 The Normal Case: further insight on the density ratio model can be
gained by some concrete examples. Assume that g1(.) and g2(.) denote densities
of normal random variables with unequal means, say μ1 and μ2 respectively, but
with equal variance σ 2. A straightforward calculation shows that Eq. 2 holds with
α1 = (μ2

2 − μ2
1)/2σ 2, β1 = (μ1 − μ2)/σ

2 and h(x) = x. Similarly if g1(.) and
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g2(.) stand for densities of normal random variables with different parameters, say
(μ1, σ

2
1 )′ and (μ2, σ

2
2 )′, then the density ratio model holds again but with

α1 = log

(
σ2

σ1

)
+ μ2

2

2σ 2
2

− μ2
1

2σ 2
1

,

β1 =
(

μ1

σ 2
1

− μ2

σ 2
2

,
1

2σ 2
2

− 1

2σ 2
1

)′
,

h(x) = (
x, x2

)′
.

An important observation is that when the model holds, and if β1 = 0, then the
two samples are identically distributed. We conclude that model of Eq. 2 is useful to
the semiparametric comparison of two samples in the sense that the densities gi(.),
i = 1, 2 are left completely unspecified but the weight function exp

(
α1 + β ′

1h(x)
)

depends on some finite dimensional parameter. The last remark connects the den-
sity ratio model and biased sampling theory, see Vardi (1982, 1985), Gill et al.
(1988), Gilbert et al. (1999) and Gilbert (2000). Some other related literature asso-
ciated with the density ratio model is on testing its goodness of fit. Specifically,
Qin and Zhang (1997) propose a bootstrap method, Fokianos et al. (1999) study
a generalized moments test statistic and more recently Zhang (2001) proposes an
information matrix test for model of Eq. 2. The density ratio model has been applied
to both environmental (Fokianos et al. (1998), Kedem et al. (2004)) and biomedical
data (Qin et al. (2002)).

Following the same reasoning, it is feasible to generalize Eq. 2 to an m–samples
problem. Avoiding unnecessary repetition, consider m unknown densities which
are related by an exponential tilt of the following form

X11, . . . , X1n1, random sample from g1(x) = exp
(
α1 + β ′

1h(x)
)
gm(x),

X21, . . . , X2n2 , random sample from g2(x) = exp
(
α2 + β ′

2h(x)
)
gm(x),

. . . . . . . . .
Xm1, . . . , Xmnm

, random sample from gm(x).

(3)

Estimation of β1, . . . , βm−1 as well as inference regarding the cumulative dis-
tribution functions that correspond to g1(.), . . . , gm(.) has been considered by
Fokianos et al. (2001) who also propose some test statistics for the hypotheses
β1 = · · · = βm−1 = 0—that is all the samples are identically distributed. In this
sense, model of Eq. 3 is also referred as a semiparametric one way ANOVA. The
density ratio model for two and m samples avoids the normal theory by specifying
that the log ratio of two unknown densities is of some parametric form. Hence it pro-
vides another way of testing the equality of several distributions without resorting
to transformations or any other techniques. The last comment is particular useful
since there are examples of data which show that populations follow skewed distri-
butions and therefore classical estimation theory might yield questionable results.
The suggested model accommodates skewed data and provides desirable results
such as consistent estimators of means, test statistics and so on-see, for example,
White and Thompslon (2003) regarding the UK700 clinical trial for more.

A drawback of Eq. 2 and more generally Eq. 3, is their dependence on the
assumed known function h(.). It is anticipated therefore that incorrect choice of
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h(.) affects estimation and testing—this point is demonstrated in Sect. 3 by some
simulated examples and theory. The aim of this contribution is to quantify the
effect of specifying an incorrect linear form on both estimation and testing and the
objective is met by assuming that the true h(.) belongs to the Box–Cox parametric
family of transformations (see Box and Cox 1964). This in turn implies that the
parameter λ associated with the well known transformation can be estimated by
standard methods—a fact which yields ultimately to the identification of the func-
tion itself from data. The line of attack is as follows: Sect. 2 reviews some basic
facts about estimation for the two—and more general m-sample problem and Sect.
3 addresses the problem of misspecifying h(.). Sect. 4 discusses estimation of the
Box–Cox transforation parameter while Sect. 5 illustrates the methodology to real
data. The paper concludes with some comments and discussion.

2 Estimation

Consider first the two samples density ratio model which is easier to follow. Recall
Eq. 2 and denote by x = (x11, . . . , x1n1, x21, . . . , x2n2)

′ the combined sample
based on n = n1 + n2 observations. Consider the following associated inferential
problems:

(1) Estimation of the finite dimensional parameters α1 and β1 and
(2) Estimation of the cdf of g2(x), say G2(x),

based on the given sample x. Needless to mention that if there exists estimator for
all parameters α1, β1 and G2(x), then it is straightforward to construct an estimator
of G1(x).

Both of these problems are attacked cleverly by the method of empirical like-
lihood as outlined in Owen (1988) and recently summarized in his monograph,
Owen (2001). Accordingly, let pij denote the size of the jump at the observed
datum xij , that is pij = dG2(xij ) = G2(x

+
ij ) − G2(x

−
ij ), j = 1, 2, . . . , ni , i = 1, 2

and consider the following empirical likelihood given the data,

L(α1, β1, G2 | x) =
⎧
⎨

⎩

n1∏

j=1

exp
(
α1 + β ′

1h(x1j )
)

dG2(x1j )

⎫
⎬

⎭

⎧
⎨

⎩

n2∏

j=1

dG2(x2j )

⎫
⎬

⎭

=
⎧
⎨

⎩

2∏

i=1

ni∏

j=1

pij

⎫
⎬

⎭

⎧
⎨

⎩

n1∏

j=1

exp
(
α1 + β ′

1h(x1j )
)
⎫
⎬

⎭
. (4)

Hence the log empirical likelihood equals to

l ≡ log L(α1, β1, G2 | x) =
2∑

i=1

ni∑

j=1

log pij +
n1∑

j=1

(
α1 + β ′

1h(x1j )
)
. (5)

Following Qin and Zhang (1997) inference for the finite dimensional parameters
α1 and β1 is based on the following parametric likelihood
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l = −
2∑

i=1

ni∑

j=1

log
[
1 + ρ1 exp(α1 + β ′

1h(xij ))
]+

n1∑

j=1

(
α1 + β ′

1h(x1j )
)

−n log n2. (6)

where ρ1 = n1/n2. Assume that α̂1 and β̂1 denote the unique solutions of the score
equations

∂l

∂α1
= −

2∑

i=1

ni∑

j=1

ρ1 exp(α1 + β ′
1h(xij ))

1 + ρ1 exp(α1 + β ′
1h(xij ))

+ n1 = 0, (7)

and

∂l

∂β1
= −

2∑

i=1

ni∑

j=1

ρ1 exp(α1 + β ′
1h(xij ))h(xij )

1 + ρ1 exp(α1 + β ′
1h(xij ))

+
n1∑

j=1

h(x1j ) = 0. (8)

In addition,

p̂ij = 1

n2

1

1 + ρ1 exp(α̂1 + β̂
′
1h(xij ))

. (9)

Hence the cdf of g2(.), say G2(.) is estimated simply by

Ĝ2(x) =
2∑

i=1

ni∑

j=1

p̂ij I (Xij ≤ x)

while

Ĝ1(x) =
2∑

i=1

ni∑

j=1

p̂ij exp(α̂1 + β̂
′
1h(xij ))I (Xij ≤ x),

where I (.) denotes the indicator function.

