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Abstract We consider a very general class of empirical statistics that includes (a)
empirical discrepancy (ED) statistics, (b) generalized empirical exponential family
likelihood statistics, (c) generalized empirical likelihood statistics, (d) empirical
statistics arising from Bayesian considerations, and (e) Bartlett-type adjusted ver-
sions of ED statistics. With reference to this general class, we investigate higher
order asymptotics on power and expected lengths of confidence intervals. For (b)-
(e), such results have been hitherto unexplored. Furthermore, our findings help
in understanding the presently known results on the subclass (a) from a wider
perspective.

Keywords Average power · Bartlett-type adjustment · Confidence interval · Con-
tiguous alternatives · Edgeworth expansion · Empirical likelihood · Minimaxity ·
Second-order · Third-order

1 Introduction

Ever since its introduction by Owen (1988), empirical likelihood has been of sig-
nificant interest in the statistics and econometrics literature; see Owen (2001) and
Mittelhammer et al. (2000) for accounts of recent developments. Corcoran (1998)
introduced a general class of empirical discrepancy (ED) statistics. This class in-
cludes the Cressie-Read discrepancy statistics (Baggerly, 1998) and, in particular,
the empirical likelihood ratio (ELR) statistic. In a pioneering work, Bravo (2003)

I. H. Chang
Department of Computer Science and Statistics, Chosun University, Gwangju 501–759,
South Korea

R. Mukerjee (B)
Indian Institute of Management Calcutta, Joka, Diamond Harbour Road, Kolkata 700 104, India
E-mail: rmuk1@hotmail.com



428 I. H. Chang and R. Mukerjee

reported illuminating results on second order power of Cressie-Read discrepancy
statistics under contiguous alternatives. This was followed up by Bravo (2005),
Fang and Mukerjee (2005a) and Mukerjee (2005), who worked with the more
general class of ED statistics (Corcoran, 1998) and reported results on Bartlett-
type adjustments, expected lengths of confidence intervals, and third-order power,
respectively.

While the picture for ED statistics is now fairly clear in view of the afore-
said results, there are other important classes of empirical statistics for which
higher order asymptotic results on power or confidence interval properties have
not yet been explored. Notable among these are statistics arising from general-
ized empirical exponential family likelihood (Corcoran, 1998, Sect. 4), generalized
empirical likelihood (Newey and Smith, 2004), and empirical-type likelihoods that
admit a probability matching prior (Fang and Mukerjee, 2005b). Furthermore, the
Bartlett-type adjusted versions of ED statistics (Bravo, 2005) are not themselves
ED statistics and the issue of a theoretical understanding of their power and confi-
dence interval properties remains open.

In an attempt to fill up this gap to some extent, in the present article we consider
a very general class of statistics (see Sect. 2) that covers not only the ED statistics
but also the ones mentioned above as subclasses. Higher order asymptotic results
on power and expected lengths of confidence intervals are obtained in Sects. 3 and
4, respectively; the implications of the results on second- and third-order power are
discussed in Subsects. 3.4 and 3.5. These results are not only more comprehensive
than the existing ones on ED statistics, but also help in understanding the find-
ings for the ED subclass from a wider perspective; see Subsect. 3.4. Compared to
ED statistics, a new feature with our general class is that the relevant approximate
cumulants of fifth and higher orders are not necessarily ignorable. This calls for the
development of an indirect technique, akin to that in comparing parametric likeli-
hood-based tests (Mukerjee, 1990a). Another new feature is that the critical value
may now involve an additional lower order term that requires careful handling.

In order to give a flavor of the main ideas without making the notation and
algebra too heavy, the case of univariate observations is considered here. However,
the univariate results can provide useful pointers to what is likely to happen in
the multivariate case; see Subsect. 3.5 and Sect. 4. Indeed, at the expense of more
excruciating algebra, it should be possible to extend these results to the multivariate
case. It is anticipated that this will call for combining the present techniques with
those in Mukerjee (2005).

