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Abstract In this paper we investigate local E- and c-optimal designs for exponen-
tial regression models of the form

∑k
i=1 ai exp (−µix). We establish a numerical

method for the construction of efficient and local optimal designs, which is based
on two results. First, we consider for fixed k the limit µi → γ (i = 1, . . . , k)
and show that the optimal designs converge weakly to the optimal designs in a
heteroscedastic polynomial regression model. It is then demonstrated that in this
model the optimal designs can be easily determined by standard numerical soft-
ware. Secondly, it is proved that the support points and weights of the local optimal
designs in the exponential regression model are analytic functions of the nonlinear
parameters µ1, . . . , µk . This result is used for the numerical calculation of the local
E-optimal designs by means of a Taylor expansion for any vector (µ1, . . . , µk).
It is also demonstrated that in the models under consideration E-optimal designs
are usually more efficient for estimating individual parameters than D-optimal
designs.
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1 Introduction

Nonlinear regression models are widely used to describe the dependencies between
a response and an explanatory variable (see e.g. Ratkowsky, 1983, 1990; Seber and
Wild, 1989). An important class of models in environmental and ecological statis-
tics consists of exponential regression models defined by

k∑

i=1

aie
−µix, x ≥ 0, (1)

(see, for example, Alvarez, Virto, Raso and Condon, 2003; Becka and Urfer, 1996;
Becka, Bolt and Urfer, 1993; Landaw and DiStefano, 1984 among many others).
An appropriate choice of the experimental conditions can improve the quality of
statistical inference substantially and therefore many authors have discussed the
problem of designing experiments for nonlinear regression models (see for exam-
ple Chernoff, 1953; Ford, Torsney and Wu, 1992; Melas, 1978). Local optimal
designs depend on an initial guess for the unknown parameter, but are the basis for
all advanced design strategies, (see Chaloner and Verdinelli, 1995; Ford & Silvey,
1980; Han and Chaloner, 2003; Pronzato and Walter, 1985; Wu, 1985). Most of
the literature concentrates on D-optimal designs (independent of the particular
approach), which maximize the determinant of the Fisher information matrix for
the parameters in the model, but much less attention has been paid to E-optimal
designs in nonlinear regression models, which maximize the minimum eigenvalue
of the Fisher information matrix (see Dette and Haines, 1994; Dette and Wong,
1999; among others, who gave some results for models with two parameters).

It is the purpose of the present paper to study local c-optimal and E-optimal
designs for the nonlinear regression model (1). For this purpose we prove two main
results. First, we show that in the case µi → γ (i = 1, . . . , k), where k is fixed, the
local optimal designs for the model (1) converge weakly to the optimal designs in
a heteroscedastic polynomial regression model of degree 2k with variance propor-
tional to exp(2γ x). It is then demonstrated that in most cases the E- and c-optimal
designs are supported at the Chebyshev points, which are the local extrema of the
equi-oscillating best approximation of the function f0 ≡ 0 by a normalized linear
combination of the form

∑2k−1
i=0 ai exp(−γ x)xi . These points can be easily deter-

mined by standard numerical software (see for examples Studden and Tsay, 1976).
The main reason for consideration of the limiting model is that the optimal designs
in the limiting model can easily be calculated. Moreover, the resulting optimal
designs are usually very efficient in the general model (1), which will be confirmed
by our numerical results in Sect. 4. Secondly, it is proved that the support points
and weights of the local optimal designs in the exponential regression model are
analytic functions of the nonlinear parameters µ1, . . . , µk . This result is used to
provide a Taylor expansion for the weights and support points as functions of the
parameters, which can easily be used for the numerical calculation of the optimal
designs. It is also demonstrated that in the models under consideration E-opti-
mal designs are usually more efficient for estimating individual parameters than
D-optimal designs.

The remaining part of the paper is organized as follows. In Sect. 2 we intro-
duce the necessary notation, while the main results are stated in Sect. 3. In Sect. 4
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we illustrate our method considering several examples and compare local D- and
E-optimal designs. Finally all technical details are deferred to an Appendix (see
Sect. 5).