Remark 1 Identifiability of α1, β1 and G2(x) as well as existence and uniqueness
of α̂1, β̂1 and Ĝ2(x) is guaranteed by the work of Gilbert et al. (1999). In particular,
Theorem 2 of this article shows that if there exist a value x0 such that h(x0) = 0,
then the density ratio model (Eq. 2) is identifiable.

Remark 2 Maximum likelihood estimation for the m-sample problem proceeds
along the previous lines (see Fokianos et al. 2001, Sect.2). For clarity and com-
pleteness of the presentation, consider the profile log likelihood with respect to
α1, . . . , αm−1 and β1, . . . , βm−1 which is given up to a constant by

l = −
m∑

i=1

ni∑

j=1

log

(

1 +
m−1∑

k=1

ρk exp(αk + β
′
kh(xij ))

)

+
m−1∑

i=1

ni∑

j=1

(
αi + β

′
ih(xij )

)
(10)

with ρi = ni/nm.
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2.1 Asymptotics

Asymptotic inference for the two sample problem is based on the limiting distribu-
tion of β̂1. To avoid lengthy formulas and complicated expressions which naturally
merge as p increases, we focus on the case p = 1—that is both β1 and h(x) are
univariate. For the rest of the paper assume that β1 = β1 and h(x) = h(x) so that
the fact p = 1 is emphasized. Similar notation applies for the m-sample density
ratio model (Eq. 3) with the necessary modifications.

Denote by

a11(t) =
t∫

−∞
exp(α1+β1h(x))

1+ρ1 exp(α1+β1h(x))
dG2(x), a11 = a11(∞),

a21(t) =
t∫

−∞
exp(α1+β1h(x))

1+ρ1 exp(α1+β1h(x))
h(x)dG2(x), a21 = a21(∞),

a22(t) =
t∫

−∞
exp(α1+β1h(x))

1+ρ1 exp(α1+β1h(x))
h2(x)dG2(x), a22 = a22(∞),

and set

A =
[

a11 a21
a21 a22

]
, �2 = 1 + ρ1

ρ1

(
A−1 −

[
1 + ρ1 0

0 0

])
, (11)

where the superscript “2” in �2 emphasizes the fact that this 2×2 matrix is asso-
ciated with the two sample density ratio model. Then under suitable regularity
conditions, the maximum likelihood estimators of α1 and β1 tend to a two dimen-
sional normal distribution with covariance matrix �2, that is

√
n

(
α̂1 − α1

β̂1 − β1

)
→ N2(0, �2), (12)

in distribution, as n → ∞ (Qin and Zhang 1997). Consistent estimators of the
asymptotic covariance matrix can be obtained by substituting the maximum like-
lihood estimators α̂1, β̂1 and Ĝ2(x) in (Eq. 11).

Remark 3 Assertion (Eq. 12) has been generalized for the m-sample density ratio
problem (Eq. 3) but the corresponding asymptotic covariance matrix is more com-
plicated (see Fokianos et al. 2001, Eq. 12). Recall that p has been fixed to unity
so that the parameters are univariate and define the vectors α = (α1, . . . , αm−1)

′,
β = (β1, . . . , βm−1)

′, α̂ = (α̂1, . . . , α̂m−1)
′, β̂ = (β1, . . . , βm−1)

′ so that result
(12) can be restated as follows:

√
n

(
α̂ − α

β̂ − β

)
→ N2(m−1)(0, �m), (13)

in distribution, as n → ∞, where the �m is the associated covariance matrix with
the m–samples density ratio model.
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2.2 Testing

Recalling the two sample density ratio model (Eq. 2) when p = 1, interest is focused
on testing the hypothesis β1 = 0 so that the two samples are identically distributed.
Two procedures have been proposed for carrying out the task and they are described
below. The first is based on the large sample properties of the maximum likelihood
estimator of β1. More specifically consider the following test procedure

Z = β̂1√
̂Var(β̂1)

(14)

where ̂Var(β̂1) denotes the estimated asymptotic variance of β̂1 which is obtained
by result (Eq. 12). Then, reject the hypothesis β1 = 0 when | Z |> c� where the
critical value c� is determined by the standard normal distribution.

An alternative procedure is based on the following quantity, Fokianos et al.
(2001),

X 2
1 = nVar[h(x)]ρ1

(1 + ρ1)2
β̂2

1 (15)

which is asymptotically distributed as a chi–square random variable with 1 degree
of freedom under the hypothesis. Expression Var[h(x)] is computed under the
reference sample and it can be estimated consistently by

̂Var[h(x)] =
2∑

i=1

ni∑

j=1

p̂ij h
2(xij ) −

⎛

⎝
2∑

i=1

ni∑

j=1

p̂ij h(xij )

⎞

⎠

2

,

where p̂ij , j = 1, 2, . . . , ni , i = 1, 2 are given by (9) and ρ1 = n1/n2.
Turning to them-sample problem, consider the hypothesesβ1 = · · · = βm−1 = 0

which are of central importance since they imply that all the samples are identically
distributed. To develop a testing procedure it is necessary to modify both Eqs.(14)
and (15) so that they conform with the multivariate aspects of the problem. Recall
that β̂ = (β̂1, . . . , β̂m−1)

′ and suppose that the asymptotic covariance matrix of Eq.
(13) is partitioned as follows:

�m =
[

�m
αα �m

αβ
�m′

αβ
�m

ββ

]

Then, standard arguments show that the asymptotic distribution of

χ2
m;1 = nβ̂

′ (
�̂

m

ββ

)−1
β̂ (16)

approximates a chi square random variable with m − 1 degrees of freedom. Hence
the hypotheses β1 = · · · = βm−1 = 0 is rejected for large values of χ2

m;1.
In a similar manner, test statistic (Eq. 15) takes on the following form (see

Fokianos et al. 2001, Eq. 16)

χ2
m,2 = nVar [h(x)] β̂

′
A11β̂ (17)
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where A11 is the (m − 1) × (m − 1) matrix whose j th diagonal element is

ρj [1 +∑m−1
k �=j ρk]

[1 +∑m−1
k=1 ρk]2

and otherwise for j �= j ′, the jj ′ element is

−ρjρ
′
j

[1 +∑m−1
k=1 ρk]2

,

upon recalling that ρi = ni/nm, i = 1, 2, . . . , m − 1. As it turns out, the limiting
distribution of χ2

m,2 is again a chi square random variable with m − 1 degrees of
freedom. Hence both test statistics (Eq. 16) and (Eq. 17) have the same rejection
area. The performance of all these tests will be studied next under the assumption
of an incorrectly specified model. Definitely both Eqs.(16) and (17) reduces to
Eqs.(14) and (15) respectively when m = 2 but it is rather interesting to examine
each case separately.