2 A general class of empirical statistics

Let X1, . . . , Xn be independent scalar-valued random variables from an unknown
common distribution with mean θ . We work under the same conditions as in Bravo
(2003); these conditions justify the Edgeworth expansions considered later. Let
X̄ = n−1 ∑n

i=1 Xi, ms = n−1 ∑n
i=1(Xi−X̄)s(s = 2, 3, . . . ), g3 = m3/m

3/2
2 , g4 =

m4/m2
2, and y ≡ y(θ) = (n/m2)

1/2(X̄ − θ).
We consider a very general class of empirical statistics such that any statistic

in the class admits a stochastic expansion of the form

T (θ) = {W (θ)}2 + op

(
n−1

)
, (1)
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where

W (θ) = y + n−1/2U (g3, y) + n−1V (g3, g4, y) , (2)

and

U (g3, y) =
∑ ∑

csqg
s
3y

q, V (g3, g4, y) =
∑ ∑ ∑

dstqg
s
3g

t
4y

q, (3)

are polynomials in g3, y and g3, g4, y, respectively, the coefficients csq and dstq
therein being O(1) constants. The specific forms of these polynomials depend on
the particular statistic under consideration.

Remark 1 As hinted earlier, the above class includes:

(a) ED statistics,
(b) generalized empirical exponential family likelihood statistics (Corcoran, 1998,

Sect. 4; see also Schennach, 2005),
(c) generalized empirical likelihood statistics (Newey and Smith, 2004),
(d) statistics arising from empirical-type likelihoods that admit a probability

matching prior (Fang and Mukerjee, 2005b), and
(e) Bartlett-type adjusted versions of ED statistics, obtained by Bravo (2005) in

the spirit of Cordeiro and Ferrari’s (1991) work in the parametric case.

For (a)–(c), it can be shown that

U (g3, y) = cg3y
2, (4)

where c is a O(1) constant.As noted in Corcoran (1998), any statistic in subclass (a)
is defined via a constrained optimization. Fang and Mukerjee (2005a) established
(4) for these statistics by expressing, with margin of error op(n−1), the associated
Lagrangian multipliers as polynomials in y, g3 and g4; note that our y is the same as
(−y) in their notation. In the same spirit, (4) can be established for the generalized
empirical likelihood statistics in (c) by finding a similar solution to an optimization
problem underlying the definition of any of these statistics. With a lengthy algebra,
the same approach shows that (4) holds also for the subclass (b), with c = 1/3.
Following Fang and Mukerjee (2005a), c in (4) equals 1/3 for the ELR statistic as
well. Thus all the statistics in the subclass (b) as well as the ELR statistic have the
same U(.), though, of course, they have different V (.). For the subclass (d),

U (g3, y) = g3

(
1

3
y2 − 1

2

)

. (5)

Following Fang and Mukerjee (2005b), if one works with an empirical-type
likelihood of the form L(θ) ∝ exp{−T (θ)/2}, where T (θ) is given by (1–3) with
U(.) as in (5), then the posterior quantiles of θ under the flat prior (i.e., the Lebesgue
measure) have approximate frequentist validity. Finally, for (e), the Bartlett-type
adjusted version of any ED statistic has the same U(.) but possibly different V (.)
compared to the original statistic, because the adjustment term is a polynomial in
the original ED statistic, the coefficients therein being at most of order Op(n−1).



430 I. H. Chang and R. Mukerjee

Remark 2 In contrast with the stochastic expansions considered in Baggerly (1998),
Bravo (2003) or Mukerjee (2005), the one in (1) does not involve any unknown
population moment other than θ . This helps not only in finding an asymptotic rep-
resentation for the associated confidence interval (cf. Fang and Mukerjee, 2005a)
but also in understanding the power properties in a more transparent manner (see
Subsect. 3.5).