2 Preliminaries

Consider the common exponential regression model with homoscedastic error

E(Y (x)) = η(x, β) =
k∑

i=1

aie
−µix, V(Y (x)) = σ 2 > 0, (2)

where the explanatory variable x varies in the experimental domain X = [b, +∞)
with b ∈ R, βT = (a1, µ1, a2, . . . , µk) denotes the vector of unknown parame-
ters and different measurements are assumed to be uncorrelated. Without loss of
generality we assume ai �= 0, i = 1, . . . , k and 0 < µ1 < µ2 < · · · < µk . An
approximate design ξ is a probability measure

ξ =
(

x1 . . . xn

w1 . . . wn

)

(3)

with finite support on [b, ∞), where x1, . . . , xn give the locations, where observa-
tions are taken and w1, . . . , wn denote the relative proportions of the total number
of observations taken at these points (see Kiefer, (1974)). In practice a rounding
procedure is applied to obtain the samples sizes Ni ≈ wiN at the experimental
conditions xi , i = 1, 2, . . . , n (see e.g. Pukelsheim and Rieder, 1992). If n ≥ 2k,
wi > 0, i = 1, . . . , n, it is well known that under some additional assumptions
of regularity (see e.g. Jennrich, 1969) the nonlinear least squares estimator β̂ for
the parameter β in model (2) is asymptotically unbiased with covariance matrix
satisfying

lim
N→∞

Cov(
√

Nβ̂) = σ 2M−1(ξ, a, µ),

where

M(ξ) = M(ξ, a, µ) =
(

n∑

s=1

∂η(xs, β)

∂βi

∂η(xs, β)

∂βj

ws

)2k

i,j=1

denotes the information matrix of the design ξ . Throughout this paper we will use
the notation

f (x) = ∂η(x, β)

∂β
= (e−µ1x, −a1xe−µ1x, . . . , e−µkx, −akxe−µkx)T (4)

for the gradient of the mean response function η(x, β). With this notation the
information matrix can be conveniently written as

M(ξ) =
n∑

i=1

f (xi)f
T(xi)wi. (5)
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An optimal design maximizes a concave real valued function of the information
matrix and there are numerous optimality criteria proposed in the literature to dis-
criminate between competing designs (see e.g. Pukelsheim, 1993; Silvey, 1980). In
this paper we restrict ourselves to three well known optimality criteria. Following
Chernoff (1953) we call a design ξ local D-optimal in the exponential regression
model (2) if it maximizes det M(ξ). The optimal design with respect to the deter-
minant criterion minimizes the content of a confidence ellipsoid for the parameter
β, based on the asymptotic covariance matrix. Local D-optimal designs in various
non-linear regression models have been discussed by numerous authors (see e.g.
Dette et al., 1999; He et al., 1996; Melas, 1978 among many others). D-optimal
designs for the regression model (1) have been studied by Melas (1978, 2001),
while some D- and c-optimal designs for other exponential regression models can
be found in Han and Chaloner (2003), Fang and Wiens (2004).

Note that an ellipsoid is usually not used as a confidence region for the vector
of parameters, because it is difficult to handle for practitioners, which usually pre-
fer rectangular regions obtained from Bonferroni’s method. Good designs for these
confidence regions minimize the variance of the parameter estimates, which can be
reflected by the c-optimality criterion. To be precise we call for a given vector c ∈
R

2k a design ξ local c-optimal if c ∈ Range(M(ξ)) and ξ minimizes cTM−(ξ)c.
This corresponds to the minimization of the asymptotic variance of the least squares
estimator for the linear combination cTβ. If c = ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈
R

2k is the ith unit vector, the local ei-optimal designs are also called optimal
designs for estimating the ith coefficient (i = 1, . . . , 2k). Local c-optimal designs
for nonlinear models with two parameters have been studied by Ford et al. (1992)
among others. Finally we consider the E-optimality criterion, which determines
the design such that the minimal eigenvalue, say λmin(M(ξ)), of the information
matrix M(ξ) is maximal. This corresponds to the minimization of the worst var-
iance of the least squares estimator for the linear combination pTβ taken over all
vectors p such that pTp = 1. In this paper we will demonstrate theoretically (see
Theorem 2) and empirically (see the examples in Sect. 4) that in the exponential
regression model (1) E-optimal designs usually behave substantially more reliably
with respect to minimzation of the variances of the parameter estimates than do
D-optimal designs. However, the problem of determining E-optimal designs is
substantially harder than the D-optimal design problem.

Some local E-optimal designs for models with two parameters have been found
by Dette and Haines (1994) and Dette and Wong (1999). In the following sections
we determine and investigate local E- and c-optimal designs for the exponential
regression model (1). We also compare these designs with the corresponding local
D-optimal designs for the exponential model, which have been studied by Melas
(1978).