Summarizing the above discussion, we conclude that the density ratio model–
for two or more samples—is amenable to standard estimation techniques by means
of empirical likelihood methodology. Furthermore, the problem of examining
whether or not the samples are identically distributed reduces to a parametric
hypothesis which can be tested by the aforementioned techniques.

3 Effect of misspecified linear form

A major drawback of the density ratio model is that it depends on the known func-
tion h(.)—recall that p has been fixed to 1. Hence all the inferential output relies
on the choice of h(.) and therefore departures from the true underlying model have
an impact on the statistical analysis. To study the effect of incorrect choice of h(.)
it is useful to consider a parametric family, say hλ(x), λ ∈ R so that the true linear
form belongs to this class. The Box–Cox family of transformations

h(x, λ) =
{ |x|λsgn(x)−1

λ
when λ �= 0

log |x| when λ = 0,
(18)

where sgn(x) denotes the sign function, provides a sound methodological frame-
work of quantifying the effect of using the incorrect h(.) and estimating the function
itself from data. The last remark is especially useful since it suggests a method of
inference for biased sampling models when the weights are completely unknown.
Notice that if the data are positive, then (Eq. 18) reduces to the pioneering transfor-
mation of Box and Cox (1964). However, if the data assume real values, then (Eq.
18) is an appropriate choice for the analysis of such observations—see Example 1,
for instance. An alternative analysis for real valued data would be based on shifting
all the values to the right by adding the minimum to each observation. Then the
data are positive and analysis can proceed along the lines of Box and Cox (1964).

The following examples demonstrate effectively the impact of h(.) on estima-
tion and testing by means of Eq. (18).
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Example 2 Lognormal distribution: consider two independent samples from log-
normal distributions, that is

g(x; μ, σ 2) = 1

xσ
√

2π
exp

(
− 1

2σ 2
(log x − μ)2

)
, x > 0,

with μ1 �=μ2 but σ 2
1 = σ 2

2 = σ 2. It is easy to see that

log

[
g(x; μ1, σ

2)

g(x; μ2, σ 2)

]
= μ2

2 − μ2
1

2σ 2
+ μ1 − μ2

σ 2
log x.

Hence, the density ratio model (Eq. 2) is rediscovered with α1 = (μ2
2 − μ2

1)/2σ 2,
p = 1, β1 = (μ1 − μ2)/σ

2 and h(x) = log x. A direct comparison of the above
results with that of the Gaussian case—see Example 1— reveals that the parame-
ters α1 and β1 have the same functional form but the function h(.) differs. Moreover,
it is straightforward to verify that when σ 2

1 �= σ 2
2 the density ratio model is true with

the same parameters as those of Example 1 but with h(x) = (log x, (log x)2)′—that
is p = 2.

Table 1 reports empirical results regarding the effect of misspecification when
the data follow lognormal distributions with μ1 �= μ2 but σ 2

1 = σ 2
2 , for different

sample sizes. In particular, it reports the value of the estimate β̂1, its bias and mean
square error and the simulated power of both Eq. (14) and (15). All the output
is based on 1,000 simulations and the computations were carried out using the R
system. Transformation (Eq. 18) was used to assess the consequences of choosing
the wrong h(.) with the parameter value λ varying between -1 and 1, by 0.2. The
conclusion drawn by examining the bias and mean square error results of Table 1
is that an incorrect specification of h(.) leads to biased estimators with large devia-
tions—a uniform result for all sample sizes. In regard to the power of the Z test (Eq.
14) notice that values near λ = 0—the true h(.)—lead to optimal performance. In
contrast, the chi-square test (Eq. 15) possesses this property for large sample sizes.
In addition, its power is superior than the corresponding power of the Z test when
λ assumes negative values and it is approximately similar around the true model.

In the same vein, consider three lognormal samples with different values of the
μ parameter, say μ1, μ2 and μ3 but the same σ 2. Similar to two sample problem,
we obtain a three sample problem with α1 = (μ2

3 −μ2
1)/2σ 2, α2 = (μ2

3 −μ2
2)/2σ 2,

β1 = (μ1 − μ3)/σ
2, β2 = (μ2 − μ3)/σ

2, p = 1 and h(x) = log x so that Eq. 3
is satisfied. Table 2 illustrates the same information with Table 1 augmented with
two columns which correspond to the estimate of β̂2 and its bias. Notice that the
bias is of the same sign as in the case of two samples while the mean square error
takes on its minimum value at the true λ = 0. A comparison between the power of
(16) and Eqs. (17) shows that the former assumes larger values for negative λ while
the latter takes on its maximum value around 0 for large sample sizes–a conclusion
along the lines of the two sample problem.

Example 3 Gamma distribution:
Consider two independent samples from Gamma distributions, i.e.

g(x; μ, ν) = 1

νμ�(μ)
xμ−1 exp(−x/ν), x > 0,
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Table 1 Effect of misspecifying h(.) when the data follow the lognormal distribution with
μ1 = 1, μ2 = 0.5 and σ 2 = 1 using transformation (Eq. 18)

Sample Size λ β̂1 Bias MSE Power of Z Power of X 2
1

−1.0 0.583 0.083 6.979 0.283 0.596
−0.8 0.625 0.125 15.633 0.370 0.599
−0.6 0.646 0.146 21.521 0.413 0.604
−0.4 0.638 0.138 19.075 0.495 0.607

n1 = 40 −0.2 0.608 0.108 11.672 0.504 0.596
0.0 0.526 0.026 0.683 0.507 0.545

n2 = 30 0.2 0.448 −0.052 2.645 0.487 0.492
0.4 0.354 −0.146 21.130 0.445 0.412
0.6 0.291 −0.209 43.375 0.440 0.370
0.8 0.209 −0.291 84.311 0.355 0.266
1.0 0.152 −0.348 120.414 0.282 0.203