3 Power properties

3.1 Preliminaries

Suppose interest lies in the null hypothesis H0 : θ = θ0. Let σ be the unknown
population standard deviation under θ0, and we consider contiguous alternatives of
the form Hn : θ = θn, where θn = θ0 + n−1/2γ σ and γ is free from n. As in Bravo
(2003), we note that in the present context of nonparametric inference, the popu-
lation distribution functions under the null and contiguous alternative hypotheses
are related in the sense that they are both assumed to belong to the same class of
distributions, indexed by the mean θ . Thus the distribution of Xi − θn, under θn,
is the same as that of Xi − θ0, under θ0 (the difference with a parametric location
model is that the form of the distribution is now unknown). Consequently, defining
Zi = (Xi − θn)/σ , the standardized moments βs = Eθn

(Zs
i ) (s = 3, 4) do not

depend on γ .
Let z be the upper (α/2)-point of a standard normal variate. In view of (1), we

consider a critical region of the form

|W (θ0) | > z + n−1/2a (g3, z) + n−1b (g3, g4, z) , (6)

where a(.) and b(.) are polynomials in g3, z and g3, g4, z, respectively, the coeffi-
cients therein being O(1) constants. These polynomials are to be so chosen that
the critical region has size α + o(n−1). The right-hand side of (6) is motivated by
the fact that the (1 − α) th quantile of |W(θ0)|, under H0 and with margin of error
o(n−1), has a similar structure with g3, g4 replaced by β3, β4. As will be seen later,
a(.) can be nonzero for our general class of statistics, a fact that may be contrasted
with what happens for ED statistics (Bravo, 2003). Under contiguous alternatives,
the power function corresponding to (6) is given by

P (γ ) = Pθn
(M1 > z) + Pθn

(M2 < −z) + o
(
n−1

)
, (7)

where

M1 = W (θ0) − n−1/2a (g3, z) − n−1b (g3, g4, z) , (8)

M2 = W (θ0) + n−1/2a (g3, z) + n−1b (g3, g4, z) . (9)
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3.2 Approximate characteristic functions

In view of (7), we now consider the approximate characteristic functions (cf) of
M1 and M2 under θn. Some additional notation is required for this purpose. Let
U ′(g3, y) and a′(g3, z) be the first partial derivatives of U(g3, y) and a(g3, z) with
respect to g3, e.g., by (3),

U ′ (g3, y) =
∑ ∑

csqsg
s−1
3 yq. (10)

Also, note that the square of U(g3, y) is again a polynomial in g3, y, and hence
write

{U (g3, y)}2 =
∑ ∑

c∗
sqg

s
3y

q, (11)

the coefficients c∗
sq being O(1) constants. Let Kj(γ ) be the j th raw moment, about

zero, of the univariate normal distribution with mean γ and variance unity. Define

h01 = 1

6

(
γ 2 − 1

)
, h11 = 1

6
γ, h21 = −1

3
, (12)

h02 = − 1

72

(
γ 5 − 10γ 3 + 15γ

)
β2

3 − 1

24

(
γ 3 − 3γ

)
(β4 − 3) , (13)

h12 = − 1

72

(
γ 4 − 15γ 2 + 12

)
β2

3 − 1

8
γ 2 (β4 − 3) + 1

4
β4,

h22 = 1

72

(
5γ 3 − 33γ

)
β2

3 + γ

(
1

4
β4 − 1

)

,

h32 = 1

72

(
γ 2 + 8

)
β2

3 − 1

12
β4 + 1

2
, h42 = −1

9
γβ2

3 , h52 = 1

18
β2

3 ,

h03 = −1

6
γ 3, h13 = 1

2
, h23 = 1

2
γ, h33 = −1

3
. (14)

Let ξ = (−1)1/2τ , where τ is an auxiliary variate. Then, an argument sketched in
the appendix shows that the approximate cf of M1, under θn, is given by

Eθn
{exp (M1ξ)} = {

1 + ξ
(
n−1/2	1 + n−1	2

)}
exp

(

γ ξ + 1

2
ξ 2

)