Note that in contrast to local D-optimal designs the local E-optimal designs
in model (2) depend on all parameters a1, . . . ak, µ1, . . . , µk . The information
matrix in the nonlinear regression model (1) is given by K−1

a M(ξ, e, µ)K−1
a , where

e = (1, . . . , 1)T and the matrix Ka ∈ R
k×k is defined by

Ka = diag
(

1,
1

a1
, 1, . . . , 1,

1

ak

)
. (6)

Consequently, a local E-optimal design problem in the model (1) with respect to the
parameter (a1, . . . , ak, µ1, . . . , µk)

T corresponds to the problem of maximizing
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λmin(K
−1
a M(ξ, e, µ)K−1

a ). For the sake of transparency we will mainly concentrate
on the case a = (a1, . . . , ak) = e = (1, . . . 1)T. The general case is treated exactly
in the same way. In what follows we will only reflect the dependence of the infor-
mation matrix in our notation, if it is not clear from the context. In particular,
we do not reflect the dependence of the local E-optimal design on the parameter
a = e. We begin our investigations with an important tool for analyzing E-optimal
designs. A proof can be found in Pukelsheim (1993) or Melas (1982).

Theorem 1 A design ξ ∗ is E-optimal if and only if there exists a nonnegative
definite matrix A∗ such that tr A∗ = 1 and

max
x∈X

f T(x)A∗f (x) ≤ λmin(M(ξ ∗)). (7)

Moreover, we have equality in (7) for any support point of ξ ∗, and the matrix A∗
can be represented as

A∗ =
s∑

i=1

αip(i)p
T
(i),

where s is the multiplicity of the minimal eigenvalue, αi ≥ 0,
∑s

i=1 αi = 1,
{p(i)}i=1,... ,s is a system of orthonormal eigenvectors corresponding to the mini-
mal eigenvalue.

3 Main results

In this section we study some important properties of local c- and E-optimal designs
in the exponential regression model (2). In order to indicate the dependence of the
optimal designs on the nonlinear parameters in model (2) we denote the local c- and
E-optimal design by ξ ∗

c (µ) and ξ ∗
E(µ), respectively. We begin with an investigation

of the behaviour of the local optimal designs if the vector of nonlinear parame-
ters µ = (µ1, . . . , µk)

T is contained in a neighbourhood of a point γ (1, . . . , 1)T,
where γ > 0 is an arbitrary parameter. The information matrix (5) of any design
becomes singular as µ → γ (1, . . . , 1)T. However, we will show that the cor-
responding local optimal designs are still weakly convergent, where the limiting
measure has 2k support points.

To be precise let

µi = γ − riδ, i = 1, . . . , k (8)

where δ > 0 and r1, . . . , rk ∈ R \ {0} are arbitrary fixed numbers such that
rk > rk−1 > · · · > r1. If δ is small, local c- and E-optimal designs in the exponen-
tial regression model (2) are closely related to optimal designs in the heteroscedastic
polynomial regression model

E(Y (x)) =
2k∑

i=1

aix
i−1, V(Y (x)) = exp(2γ x), x ∈ [b, ∞) (9)
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where γ > 0 is assumed to be known. Note that for a design of the form (3) the
information matrix in this model is given by

M̄(ξ) =
n∑

i=1

e−2γ xi f̄ (xi)f̄
T(xi)wi, (10)

(see Fedorov, 1972), where the vector of regression functions defined by

f̄ (x) = (1, x, . . . , x2k−1)T. (11)

The corresponding c-optimal designs are denoted by ξ̄ ∗
c , where the dependence on

the constant γ is not reflected in our notation, because it will be clear from the
context. The next theorem shows that the e2k-optimal design ξ̄ ∗

2k = ξ̄ ∗
e2k

in the het-
eroscedastic polynomial regression, i.e. the design which minimizes eT

2kM̄
−1(ξ)e2k

for e2k = (0, . . . 0, 1)T ∈ R
2k , appears as a weak limit of the local c- and E-optimal

design ξ ∗
c (µ) and ξ ∗

E(µ) in the model (2). The proof is complicated and therefore
deferred to the Appendix.