−1.0 0.600 0.100 10.041 0.459 0.711
−0.8 0.617 0.117 13.727 0.505 0.726
−0.6 0.633 0.133 17.723 0.590 0.743
−0.4 0.624 0.124 15.425 0.647 0.757

n1 = 50 −0.2 0.584 0.084 7.073 0.667 0.731
0.0 0.522 0.022 0.520 0.693 0.710

n2 = 50 0.2 0.441 −0.059 3.379 0.680 0.667
0.4 0.350 −0.150 22.329 0.649 0.602
0.6 0.253 −0.247 60.925 0.567 0.494
0.8 0.181 −0.318 101.590 0.511 0.379
1.0 0.134 −0.366 133.315 0.460 0.327

−1.0 0.552 0.052 2.786 0.799 0.911
−0.8 0.589 0.089 8.061 0.836 0.913
−0.6 0.611 0.111 12.380 0.901 0.944
−0.4 0.598 0.098 9.758 0.920 0.953

n1 = 100 −0.2 0.574 0.074 5.565 0.939 0.951
0.0 0.514 0.014 0.213 0.949 0.953

n2 = 100 0.2 0.426 −0.074 5.345 0.936 0.932
0.4 0.339 −0.161 25.766 0.914 0.898
0.6 0.291 −0.209 43.375 0.889 0.848
0.8 0.173 −0.327 106.850 0.824 0.741
1.0 0.118 −0.382 145.171 0.760 0.658

The true h(.) corresponds to λ = 0 and the results are based on 1,000 simulations.

with μ1 �= μ2 but ν1 = ν2 = ν. Then

log

[
g(x; μ1, ν)

g(x; μ2, ν)

]
= log

�(μ2)

�(μ1)
+ (μ2 − μ1) log ν + (μ1 − μ2) log x.

Hence, Eq. 2 holds again with p = 1, α1 = log(�(μ2)/�(μ1)) + (μ2 − μ1) log ν,
β1 = (μ1 − μ2) and h(x) = log x.

Table 3 reports the same results as those of Table 1 but only for moderate sam-
ples. Similar conclusions can be drawn again–the estimates are biased with increas-
ing mean square error as we move away from the true h(.). Furthermore the power
of test statistic (Eq. 15) is superior to that of (14), for λ<0. Notice that for this
example, λ>0 shows that β̂1 has positive bias as opposed to the lognormal case—
Example 2—where the estimate had negative bias for the same range of λ-values.
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Table 2 Effect of misspecifying h(.) when the data follow the lognormal distribution with μ1 = 1,
μ2 = 1.5, μ3 = 0.5 and σ 2 = 1 using transformation (Eq. 18)

Sample λ β̂1 Bias of β̂1 β̂2 Bias of β̂2 MSE Power of X 2
m;1 Power of X 2

m;2
size

−1.0 0.691 0.191 2.103 1.103 1254.843 0.416 0.895
−0.8 0.662 0.162 1.926 0.926 885.645 0.513 0.902
−0.6 0.689 0.189 1.672 0.672 487.719 0.588 0.888
−0.4 0.608 0.108 1.521 0.521 283.969 0.683 0.888

n1 = 20 −0.2 0.623 0.123 1.332 0.332 125.454 0.746 0.882
0.0 0.538 0.038 1.095 0.095 10.528 0.754 0.819

n2 = 20 0.2 0.468 −0.032 0.896 −0.104 11.773 0.749 0.760
0.4 0.395 −0.105 0.690 −0.310 106.620 0.685 0.633

n3 = 20 0.6 0.333 −0.167 0.540 −0.460 239.284 0.629 0.501
0.8 0.244 −0.256 0.385 −0.615 443.209 0.629 0.501
1.0 0.201 −0.299 0.293 −0.707 587.656 0.456 0.217

−1.0 0.533 0.033 1.645 0.645 418.002 0.818 0.975
−0.8 0.573 0.073 1.614 0.614 383.181 0.893 0.974
−0.6 0.581 0.081 1.540 0.540 298.664 0.936 0.986
−0.4 0.594 0.094 1.403 0.403 171.523 0.960 0.984

n1 = 40 −0.2 0.564 0.064 1.237 0.237 60.402 0.981 0.988
0.0 0.512 0.012 1.032 0.032 1.214 0.978 0.982

n2 = 50 0.2 0.467 −0.033 0.851 −0.149 23.061 0.976 0.976
0.4 0.390 −0.110 0.676 −0.324 116.716 0.959 0.937

n3 = 30 0.6 0.314 −0.186 0.505 −0.495 279.437 0.931 0.854
0.8 0.252 −0.248 0.376 −0.624 449.765 0.888 0.745
1.0 0.182 −0.318 0.265 −0.735 640.882 0.827 0.602

The true h(.) corresponds to λ = 0 and the results are based on 1,000 simulations.

Example 4 Example 1 continued: Consider the Gaussian case which was discussed
earlier in Example 1. Table 4 reports the empirical output of 1,000 simulations when
the means of both normals are μ1 = 1 and μ2 = 2 respectively, while the standard
deviation has been set to σ = 2 for both distributions. In this case, the parameter
λ of (Eq. 18) varies from 0 to 2 by 0.2 and its true value is equal to 1. In principle,
the results are in agreement with the previous analysis but there are some features
that deserve further attention. First notice that in most of the cases the bias of the
estimate of β1 is positive and the mean square error is minimized near values of
the true λ. Test (Eq. 14) seems more powerful than the chi-square test (Eq. 15)
when λ assumes values less than 1. Both of tests appear to have less power when
compared with Tables 1 and 3—this is a consequence of the fact that the variance
is rather substantial.

Table 5 reports results for three normally distributed samples where the means
are different but the variances are all equal—in fact σ 2 = 1 for this case. The true
values of the parameters can be easily calculated—see Example 1 for more details.
As the simulated results illustrate, values far from λ = 1 yield to biased estimators
while the behavior of both test statistics is similar to the results obtained from the
case of two normal samples.

Before proceeding on calculating the bias of the maximum empirical likelihood
estimate under the incorrect model it is worth pointing out that transformation
should be used cautiously since there might exist values of λ that do not intro-
duce a proper probability distribution so that

∑
i,j p̂ij = 1 according to Eq. (9). For

further discussion on existence issues, see Owen (2001). Furthermore, according
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Table 3 Effect of misspecifying h(.) when the data follow the Gamma distribution with μ1 = 1,
μ2 = 0.5 and ν = 1 using transformation (18).