+ o
(
n−1

)
,

(15)

where

	1 = β3

2∑

j=0

hj1Kj (γ + ξ) +
∑ ∑

csqβ
s
3Kq (γ + ξ) − a (β3, z) , (16)
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	2 =
5∑

j=0

hj2Kj (γ + ξ) +
∑ ∑ ∑

dstqβ
s
3β

t
4Kq (γ + ξ) − b (β3, β4, z)

+β3

3∑

j=0

hj3

{∑ ∑
csqβ

s
3Kq+j (γ + ξ) − a (β3, z) Kj (γ + ξ)

}

+
(

β4 − 3 − 3

2
β2

3

) {∑ ∑
csqsβ

s−1
3

(
Kq+1 (γ + ξ)

−Kq (γ + ξ) γ
) − a′ (β3, z) ξ

}

+1

2
ξ

∑ ∑
c∗

sqβ
s
3Kq (γ + ξ) − a (β3, z) ξ

∑ ∑
csqβ

s
3Kq (γ + ξ)

+1

2
ξ {a (β3, z)}2 , (17)

and the csq, dstq and c∗
sq are as in (3) and (11). Because of (8) and (9), the approxi-

mate cf of M2, under θn, can be obtained from (15–17) replacing a(.) and b(.) by
their negatives.

Remark 3 The presence of terms like Kq(γ + ξ) and Kq+j (γ + ξ) in (16) and
(17) shows that the fifth and higher order approximate cumulants of M1 and M2
may not be ignorable even when one works with margin of error o(n−1). This is in
contrast with what happens for the subclass of ED statistics.

3.3 Power under contiguous alternatives

Equations (15–17) yield an Edgeworth expansion for M1, under θn, in the usual
manner. Even though (16) and (17) look formidable, the fact that (Mukerjee, 1990a)

Kj

(

γ − d

du

)

φ (u − γ ) = ujφ (u − γ ) ,

where φ(.) is the standard univariate normal density, helps in expressing the Edge-
worth expansion in a neat and readily integrable form. The same happens for M2.
These Edgeworth expansions, together with (7) and (12–14) yield an expansion for
P(γ ) with margin of error o(n−1). In view of (16), (17) and their counterparts for
M2, the expansion for P(γ ) involves the polynomials a(.) and b(.) that appear in
the critical value in (6). One can check that the size condition P(0) = α + o(n−1)
holds provided

a (g3, z) = 1

2
{U (g3, z) − U (g3, −z)} , (18)
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b (g3, g4, z) = 1

18
g2

3z
5 +

(
1

9
g2

3 − 1

12
g4 + 1

2

)

z3 +
(

1

4
g4 − 1

6
g2

3

)

z

+1

2
{V (g3, g4, z) − V (g3, g4, −z)} + 1

8
z {U (g3, z)

+U (g3, −z)}2 + 1

2
z

(

g4 − 3 − 3

2
g2

3

)
{
U ′ (g3, z)

+U ′ (g3, −z)
} + {U (g3, z) + U (g3, −z)}

×
{

g3

(
1

4
z − 1

6
z3

)

− 1

4
Ũ (g3, z) + 1

4
Ũ (g3, −z)

}

, (19)

where Ũ (g3, y) is the first partial derivative of U(g3, y) with respect to y. With
a(.) and b(.) as in (18) and (19), the expansion for the power function P(γ ), under
contiguous alternatives, finally simplifies to

P (γ ) = P (0) (γ ) + n−1/2P (1) (γ ) + n−1P (2) (γ ) + o
(
n−1

)
, (20)

where

P (0) (γ ) = 2 − � (z − γ ) − � (z + γ ) ,

P (1) (γ ) = φ (z − γ )

{
1

6
γβ3z + C(1) (γ )

}

+ φ (z + γ )

{
1

6
γβ3z − C(1) (γ )

}

,

(21)

P (2) (γ ) = φ (z − γ )
{
C(2) (γ ) + C

} + φ (z + γ )
{
C(2) (−γ ) − C

}
, (22)