Theorem 2 (1) For any design with at least 2k support points and γ > 0 there
exists a neighbourhood 
γ of the point γ (1, . . . , 1)T ∈ R

k such that for any
vector µ = (µ1, . . . , µk)

T ∈ 
γ the minimal eigenvalue of information matrix
M(ξ) in (5) is simple.

(2) If condition (8) is satisfied and δ → 0, then the local E-optimal design ξ ∗
E(µ)

in the exponential regression model (2) converges weakly to the e2k-optimal
design ξ̄e2k

in the heteroscedastic polynomial regression model (9).
(3) Assume that condition (8) is satisfied and define a vector l = (l1, . . . , l2k)

T

with l2i = 0, (i = 1, . . . , k),

l2i−1 = −
∏

j �=i

(ri − rj )
2
∑

j �=i

2

ri − rj

, i = 1, . . . , k. (12)

If lT c �= 0 and δ → 0 then the local c-optimal design ξ ∗
c (µ) in the exponential

regression model (2) converges weakly to the e2k-optimal design ξ̄e2k
in the

heteroscedastic polynomial regression model (9).

Remark 1 (a) Note that in the case, where all parameters µi share a common value,
say γ , the parameters ai in the model (1) are not identifiable and this model
reduces to the model β exp(−γ x), for which a two-point design is optimal
(see also our Example 1). Theorem 2 shows that the calculation of the design
and the consideration of the limit in (8) with δ → 0 cannot be interchanged.
Note that for a fixed design ξ the information matrix M(ξ) becomes singular
if δ → 0 in (8). On the other hand the local optimal design ξ ∗

E depends on
the parameter µ, say ξ ∗

E(µ), and this measure converges weakly to a 2k-point
design.

(b) Note that Theorem 2 shows that as δ → 0 the local E-optimal and ei-optimal
designs have the same limiting design, namely the design ξ̄e2k

is optimal for
estimating the highest coefficient in model (9). Roughly speaking this indi-
cates that E-optimal designs behave substantially better with respect to the
estimation of the individual parameters than D-optimal designs. This is also
confirmed by our numerical results in Sect. 4.
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(c) E-optimal designs are easy to find if the minimum eigenvalue of the E-optimal
information matrix is simple (see Dette and Studden, 1993; Heiligers, 1994
among others). In general this property cannot be proved for the model (1).
However, if all components of the vector of nonlinear parameters µ1, . . . , µk

converge to the same value, then, by Theorem 2, the information matrix of
any design with 2k support points converges to a matrix with a simple mini-
mum eigenvalue. In other words, if the components of the vector of nonlinear
parameters are close, the minimum eigenvalue of the information matrix of the
E-optimal design has multiplicity 1. As a consequence the E-optimal design
can be found easily in such cases. It is also interesting to note that the limiting
design is usually rather efficient for a broad range of values of the nonlinear
parameters.

Remark 2 It is well known (see e.g. Karlin and Studden, 1966) that the e2k-optimal
design ξ̄e2k

in the heteroscedastic polynomial regression model (9) has 2k support
points, say

x∗
1 (γ ) < · · · < x∗

2k(γ ).

These points are given by the extremal points of the Chebyshev function p∗(x) =
q∗Tf̄ (x)e−γ x , which is the solution of the problem

sup
x∈[b,∞)

|p∗(x)| = min
α1,... ,α2k−1

sup
x∈[b,∞)

exp(−γ x)

∣
∣
∣1 +

2k−1∑

i=1

αix
i
∣
∣
∣. (13)

Moreover, also the weights w∗
1(γ ), . . . , w∗

2k(γ ) of the e2k-optimal design ξ̄e2k
(γ )

in model (9) can be obtained explicitly, i.e.

w∗(γ ) = (w∗
1(γ ), . . . , w∗

1(γ ))T = J F̄−1e2k

12kJ F̄−1e2k

, (14)

where the matrixes F̄ and J are defined by

F̄ = (f̄ (x∗
1 (γ ))e−γ x∗

1 (γ ), . . . , f̄ (x∗
2k(γ ))e−γ x∗

2k(γ )) ∈ R
2k×2k,

J = diag(1, −1, 1, . . . , 1, −1), respectively, 12k = (1, . . . , 1)T ∈ R
2k and the

vector f̄ (x) is defined in (11) (see Pukelsheim and Torsney, 1991).