Sample size λ β̂1 Bias MSE Power of Z Power of X 2
1

−1.0 0.048 −0.452 203.678 0.274 0.920
−0.8 0.081 −0.419 174.982 0.408 0.915
−0.6 0.144 −0.355 126.472 0.565 0.938
−0.4 0.228 −0.272 73.502 0.687 0.948

n1 = 40 −0.2 0.371 −0.129 16.439 0.863 0.967
0.0 0.533 0.033 1.089 0.902 0.947

n2 = 30 0.2 0.710 0.210 44.132 0.902 0.910
0.4 0.841 0.341 116.942 0.861 0.848
0.6 0.936 0.436 190.264 0.812 0.758
0.8 0.954 0.454 206.399 0.704 0.626
1.0 0.967 0.467 218.111 0.638 0.516

−1.0 0.040 −0.460 211.468 0.357 0.972
−0.8 0.074 −0.425 181.129 0.519 0.974
−0.6 0.134 −0.366 133.949 0.698 0.971
−0.4 0.228 −0.272 73.836 0.833 0.977

n1 = 50 −0.2 0.369 −0.131 16.932 0.935 0.987
0.0 0.513 0.013 0.186 0.969 0.988

n2 = 50 0.2 0.687 0.187 35.297 0.977 0.983
0.4 0.805 0.305 93.252 0.961 0.958
0.6 0.890 0.390 152.212 0.927 0.908
0.8 0.917 0.417 174.646 0.882 0.828
1.0 0.881 0.381 145.318 0.814 0.721

The true h(.) corresponds to λ = 0 and the results are based on 1,000 simulations.

Table 4 Effect of misspecifying h(.) when the data follow Gaussian distribution with μ1 = 1,
μ2 = 2 and σ = 2 using transformation (Eq. 18).

Sample size λ β̂1 Bias MSE Power of Z Power of X 2
1

0.0 −0.313 −0.063 4.083 0.171 0.145
0.2 −0.103 0.147 21.490 0.372 0.241
0.4 −0.202 0.048 2.303 0.451 0.372
0.6 −0.252 −0.002 0.006 0.490 0.450

n1 = 40 0.8 −0.270 −0.020 0.413 0.496 0.499
1.0 −0.270 −0.020 0.417 0.526 0.573

n2 = 30 1.2 −0.237 0.013 0.162 0.487 0.570
1.4 −0.209 0.041 1.639 0.483 0.590
1.6 −0.178 0.072 5.117 0.457 0.602
1.8 −0.146 0.104 10.738 0.445 0.615
2.0 −0.120 0.230 16.763 0.413 0.595
0.0 −0.296 −0.046 2.167 0.279 0.228
0.2 −0.098 0.152 23.042 0.520 0.413
0.4 −0.187 0.063 3.911 0.603 0.529
0.6 −0.240 0.010 0.097 0.647 0.607

n1 = 50 0.8 −0.268 −0.018 0.324 0.708 0.702
1.0 −0.254 −0.004 0.021 0.658 0.687

n2 = 50 1.2 −0.239 0.011 0.113 0.687 0.728
1.4 −0.204 0.045 2.075 0.653 0.724
1.6 −0.180 0.070 4.881 0.640 0.757
1.8 −0.142 0.108 11.477 0.591 0.731
2.0 −0.118 0.132 17.447 0.567 0.733

The true h(.) corresponds to λ = 1 and the results are based on 1,000 simulations.
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Table 5 Effect of misspecifying h(.) when the data follow the Gaussian distribution with μ1 = 1,
μ2 = 1, μ3 = 0.5 and σ 2 = 1 using transformation (Eq. 18).

Sample λ β̂1 Bias of β̂1 β̂2 Bias of β̂2 MSE Power of X 2
m;1 Power of X 2

m;2
size

0.0 0.259 −0.241 0.266 −0.234 112.120 0.161 0.325
0.2 0.108 −0.392 0.106 −0.394 308.163 0.383 0.538
0.4 0.238 −0.262 0.238 −0.261 136.410 0.451 0.585
0.6 0.364 −0.136 0.358 −0.142 38.341 0.506 0.626
0.8 0.449 −0.051 0.449 −0.051 5.090 0.504 0.569

n1 = 40 1.0 0.540 0.040 0.533 0.033 2.714 0.526 0.585
1.2 0.566 0.066 0.565 0.065 8.652 0.489 0.511

n2 = 50 1.4 0.564 0.064 0.569 0.069 9.077 0.440 0.431
1.6 0.566 0.066 0.567 0.067 8.958 0.436 0.414

n3 = 30 1.8 0.551 0.051 0.544 0.044 4.618 0.383 0.348
2.0 0.518 0.018 0.524 0.024 0.980 0.339 0.283
0.0 0.280 −0.220 0.275 −0.225 98.846 0.244 0.424
0.2 0.107 −0.393 0.111 −0.389 305.092 0.552 0.690
0.4 0.242 −0.258 0.236 −0.264 135.924 0.631 0.741
0.6 0.364 −0.136 0.365 −0.135 36.562 0.697 0.786
0.8 0.456 −0.044 0.464 −0.036 3.208 0.715 0.771

n1 = 50 1.0 0.496 −0.004 0.500 0.000 0.011 0.655 0.690
1.2 0.548 0.048 0.547 0.047 4.630 0.689 0.704

n2 = 50 1.4 0.550 0.050 0.543 0.043 4.488 0.653 0.645
1.6 0.525 0.025 0.535 0.035 1.937 0.628 0.579

n3 = 50 1.8 0.505 0.005 0.508 0.008 0.099 0.585 0.519
2.0 0.484 −0.016 0.472 −0.028 1.009 0.555 0.467

The true h(.) corresponds to λ = 1 and the results are based on 1,000 simulations.

to Remark 1, the density ratio model when using transformation the (Eq. 18) is
identifiable since hλ(1) = 0, independently of the choice of λ, provided that β �=0.

3.1 Asymptotic bias

The empirical results show that a substantial amount of bias is introduced by mis-
specifying the function h(.) when the latter belongs to the Box–Cox family of
transformations. The following result shows that there exists a simple formula for
assessing the asymptotic bias in a small neighborhood of the true model. Its proof
is postponed to the Appendix.