�(.) is the standard univariate normal distribution function, and

C(1) (γ ) = 1

6
β3

(
γ 2 − 1 − 2z2

) + 1

2
{U (β3, z) + U (β3, −z)} , (23)

C(2) (γ ) = 1

4
β3 {U (β3, z) + U (β3, −z)}

(

z2γ − 1

3
γ 3

)

−1

8
γ {U (β3, z) + U (β3, −z)}2

−1

2
γ

(

β4 − 3 − 3

2
β2

3

)
{
U ′ (β3, z) + U ′ (β3, −z)

}

− 1

72

(
γ 5 − 10γ 3 + 15γ

)
β2

3

− 1

24

(
γ 3 − 3γ

)
(β4 − 3) − z

{
1

72

(
γ 4 − 15γ 2

)
β2

3 + 1

8
γ 2 (β4 − 3)

}

+z2

{
1

72

(
5γ 3 − 33γ

)
β2

3 + γ

(
1

4
β4 − 1

)}

+ 1

72
z3β2

3γ 2 − 1

9
z4β2

3γ,

(24)
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C = 1

2
{V (β3, β4, z) + V (β3, β4, −z)}

−1

4
{U (β3, z) + U (β3, −z)}

{
Ũ (β3, z) + Ũ (β3, −z)

}
. (25)

Remark 4 In our general class, U(g3, y) can involve odd powers of y, and hence
there is no guarantee that a(g3, z), shown in (18), will vanish. This is unlike what
happens for ED statistics for which U(g3, y) is an even polynomial in y (see (4)),
so that a(g3, z) necessarily vanishes.

3.4 Second-order power

The first-order term P (0)(γ ) in (20) is the same for all statistics under consider-
ation. Turning to the second-order term P (1)(γ ), from (21) and (23), we note that
P (1)(γ ) is an odd function of γ . Furthermore,

P (1) (γ ) = γφ (z) z

{

U (β3, z) + U (β3, −z) − 2

3
β3z

2

}

+ O
(
γ 3

)
,

so that P (1)(γ ) = O(γ 3) provided the polynomial U(.) satisfies

1

2
{U (β3, z) + U (β3, −z)} = 1

3
β3z

2. (26)

By (21) and (23), all possible U(.) satisfying (26) have the same P (1)(γ ). Thus, as
in Bravo (2003), the condition (26) characterizes second-order local maximinity
in our class, in the sense of maximizing the minimum of P (1)(γ ) and P (1)(−γ )
for sufficiently small |γ |; note that this refers to points equidistant from the null
hypothetical value. Following Remark 1, the ELR statistic as well as all generalized
empirical exponential family likelihood statistics (Corcoran, 1998, Sect. 4) satisfy
(26). Thus, the second-order local maximinity of the ELR statistic, that was so far
known in the Cressie-Reid and ED subclasses (Bravo, 2003), now stands extended
to our general class.

There are two key ingredients in the phenomenon just noted: (i) P (1)(γ ) =
O(γ 3) for the ELR statistic, (ii)P (1)(γ ) is an odd function for every statistic in our
class, even though unlike with ED statistics, U(g3, y) can involve odd powers of y.
While (i) is known from Bravo (2003), the explicit formulae (21) and (23) establish
(ii). Note that fact (ii) is nontrivial – for example, had there been a statistic in our
class satisfying, say P (1)(γ ) = γ 2� + o(γ 2) for some � (> 0) free from γ , then
notwithstanding (i), the second-order local maximinity of the ELR statistic would
not hold. Fact (ii) rules out such possibilities.