Remark 3 Let 
 denote the set of all vectors µ = (µ1, . . . , µk)
T ∈ R

k with
µi �= µj , i �= j, µi > 0, i = 1, . . . , k, such that the minimum eigenvalue of
the information matrix of the local E-optimal design (with respect to the vector
µ) is simple. The following properties of local E-optimal designs follow by stan-
dard arguments from general results on E-optimal designs (see Dette and Studden,
1993; Pukelsheim, 1993) and simplify the construction of local E-optimal designs
substantially.

1. For any µ ∈ 
 the local E-optimal design for the exponential regression model
(2) (with respect to the parameter µ) is unique.

2. For any µ ∈ 
 the support points of the local E-optimal design for the expo-
nential regression model (2) (with respect to the parameter µ) do not depend
on the parameters a1, . . . , ak .
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3. For any µ ∈ 
 the local E-optimal design for the exponential regression model
(2) (with respect to the parameter µ) has 2k support points; moreover the point
b is always a support point of the local E-optimal design. The support points
of the E-optimal design are the extremal points of the Chebyshev function
pTf (x), where p is an eigenvector corresponding to the minimal eigenvalue
of the information matrix M(ξ ∗

E(µ)).
4. For any µ ∈ 
 the weights of the local E-optimal design for the exponential

regression model (2) (with respect to the parameter µ) are given by

w∗ = JF−1c

cTc
, (15)

where cT = 1T
2kJF−1, J = diag(1, −1, 1, . . . , 1, −1),

F = (f (x∗
1 ), . . . , f (x∗

m)) ∈ R
2k×2k

and x∗
1 , . . . , x∗

2k denote the support points of the local E-optimal design.
5. If µ ∈ 
, let x∗

1;b(µ), . . . , x∗
2k;b(µ) denote the support points of the local

E-optimal design for the exponential regression model (2) with design space
X = [b, +∞). Then x∗

1;0(µ) ≡ 0,

x∗
i;b(µ) = x∗

i;0(µ) + b, i = 2, . . . , 2k.

x∗
i;0(νµ) = x∗

i;0(µ)/ν, i = 2, . . . , 2k

for any ν > 0.

We now study some analytical properties of local E-optimal designs for the
exponential regression model (2). Theorem 2 indicates that the structure of the local
E-optimal design depends on the multiplicity of the minimal eigenvalue of its cor-
responding information matrix. If the multiplicity is equal to 1 then the support
of an E-optimal design consists of the extremal points of the Chebyshev function
pTf (x), where p is the eigenvector corresponding to the minimal eigenvalue of the
information matrix M(ξ ∗

E(µ)). If the multiplicity is greater than 1 then the problem
of constructing E-optimal designs is more complex. Observing Remark 3(5) we
assume that b = 0 and consider a design

ξ =
(

x1 . . . x2k

w1 . . . w2k

)

with 2k support points, x1 = 0, such that the minimal eigenvalue of the infor-
mation matrix M(ξ) has multiplicity 1. If p = (p1, . . . , p2k)

T is an eigenvector
corresponding to the minimal eigenvalue of M(ξ) we define a vector

� = (θ1, . . . , θ6k−3)
T = (q2, . . . , q2k, x2, . . . , x2k, w2, . . . , w2k)

T, (16)

where the points wi and xi (i = 2, . . . , 2k) are the non-trivial weights and sup-
port points of the design ξ (note that x1 = 0, w1 = 1 − w2 − · · · − w2k) and
q = (1, q2, . . . , q2k)

T = p/p1 is the normalized eigenvector of the information
matrix M(ξ). Note that there is a one-to-one correspondence between the pairs
(q, ξ) and the vectors of the form (16). Recall the definition of the set 
 in Remark
3. For each vector µ ∈ 
 the minimum eigenvalue of the information matrix of
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a local E-optimal design ξ ∗
E(µ) (for the parameter µ) has multiplicity 1 and for

µ ∈ 
 let

�∗ = �∗(µ) = (q∗
2 , . . . , q∗

2k, x
∗
2 , . . . , x∗

2k, w
∗
2, . . . , w∗

2k)
T

denote the vector corresponding to the local E-optimal design with respect to the
above transformation. We consider the function

�(�, µ) =
∑2k

i=1(q
Tf (xi))

2wi

qTq

(note that x1 = 0, w1 = 1 − w2 − · · · − w2k). Then it is easy to see that

�(�∗(µ), µ) = q∗TM(ξ ∗
E(µ))q∗

q∗Tq∗ = λmin(M(ξ ∗
E(µ))),

where λmin(M) denotes the minimal eigenvalue of the matrix M . Consequently,
�∗ = �∗(µ) is an extremal point of the function �(�, µ). A necessary condition
for the extremum is given by the system of equations