Proposition 3.1 Suppose that the two samples density ratio model (2) holds for
p = 1, β1 �= 0 and λ0 denotes the true linear form which belongs to the parametric
family (Eq. 18). In addition assume the regularity conditions of Qin & Lawless
(1994, Theorem 1) and suppose further that E[| hλ(X, λ) | (1 + ρ1π(X, λ0))], E[|
hλ(X, λ)h(X, λ) | (1+ρ1π(X, λ0))] and E[| hλ(X, λ)h2(X, λ) | (1+ρ1π(X, λ0))]
are all finite when expectation is taken with respect to G2(x) in a n−1/2 neighbor-
hood of the true value λ0. If θ̂1;λ = (α̂1;λ, β̂1;λ)′ are the maximum likelihood esti-
mators of the parameters θ = (α1, β1)

′ which are calculated under a misspecified
model for λ in the same neighborhood of the true value λ0, then

√
n
(
�2

λ

)−1/2
(
θ̂1;λ − θ1 − b1n

)
→ N2(0, I),
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Fig. 1 Boxplots of 1,000 maximum likelihood estimators for the two sample density ratio model
when the data follow the Gamma distribution with μ1 = 1, μ2 = 0.5 and ν = 1 using transforma-
tion (Eq. 18) for different values of λ (horizontal axis). The sample sizes equal to n1 = 40, n2 = 30
and λ varies from −1 to 1 with step equal to 0.2

in distribution, as n1, n2 → ∞ such that n1/n2 → ρ1. Here I is the two dimen-
sional identity matrix, the 2×1 vector b1n is given by

b1n = −(λ − λ0)β1A−1
λ E[hλ(x, λ0)Y (1, h(x, λ0))

′]

where Y , hλ(X, λ) and π(X, λ0) are defined by (Eq. 22) and the 2×2 matrix Aλ is
defined by (Eq. 24). In addition

�2
λ = A−1

λ Vλ(A−1
λ )′

where Vλ is defined by Eq. 27.

Proposition 3.1 shows that the bias can be represented in terms of the two
dimensional vector b1n and its sign has somehow been confirmed empirically at
least by the limited simulation results. Indeed Table 1 shows that for λ0 = 0 and
β1>0 the bias is positive if λ<0 and negative otherwise. Similarly, Table 3 illus-
trates the opposite result since for this case β1<0. The other terms appearing in
the definition of b1n certainly influence the final form of the bias but there seems
to be positive at least for all simulations considered. Furthermore, Proposition 3.1
facilitates the calculation of the asymptotic distribution of the maximum likeli-
hood estimators α̂1;λ, β̂1;λ calculated under the misspecified model and shows the
asymptotic normality of the estimates even if the model is misspecified. However
for values in the neighborhood of the true λ the approximation is more accurate
compared to the values that fall far from λ0. The point is illustrated in Fig. 1 where
boxplots of simulated β̂1;λ are shown for relative small sample sizes ( n1 = 40 and
n2 = 30 ) of Gamma random variables according to Example 3 and Table 3. Notice
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that the variance increases as λ tends to positive values and the approximation is
more accurate for positive values of λ-especially near λ = 0.

Proposition 3.1 can be extended along the previous lines to the m-sample den-
sity ratio model (Eq. 3). Indeed, following the same reasoning of the appendix and
recalling the notation of (Eq. 13), we obtain the following generalized version:

Proposition 3.2 Suppose that the m samples density ratio model (3) holds for
p = 1, βi �=0, i = 1, 2, . . . , m − 1 and λ0 denotes the true linear form which be-
longs to the parametric family (Eq. 18). In addition assume the regularity con-
ditions of Qin & Lawless (1994, Theorem 1) and suppose that E[| hλ(X, λ) |∑m−1

i=1 (1 + ρiπi(X, λ0))], E[| hλ(X, λ)h(X, λ) | ∑m−1
i=1 (1 + ρiπi(X, λ0))] and

E[| hλ(X, λ)h2(X, λ) | ∑m−1
i=1 (1 + ρiπi(X, λ0))] are all finite when expectation

is taken with respect to Gm(x) in a n−1/2 neighborhood of the true value λ0. If
θ̂1;λ = (α̂1;λ, . . . , α̂m−1,λ, β̂1;λ, . . . , β̂m;λ)′ are the maximum likelihood estima-
tors of the parameters θ = (α1, . . . , αm−1, β1, . . . , βm−1)

′ which are calculated
under a misspecified model for λ in the same neighborhood of the true value λ0,
then

√
n
(
�2

λ;m
)−1/2

(
θ̂1;λ − θ1 − bmn

)
→ N2(m−1)(0, I2(m−1)),

in distribution, as for every i = 1, 2, . . . , m, ni → ∞ with ni/nm → ρi . Here
I2(m−1) is the 2(m−1) dimensional identity matrix and the 2(m−1)×1 vector bmn

is given by

bmn = −(λ − λ0)A−1
λ,m

×
⎧
⎨

⎩

m−1∑

i=1

βiE[hλ(X, λ0)Yihi (X, λ0)(1 +
∑

j �=i

(1 + ρjπj (X, λ0)))]

⎫
⎬

⎭

where all the quantities are defined by (30) and the 2(m − 1) × 2(m − 1) matrix
Aλ;m is defined by (31). In addition

�2
λ = A−1

λ;mVλ;m(A−1
λ;m)′

where Vλ;m is defined by Eq. (32).

To conclude the section, consider the following resume of the above analysis:

– Misspecification of h(.) in Eq. (2) and more generally (Eq. 3) leads to biased
estimators with inflated variance.

– Test statistic (Eq. 14) (respectively (Eq. 16)) is preferable to test statistic (Eq.
15) (respectively (Eq. 17)) when λ>λ0.

– Misspecification of h(.) in (Eq. 2) and more generally (Eq. 3) does not appear
to reduce the power of all test statistics considered especially for large sample
sizes and when λ assumes values within a neighborhood of the true value.
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4 Estimation of λ

The previous results show that the choice of function h(.) is of considerable
importance in both estimation and testing. Therefore it is quite natural to inves-
tigate the problem of estimating itself from data—see Fokianos (2003). Consider
again the two sample density ratio model (Eq. 2) with p = 1, β1 �=0 and let us
examine the problem of estimating the parameter λ in (Eq. 18). A standard pro-
filing procedure can be used where different trial values of the parameter λ are
considered, say λ1, . . . , λm, together with the associated log likelihood (Eq. 6),
say lλ. Then the estimator of λ, say λ̂ is that value where the maximum log likeli-
hood occurs among lλ1, . . . , lλm

. Alternatively a graphical display of λ1, . . . , λm

versus lλ1, . . . , lλm
can be used so that λ̂ can be located visually. An (1 − α)%

confidence interval for λ is given by
{
λ : lλ̂ − lλ <

1

2
χ2

1,α

}
, (19)

where χ2
1,α is the percentage point of the chi–squared distribution with one degree

of freedom which leaves an area of α in the upper tail of the distribution. The
same methodology can be applied to the m samples density ratio model but the
corresponding log likelihood l is given by Eq. (10). The point is illustrated in Fig. 2
where the upper plot corresponds to a three sample problem from the Lognormal
distribution with corresponding sample sizes n1 = n2 = n3 = 50 while the lower
plot shows the log likelihood from three normal samples of the same size, that is
n1 = n2 = n3 = 50. For the lognormal case, the confidence interval (19) is given by
(−0.490, 0.735) and for the normal example is (0.438, 1.794). In both cases the
maximum is achieved at the true value of λ.