Comparing (5) with (26), it also follows that empirical statistics in the subclass
(d) of Remark 1 will be dominated by the ELR statistic with regard to second-order
local maximinity.
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3.5 Third-order average power and its implications

The fact (ii) in the previous subsection implies that the arithmetic mean of P (1)(γ )
and P (1)(−γ ) is zero for every statistic in our class. Thus, under the criterion of
average local power over equidistant points from the null hypothetical value, one
needs to consider the third-order term P (2)(γ ) in (20). Let P̄ (2)(γ ) be the arithmetic
mean of P (2)(γ ) and P (2)(−γ ). From (22) and (25), it is readily seen that P̄ (2)(γ )
is free from C and hence from V (.), i.e., statistics with the same U(.) will have the
same P̄ (2)(γ ) in addition to the same P (1)(γ ). The same phenomenon is expected
to persist if one attempts to extend the present results to the multivariate case. This
is analogous to what happens with parametric likelihood-based tests (Bickel et al.,
1981; Mukerjee, 1990b). However, even for ED statistics, this was so far hidden
because a different kind of stochastic expansion, involving higher order population
moments, was used; see Remark 2.

Remark 5 The fact noted in the last paragraph has major implications with regard
to the important subclasses, (a), (b), (c) and (e), of statistics considered in Remark 1.

(i) As noted in Remark 1, all generalized empirical exponential family likelihood
statistics in the subclass (b) have the same U(.) as the ELR statistic. Hence
they all have the same P (1)(γ ) and P̄ (2)(γ ) as the ELR statistic, which is a
member of the subclass (a) of ED statistics.

(ii) It was seen in Remark 1 that all generalized empirical likelihood statistics
in the subclass (c) have U(.) as in (4). Now, following Fang and Mukerjee
(2005a), any c in (4) is attainable within the subclass (a) of ED statistics (in
fact, within the subclass of Cressie-Reid statistics). In other words, given any
statistic in the subclass (c), there is one in the subclass (a) with the same
U(.)and hence the same P (1)(γ ) and P̄ (2)(γ ).

(iii) The Bartlett-type adjusted version of any ED statistic, as obtained by Bravo
(2005) in the spirit of Cordeiro et al. (1991) (vide the subclass (e)), has the
same U(.) and hence the same P (1)(γ ) and P̄ (2)(γ ) as the original statistic.

(iv) As a result of (i)–(iii) above, given any member of the subclasses (b), (c) or
(e), there is a member of the subclass (a) with the same P (1)(γ ) and P̄ (2)(γ ).
Therefore, once the subclass (a) of ED statistics is considered, no further
gain in P (1)(γ ) or P̄ (2)(γ ) is possible via the subclasses (b), (c) or (e), so
that these latter subclasses may be left out of consideration in so far as higher
order power is concerned.

An explicit formula for P̄ (2)(γ ) helps for comparisons that are not covered by
Remark 5 above. From (22) and (24), it can be seen that P̄ (2)(γ ) = γ 2φ(z)(R0 +
R1) + O(γ 4), where

R0 = z3

(
1

2
β4 − 2 − 8

9
β2

3

)

− 2

9
z5β2

3

is the same for all statistics under consideration, and
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R1 = 1

2
z3β3 {U (β3, z) + U (β3, −z)}

−z

(

β4 − 3 − 3

2
β2

3

)
{
U ′ (β3, z) + U ′ (β3, −z)

}

−1

4
z {U (β3, z) + U (β3, −z)}2 (27)

depends on the particular statistic. If one specializes to ED statistics, then (27) is
in agreement with the findings in Mukerjee (2005).

Indeed, (27) involves the unknown β3 and β4, a feature shared by other results in
this general area – e.g., those on the mean squared error of point estimators without
bias correction (Newey and Smith, 2004, p. 235). However, in the spirit of Newey
and Smith (2004, p. 236), one can use (27) for making meaningful comparisons
over various possibilities for β3 and β4. As an illustration, let R11 be the R1 for the
ELR statistic and R12 be the R1 for statistics arising from Bayesian considerations
(vide subclass (d) of Remark 1). From (5), note that the latter statistics have the
same U(.) and hence the same P̄ (2)(γ ) and R1. By (27) and Remark 1, it can be
seen that

R11 − R12 = β2
3

(
1

6
z3 + 7

4
z

)

− (β4 − 3) z.