∂�

∂θi

(�, µ) = 0, i = 1, . . . , 6k − 3, (17)

and a straightforward differentiation shows that this system is equivalent to





(M(ξ)q)− − �(�, µ)q− = 0,

2qT f (xi)q
Tf ′(xi)wi = 0, i = 2, . . . , 2k,

(qT f (xi))
2 − (qTf (0))2 = 0, i = 2, . . . , 2k,

(18)

where the vector p− ∈ R
2k−1 is obtained from the vector the p ∈ R

2k−1 by deleting
the first coordinate. This system is equivalent to the following system of equations






M(ξ)p = �(�, µ)p,

pTf ′(xi) = 0, i = 2, . . . , 2k,

(pTf (xi))
2 = (pTf (0))2, i = 2, . . . , 2k,

(19)

and by the first part of Theorem 2 there exists a neighbourhood, say 
1, of the
point (1, . . . , 1)T such that for any µ ∈ 
1 the vector �∗(µ) and the local E-
optimal design ξ ∗

E(µ) and its corresponding eigenvector p∗ satisfy (17) and (19),
respectively.

Theorem 3 For any µ ∈ 
 the system of equations (17) has a unique solution

�∗(µ) = (q∗
2 (µ), . . . , q∗

2k(µ), x∗
2 (µ), . . . , x∗

2k(µ), w∗
2(µ), . . . , w∗

2k(µ))T.

The local E-optimal design for the exponential regression model (2) is given by

ξ ∗
E(µ) =

(
0 x∗

2 (µ) . . . x∗
2k(µ)

w∗
1(µ) w∗

2(µ) . . . w∗
2k(µ)

)

,

where w∗
1(µ) = 1 −w∗

2(µ)−· · ·−w∗
2k(µ) and q∗(µ) = (1, q∗

2 (µ), . . . , q∗
2k(µ))T

is an (normalized) eigenvector of the information matrix M(ξ ∗
E(µ)). Moreover, the

vector �∗(µ) is a real analytic function of µ.
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It follows from Theorem 3 that for any µ0 ∈ R
k such that the minimal eigen-

value of the information matrix corresponding to the local E-optimal design ξ ∗
E(µ)

has multiplicity 1 there exists a neighbourhood, say U , of µ0 such that for all µ ∈ U
the function �∗(µ) can be expanded in convergent Taylor series of the form

�∗(µ) = �∗(µ0) +
∞∑

j=1

�∗(j, µ0)(µ − µ0)
j . (20)

It was shown in Dette et al. (2004) that the coefficients �∗(j, µ0) in this expansion
can be calculated recursively and therefore this expansion provides a numerical
method for the determination of the local E-optimal designs using the analytic
properties of the support points and weights as function of µ. From a theoretical
point of view it is possible that several expansions have to be performed in order
to cover the whole range of 
 of all values µ such that the minimum eigenvalue of
the information matrix of the local E-optimal design has multiplicity 1. However,
in all our numerical examples only one expansion was sufficient (although we can
not prove this in general).

Remark 4 Note that the procedure described in the previous paragraph would not
give the local E-optimal design for the exponential regression model in the case,
where the minimum eigenvalue of the corresponding information matrix has mul-
tiplicity larger than 1. For this reason all designs obtained by the Taylor expansion
were checked for optimality by means of Theorem 1. In all cases considered in
our numerical study the equivalence theorem confirmed our designs to be local
E-optimal and we did not find cases where the multiplicity of the minimum eigen-
value of the information matrix in the exponential regression model (2) was larger
than 1. Some illustrative examples are presented in the following section.

4 Examples

Example 1 Consider the exponential model E(Y (x)) = a1e−µ1x on the interval
[0, ∞) corresponding to the case k = 1. It is easy to verify that for this model
the information matrix M(ξ) has a simple minimum eigenvalue for all values of
µ1 > 0 (see also Han and Chaloner, 2003). In this case the Chebyshev function
φ(x) = (1 + q∗

2 x)e−µ1x minimizing

sup
x∈[0,∞)

|(1 + αx)e−µ1x |

with respect to the parameter α ∈ R and the corresponding extremal point x∗
2

are determined by the equations φ(x∗
2 ) = − φ(0) and φ′(x∗

2 ) = 0, which are
equivalent to

e−µ1x2 − µ1x2 + 1 = 0, αe−µ1x2 + µ1 = 0.