Concluding this section we point out that another way of obtaining an estimate
of λ—for the two samples problem—is to maximize the profile likelihood

l = −
2∑

i=1

ni∑

j=1

log
[
1 + ρ1 exp(α1 + β1h(xij , λ))

]+
n1∑

j=1

(
α1 + β1h(x1j , λ)

)

by recalling Eqs.(18) and (6) and the fact that p has been fixed to 1. However
asymptotic approximation is valid for very large sample sizes; the same remarks
hold true for the m samples density ratio model.

5 A two sample problem

The Current Population Survey (CPS) is used to supplement census information be-
tween census years. These data consist of a random sample of 534 persons from the
CPS, with information on wages and other characteristics of the workers, including
sex, number of years of education, years of work experience and other variables of
interest and can be obtained fromhttp://lib.stat.cmu.edu/datasets/
CPS_85_Wages. We examine whether or not there are differences on wages be-
tween males and females, without adjusting for covariates, by the method outlined
in this manuscript—there are 245 female subjects and 289 males. The boxplots
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Fig. 2 Estimation of λ via profiling. The upper plot corresponds to a three sample problem from
the Lognormal distribution with corresponding sample sizes n1 = n2 = n3 = 50, μ1 = 1, μ2 = 2,
μ3 = 0.5 and σ 2 = 1 and the true model holds for λ = 0. The lower plot shows the log likelihood
from three normal samples with n1 = n2 = n3 = 50, μ1 = 1, μ2 = 2, μ3 = 0.5 and σ 2 = 1 and the
true model holds for λ = 1. Dotted lines show the 95% confidence interval (19). All results are
based on 1,000 simulations

of the raw data are illustrated in Fig. 3 where it is seen that assessing differences
between the means of the two samples via the t-test is possible only after transfor-
mation since both distributions appear skewed with unequal variances. A square
root transformation of the raw data (right panel of Fig.3) shows resemblance to
normality, yet the comparison need to be made in the transformed scale.

Turning to the method outlined earlier, Fig. 4 illustrates the maximized log
likelihood (Eq. 5) as a function of λ when using transformation (18) for positive
data. The parameter λ varies from −2 to 2 by 0.1 while the dashed lines indicate
the 95% confidence interval obtained by means of (19). The resulting confidence
interval is (−0.502, 1.177) and includes the values 0 (logarithmic transformation),
0.5 (square root transformation) and 1 (no transformation).

Specifically, the model applied to those data has the following form

log
g(x | male)

g(x | female)
= α1 + β1h(x, λ),

and as the results show the value of β̂1 is always positive indicating that males
earn more than females without adjusting any covariate effect. In fact for λ = 0,

β̂1;0 = 0.873717 with

√
̂Var[β̂1;0] = 0.17672, for λ = 0.5, β̂1;0.5 = 0.30060 with
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Fig. 3 Boxplots of wage data for males and females from the Current Population Survey. The
left panel shows the boxplots for the raw data while the right panel shows the same information
for the square root transformed data
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Fig. 4 Estimation of λ via profiling for the wage data. Dotted lines show the 95% confidence
interval (Eq. 19)

Table 6 Testing for the wage data

Procedure Test statistic p-value
t-test after square root transformation −5.1582 3.524e-07
t-test after log transformation −5.1658 3.390e-07
Wilcoxon 26025 1.304e-07
Z with λ = 0 4.941 7.77e-07
X 2

1 with λ = 0 26.023 3.37e-07
Z with λ = 0.5 4.915 8.87e-07
X 2

1 with λ = 0.5 22.868 1.74e-06

√
̂Var[β̂1;0.5] = 0.06116 and for λ = 1, β̂1;1 = 0.09099 with

√
̂Var[β̂1;1] = 0.01978.

Table 6 summarizes the results of testing procedures (14) and (15) for λ = 0, 0.5
including standard textbook tests for the two sample problem. In all cases consid-
ered notice the small magnitude of the p-values while the results of our analysis
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are consistent with standard inferential output from well known procedures. It
is worth repeating the point that the new methodology does not depend on the
transformation in the sense that the t-test does.

6 Conclusions

The results indicate the wide applicability of the density ratio model for the analysis
of two, or more general m samples. Inference can be carried out in a direct way and
the output can be used for semiparametric comparison of independent samples.
However, as we showed by both theory and examples, the results are affected by
the assumed linear form in the following sense:

1. Introduction of bias and large standard errors
2. Power loss when the fitted model falls far from the true model.

Therefore it is necessary to estimate the linear form and a natural framework is
the Box–Cox family of transformations which allows for real valued data to be
analyzed in a coherent way:

– First we estimate λ upon resorting to a standard profiling procedure.
– For the chosen λ, fit the associated density ratio model.

The methodology can be extended quite naturally to include further powers of
x as in

log
g1(x)

g2(x)
= α1 + β11h(x, λ1) + β12h(x, λ2)

and so on, with λ1 �=λ2. The estimation procedure should be slightly modified so
that estimation of both λ1, λ2 can be carried out by profiling for the allowable range
of values.

Appendix

A.1 Proof of Proposition 3.1

Recall that p = 1 and set θ1 = (α1, β1)
′ and

S(θ1, λ) =
[

∂l(θ1)/∂α1
∂l(θ1)/∂β1

]

for the two dimensional vector which consists of Eqs.(7) and (8). By the mean
value theorem

S(θ1, λ) = S(θ1, λ0) + (λ − λ0)

[
∂2l(θ1)/∂λ∂α1

∂2l(θ1)/∂λ∂β1

]

λ=λ�

(20)

where λ� lies in the line segment connecting λ and λ0. Let θ̂1,λ = (α̂1;λ, β̂1,λ)
′ be

the resulting maximum likelihood estimators under an incorrectly specified model.
Then a new expansion of the score around the true value leads to

0 = S(θ̂1,λ, λ) = S(θ1, λ) + ∂2l(θ �, λ)

∂θ1∂θ ′
1

(
θ̂1,λ − θ1

)
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where θ � lies in the line segment connecting θ1 and θ̂1,λ. It follows that

(
θ̂1,λ − θ1

)
= −

[
∂2l(θ �, λ)

∂θ1∂θ ′
1

]−1

S(θ1, λ)

= −
[
∂2l(θ �, λ)

∂θ1∂θ ′
1

]−1

[S(θ1, λ) − E(S(θ1, λ))]

−
[
∂2l(θ �, λ)

∂θ1∂θ ′
1

]−1

E(S(θ1, λ))

The last equation can be rewritten as

(
θ̂1,λ − θ1

)
+
[
∂2l(θ1, λ)

∂θ1∂θ ′
1

]−1

E(S(θ1, λ))

= −
[
∂2l(θ �, λ)

∂θ1∂θ ′
1

]−1

[S(θ1, λ) − E(S(θ1, λ))] (21)

−
{[

∂2l(θ �, λ)

∂θ1∂θ ′
1

]−1

−
[
∂2l(θ1, λ)

∂θ1∂θ ′
1

]−1
}

E(S(θ1, λ)).