Thus R11 −R12 is positive and hence the ELR statistic is superior to statistics aris-
ing from Bayesian considerations if either (a) β4 < 3, or (b) β4 = 3 and β3 �= 0,
or (c) β4 > 3 and β4 − 3 < β2

3

(
1
6z2 + 7

4

)
.

Alternatively, one can consider expected R1 under suitable prior specification
for β3 and β4 and optimize over sufficiently large subclasses of our general class.
One such subclass consists of statistics for which

U (g3, y) = g3B (y) , (28)

where B(.) is a polynomial with coefficients given by O(1) constants. Observe
that all the statistics listed in Remark 1 satisfy (28). Under (28), the formula (27)
for R1 simplifies to

R1 = β2
3z3B̄ (z) − 2

(

β4 − 3 − 3

2
β2

3

)

zB̄ (z) − β2
3z

{
B̄ (z)

}2
,

where B̄(z) is the arithmetic mean of B(z) and B(−z). Hence if E1(> 0) and E2
be the expectations of β2

3 and β4 − 3 − 3
2β2

3 under a prior, then one needs to choose
B(.) so as to maximize

E1z
3B̄ (z) − 2E2zB̄ (z) − E1z

{
B̄ (z)

}2
,

and this is achieved when

B̄ (z) = 1

2
z2 −

(
E2

E1

)

. (29)
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No ED statistic, including the ELR statistic, satisfies (29) unless E2 = 0. However,
any statistic with

B (y) = 1

2
y2 −

(
E2

E1

)

(30)

satisfies (29) for every z. Thus we get an example of a situation where going beyond
the ED subclass can help. In particular, one may assign a uniform prior on (β2

3 , β4)
over

{
(
β2

3 , β4
)

: 0 ≤ β2
3 ≤ 1.8, β2

3 + 1 < β4 <
15

8
β2

3 + 9

2

}

, (31)

which is the range for the Pearsonian system of distributions; see Pearson and
Hartley (1958, p. 210). Then E1 = 234/245, E2 = −607/1960, and (30) reduces
to B(y) = (1/2)y2 + (607/1872).

4 Expected lengths of confidence intervals

In view of (6), a confidence set for θ , with coverage probability 1 − α + o(n−1),
is given by

S = {
θ : |W (θ) | ≤ z + n−1/2a (g3, z) + n−1b (g3, g4, z)

}
,

where a(.) and b(.) are as in (18) and (19). Since y = (n/m2)
1/2(X̄ − θ), by (2)

and following Mukerjee and Reid (1999) who considered parametric likelihood
based inference, S can be further approximated by the interval

I = {
θ : J1 ≤ (n/m2)

1/2
(
X̄ − θ

) ≤ J2
}
,

with

J1 = −z − n−1/2 {a (g3, z) + U (g3, −z)}
−n−1

[
b (g3, g4, z) + V (g3, g4, −z) − {a (g3, z)+U (g3, −z)} Ũ (g3, −z)

]
,

J2 = z + n−1/2 {a (g3, z) − U (g3, z)}
+n−1

[
b (g3, g4, z) − V (g3, g4, z) − {a (g3, z) − U (g3, z)} Ũ (g3, z)

]
,

in the sense that the probability for the symmetric difference of S and I to include
θ is o(n−1). Denote the length of I by L. Then using (18), (19) and expansions
analogous to (39) in the appendix, we get

E
(
n1/2L

) = 2zσ + n−1 (G0 + G1) σ + o
(
n−1

)
. (32)

Here

G0 = 1

9
z5β2

3 + z3

(
2

9
β2

3 − 1

6
β4 + 1

)

+ z

{
1

4
(β4 − 3) − 1

3
β2

3

}

(33)

is the same for all statistics under consideration,
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G1 =
(

1

2
z − 1

3
z3

)

β3 {U (β3, z) + U (β3, −z)}

+z

(

β4 − 3 − 3

2
β2

3

)
{
U ′ (β3, z) + U ′ (β3, −z)

}

+1

4
z {U (β3, z) + U (β3, −z)}2 (34)

depends on the particular statistic, and σ 2, β3, β4 are now interpreted as σ 2 =
Eθ(Xi − θ)2, βs = Eθ {(Xi − θ)/σ }s (s = 3, 4).