Therefore, the second point of the local E-optimal design is given by x∗
2 = t∗/µ1,

where t∗ is the unique solution of the equation e−t = t −1 (the other support point
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is 0) and the local E-optimal design is given by {0, x∗
2 ; w∗

1, w
∗
2}, where the weights

are calculated by the formula given in Remark 3, that is

w∗
1 = x∗

2 e−µ1x
∗
2 + µ1

x∗
2 e−µ1x

∗
2 + µ1 + µ1eµ1x

∗
2
,

w∗
2 = µ1eµ1x

∗
2

x∗
2 e−µ1x

∗
2 + µ1 + µ1eµ1x

∗
2
.

Example 2 For the exponential regression model

E(Y (x)) = a1e−µ1x + a2e−µ2x (21)

on the interval [0, ∞) corresponding to the case k = 2 the situation is more compli-
cated and the solution of the local E-optimal design problem can not be determined
directly. In this case we used the Taylor expansion (20) for the construction of the
local E-optimal design, where the point µ0 in this expansion was given by the
vector µ0 = (1.5, 0.5)T. By Remark 3(5) we can restrict ourselves to the case
µ1 + µ2 = 2. Local E-optimal designs for arbitrary values of µ1 + µ2 can be
easily obtained by rescaling the support points of the local E-optimal design found
under the restriction µ1 + µ2 = 2, while the weights have to be recalculated using
Remark 3(4). We consider the parameterization µ1 = 1 + z, µ2 = 1 − z and study
the dependence of the optimal design on the parameter z. Because µ1 > µ2 > 0,
an admissible set of values z is the interval (0, 1). We choose the center of this inter-
val as the origin for the Taylor expansion. Table 1 contains the coefficients in the
Taylor expansion for the points and weights of the local E-optimal design, that is

x∗
i = xi(z) =

∞∑

j=0

xi(j)(z − 0.5)j , w∗
i = wi(z) =

∞∑

j=0

wi(j)(z − 0.5)j , (22)

(note that x∗
1 = 0 and w∗

1 = 1 − w∗
2 − w∗

3 − w∗
4). The points and weights are

depicted as a function of the parameter z in Fig. 1. We observe for a broad range
of the interval (0, 1) only a weak dependence of the local E-optimal design on the
parameter z. Consequently, it is of some interest to investigate the robustness of the
local E-optimal design for the parameter value z = 0, which corresponds to the
vector µ = (1, 1). This vector yields the limiting model (9) and by Theorem 2 the
local E-optimal designs converge weakly to the design ξ̄ ∗

e2k
, which will be denoted

Table 1 The coefficients of the Taylor expansion (22) for the support points and weights of the
local E-optimal design in the exponential regression model (21)

j 0 1 2 3 4 5 6

x2(j) 0.4151 0.0409 0.0689 0.0810 0.1258 0.1865 0.2769
x3(j) 1.8605 0.5172 0.9338 1.2577 2.1534 3.6369 6.3069
x4(j) 5.6560 4.4313 10.505 20.854 44.306 90.604 181.67
w2(j) 0.1875 0.2050 0.6893 0.3742 −1.7292 −1.2719 7.0452
w3(j) 0.2882 0.2243 −0.0827 −0.8709 −0.1155 2.7750 1.8101
w4(j) 0.4501 −0.4871 −0.9587 0.2323 2.9239 −0.2510 −12.503
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Fig. 1 Support points and weights of the local E-optimal design ξ ∗
E(µ) in the exponential regres-

sion model (2), where k = 2 and µ = (1 + z, 1 − z)T

by ξ̄ ∗
E throughout this section. The support points of this design can be obtained

from the corresponding Chebyshev problem

inf
α1,α2,α3

sup
x∈[0,∞)

|(1 + α1x + α2x
2 + α3x

3)e−x |

The solution of this problem can be found numerically using the Remez algorithm
(see Studden and Tsay, 1976), i.e.

P3(x) = (x3 − 3.9855x2 + 3.15955x − 0.27701)e−x.

The extremal points of this polynomial are given by

x∗
1 = 0, x∗

2 = 0.40635, x∗
3 = 1.75198, x∗

4 = 4.82719.
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and the weights of design ξ̄ ∗
E defined in Theorem 2 are calculated using formula

(14), that is

w∗
1 = 0.0767, w∗

2 = 0.1650, w∗
3 = 0.2164, w∗

4 = 0.5419.