Define the following quantities

Y = ρ1 exp(α1 + β1h(X, λ))

1 + ρ1 exp(α1 + β1h(X, λ))
,

H(X, λ) =
[

1 h(X, λ)

h(X, λ) h2(X, λ)

]
, (22)

π(X, λ0) = exp(α1 + β1h(X, λ0)),

hλ(X, λ) = dh(X; λ)

dλ
.

Then the following facts hold upon noticing that expectation is calculated com-
ponentwise with respect to G2(x) and n1, n2 → ∞ such that n1/n2 → ρ1 in a
neighborhood of λ such that | λ − λ0 |< n−1/2:

1

n
E(S(θ1, λ)) −

(
−(λ − λ0)

β1

1 + ρ1
E[hλ(X, λ0)Y (1, h(X, λ0))

′]
)

= o(1),

(23)

a fact that follows from Eq. (20). Furthermore, denote by

Aλ ≡ 1

1 + ρ1
E [Y (1 − Y )(1 + ρ1π(X, λ0)H(X, λ)] (24)

to obtain

−1

n

[
∂2l(θ1, λ)

∂θ1∂θ ′
1

]
− Aλ = op(1) (25)
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and

1√
n

V−1/2
λ [S(θ1, λ) − E(S(θ1, λ))] → N2(0, I2) (26)

where

Vλ = 1

1 + ρ1

{
E
[(

Y 2 + ρ1(1 − Y )2π(X, λ0)
)

H(X, λ)
]

−ρ1E
[
(1 − Y )π(X; λ0)(1, h(X, λ))′

]
(27)

E [(1 − Y )π(X; λ0)(1, h(X, λ))]

−E
[
Y (1, h(X, λ))′

]
E [Y (1, h(X, λ))]

}

Moreover
{[

1

n

∂2l(θ �, λ)

∂θ1∂θ ′
1

]−1

−
[

1

n

∂2l(θ1, λ)

∂θ1∂θ ′
1

]−1
}

= op(1) (28)

and

1√
n

E[S(θ1, λ)] = O(1) (29)

when λ is such that | λ−λ0 |< δ = cn−1/2. For instance, to show (Eq. 28) consider
the following Taylor expansion

1

n

∂2l(θ , λ)

∂θ1∂θ ′
1

= 1

n

∂2l(θ , λ0)

∂θ1∂θ ′
1

+ (λ − λ0)
∂

∂λ

[
1

n

∂2l(θ , λ0)

∂θ1∂θ ′
1

]
+ o(n−1/2).

But, for the second summand, | λ − λ0 |< cn−1/2 and the other term converges
to a finite limit in probability provided that E[| hλ(X, λ) | (1 + ρ1π(X, λ0))], E[|
hλ(X, λ)h(X, λ) | (1+ρ1π(X, λ0))] and E[| hλ(X, λ)h2(X, λ) | (1+ρ1π(X, λ0))]
are all finite when expectation is taken with respect to G2(x) in a n−1/2 neighbor-
hood of the true value λ0. Hence

1

n

∂2l(θ∗, λ)

∂θ1∂θ ′
1

− 1

n

∂2l(θ1, λ)

∂θ1∂θ ′
1

= 1

n

∂2l(θ∗, λ0)

∂θ1∂θ ′
1

− 1

n

∂2l(θ1, λ0)

∂θ1∂θ ′
1

+ op(1) → 0,

in probability from Eq. (25) and the consistency of θ̂1,λ0 , see Qin and Zhang (1997).
The result follows by combining Eq. 21 with Eqs. 23–29.

A.2 Proof of Proposition 3.2

The generalization to the m’sample problem follows by analogous arguments.
Recall the associated log–likelihood (Eq. 10), p = 1 and that ρi = ni/nm and define
the following quantities
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Yi = ρi exp(αi + βih(X, λ))

1 +∑m−1
k=1 ρk exp(αk + βkh(X, λ))

, i = 1, 2, . . . , m − 1,

Y = (Y1, Y2, . . . , Ym−1)
′,

hi (X, λ) = (1, h(X, λ))′ ⊕ ei , i = 1, 2, . . . , m − 1,

Ỹij =
{

Yi(1 − Yi), if i = j

−YiYj , if i �= j
(30)

Ỹ = (Ỹij ), i, j = 1, 2, . . . , m − 1,

πi(X; λ0) = exp(αi + βih(X; λ0)) i = 1, 2, . . . , m − 1,

where ⊕ stands for the Kronecker product and ei denotes the unit vector with 1
at the i’th position and 0 otherwise, i = 1, 2, . . . , m − 1. Hence hi (X, λ) is an
2(m − 1) × 1 vector.

By redefining θ1 = (α1, . . . , αm−1, β1, . . . , βm−1)
′, a 2(m − 1) × 1 vector,

expressions (23,24,25,26,27) become

1

n
E(S(θ1, λ)) −

(

− (λ − λ0)

1 +∑m−1
i=1 ρi

{
m−1∑

i=1

βiE[hλ(X, λ0)Yihi (X, λ0)

× (1 +
∑

j �=i

(1 + ρjπj (X, λ0)))]

⎫
⎬

⎭

⎞

⎠ = o(1),

Aλ;m ≡ 1

1 +∑m−1
i=1 ρi

E

[

(Ỹ ⊕ H(X, λ))(1 +
m−1∑

i=1

ρiπi(X, λ0)

]

, (31)

−1

n

[
∂2l(θ1, λ)

∂θ1∂θ ′
1

]
− Aλ;m = op(1)

and
1√
n

V−1/2
λ;m [S(θ1, λ) − E(S(θ1, λ))] → N2(m−1)(0, I2(m−1))

where

Vλ;m = 1

1 +∑m−1
i=1 ρi

×
{

E

[

YY′ +
(

m−1∑

i=1

(ei − Y)(ei − Y)′ρiπi(X, λ0)

)

⊕ H(X, λ)

]

−
m−1∑

i=1

ρiE[(ei − Y) ⊕ (1, h(X, λ))′πi(x, λ)]

×E[(1, h(X, λ)) ⊕ (ei − Y)′πi(x, λ)]

− E[Y ⊕ (1, h(X, λ))′]E[(1, h(X, λ)) ⊕ Y]
}

(32)

The desired result follows by the same arguments as in the case of the two samples
problem.
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