If one specializes to ED statistics then (32–34) are in agreement with the find-
ings in Fang and Mukerjee (2005a). Observe that G0 and G1 do not involve V (.).
This phenomenon, which is expected to persist in any multivariate extension of our
results, has the same implications as in Remark 5. Unlike the results on power, the
above formula for expected length is non-local. However, the expression for G1 is
similar to that for R1 in (27) and can be used in the same way as in Subsect. 3.5.

Appendix

On the approximate characteristic function of M1 : By (2) and (8),

M1 = y0 + n−1/2U1 + n−1V1,

where y0 = y(θ0) = (n/m2)
1/2(X̄ − θ0), and

U1 = U (g3, y0) − a (g3, z) , V1 = V (g3, g4, y0) − b (g3, g4, z) , (35)

Hence

Eθn
{exp (M1ξ)} = Eθn

[

exp (y0ξ)

{

1 + n−1/2U1ξ + n−1

(

V1ξ + 1

2
U 2

1 ξ 2

)}]

+o
(
n−1

)
. (36)

First consider the leading term on the right-hand side of (36). It can be checked that

y0 = (A1 + γ )

{

1 − 1

2
n−1/2A2 + n−1

(
1

2
A2

1 + 3

8
A2

2

)}

+ op

(
n−1

)
, (37)

under θn. Here

A1 = n−1/2
n∑

i=1

Zi, A2 = n−1/2
n∑

i=1

(
Z2

i − 1
)
, A3 = n−1/2

n∑

i=1

(
Z3

i − β3
)
.

Hence one can calculate the first four approximate cumulants of y0 under θn, check
that the approximate cumulants of still higher orders are o(n−1), and thus, after a
considerable algebra, show that

Eθn
{exp (y0ξ)} =

⎡

⎣1+n−1/2β3ξ

2∑

j=0

hj1Kj (γ + ξ) + n−1ξ

5∑

j=0

hj2Kj (γ + ξ)

⎤

⎦

× exp

(

γ ξ + 1

2
ξ 2

)

+ o
(
n−1

)
. (38)
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Next consider the second term on the right-hand side of (36). Analogously to
(37), it can be seen that

g3 = β3 + n−1/2

(

A3 − 3A1 − 3

2
β3A2

)

+ op

(
n−1/2

)
, (39)

under θn, so that by (35),

Eθn
{U1 exp (y0ξ)} = Eθn

[{U (β3, y0) − a (β3, z)} exp (y0ξ)
]

+n−1/2Eθn

[(

A3−3A1 − 3

2
β3A2

)
{
U ′ (β3, y0) − a′ (β3, z)

}

× exp (y0ξ)

]

+ o
(
n−1/2

)
. (40)

The first term on the right-hand side of (40) can be handled via an Edgeworth expan-
sion for y0 obtained from (38). Under appropriate moment assumptions (Bravo,
2003), the second term can be handled by a conditioning argument, similar to that
in Mukerjee (2005), noting that y0 = A1 + γ + op(1) [see (37)] and that, up to the
first order of approximation, the limiting distributions of (A1, A2)

T and (A1, A3)
T ,

under θn, are bivariate normal with appropriate parameters – e.g., recalling (10),
this involves steps like

Eθn

{
A3U

′ (β3, y0) exp (y0ξ)
} = β4

∑ ∑
csqsβ

s−1
3

× {
Kq+1 (γ + ξ) − Kq (γ + ξ) γ

}

× exp

(

γ ξ + 1

2
ξ 2

)

+ o (1) ,

and so on. Similar considerations apply to the remaining terms on the right-hand
side of (36).

If one substitutes (38) and the calculations indicated in the last paragraph in
(36), then upon simplification, it follows that the approximate cf of M1 is as in
(15–17).
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