Some E-efficiencies

IE(ξ, µ) = λmin(M(ξ))

λmin(M(ξ ∗
E(µ)))

(23)

of the limiting design ξ̄ ∗
E are given in Table 2 and we observe that this design yields

rather high efficiencies, whenever z ∈ (0, 0.6). In this table we also display the
E-efficiencies of the local D-optimal design ξ ∗

D(µ), the D-efficiencies

ID(ξ, µ) =
(

det M(ξ)

supη det M(η)

) 1
2k

(24)

of the local E-optimal design ξ ∗
E(µ) and the corresponding efficiencies of the weak

limit of the local D-optimal designs ξ̄ ∗
D . We observe that the design ξ̄ ∗

D is very ro-
bust with respect to the D-optimality criterion. On the other hand the D-efficiencies
of the E-optimal designs ξ ∗

E(µ) and its corresponding limit ξ̄ ∗
E are substantially

higher than the E-efficiencies of the designs ξ ∗
D(µ) and ξ̄ ∗

D .
We finally investigate the efficiencies

Ii(ξ, µ) = infη eT
i M−1(η)ei

eT
i M−1(ξ)ei

, i = 1, . . . , 2k, (25)

of the optimal designs ξ̄ ∗
D and ξ̄ ∗

E for the estimation of the individual parameters.
These efficiencies are shown in Table 3. Note that in most cases the design ξ̄ ∗

E is
substantially more efficient for estimating the individual parameters than the design
ξ̄ ∗
D . The design ξ̄ ∗

E can be recommended for a large range of possible values of z.

Example 3 For the exponential model

E(Y (x)) = a1e−µ1x + a2e−µ2x + a3e−µ3x (26)

Table 2 Efficiencies of local D- and E-optimal designs in the exponential regression model (21)
(µ1 = 1 + z, µ2 = 1 − z)

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ID(ξ̄ ∗
D) 1.00 1.00 1.00 0.99 0.98 0.95 0.90 0.80 0.61

ID(ξ ∗
E(µ)) 0.75 0.74 0.75 0.75 0.78 0.82 0.87 0.90 0.89

ID(ξ̄ ∗
E) 0.74 0.74 0.76 0.77 0.78 0.79 0.78 0.72 0.58

IE(ξ̄ ∗
E) 1.00 1.00 0.98 0.94 0.85 0.72 0.58 0.45 0.33

IE(ξ ∗
D(µ)) 0.66 0.66 0.66 0.67 0.70 0.74 0.79 0.82 0.80

IE(ξ̄ ∗
D) 0.65 0.64 0.62 0.59 0.56 0.52 0.47 0.41 0.33

The local D- and E-optimal designs are denoted by ξ ∗
D(µ) and ξ ∗

E(µ), respectively, while ξ̄ ∗
D and

ξ̄ ∗
E denote the weak limit of the local D- and E-optimal design as µ → (1, 1), respectively
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Table 3 Efficiencies (25) of the designs ξ̄ ∗
D and ξ̄ ∗

E [obtained as the weak limit of the corre-
sponding local optimal designs as µ → (1, 1)] for estimating the individual coefficients in the
exponential regression model (21) (µ1 = 1 + z, µ2 = 1 − z)

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

I1(ξ̄
∗
E, µ) 1.00 1.00 0.98 0.93 0.84 0.69 0.53 0.40 0.27

I1(ξ̄
∗
D, µ) 0.65 0.64 0.61 0.57 0.50 0.41 0.32 0.26 0.19

I2(ξ̄
∗
E, µ) 0.99 0.97 0.92 0.85 0.76 0.65 0.55 0.44 0.34

I2(ξ̄
∗
D, µ) 0.68 0.70 0.70 0.68 0.65 0.60 0.54 0.46 0.37

I3(ξ̄
∗
E, µ) 1.00 1.00 0.98 0.93 0.85 0.73 0.56 0.38 0.20

I3(ξ̄
∗
D, µ) 0.65 0.64 0.62 0.58 0.52 0.45 0.35 0.24 0.13

I4(ξ̄
∗
E, µ) 1.00 0.99 0.97 0.94 0.88 0.76 0.57 0.33 0.10

I4(ξ̄
∗
D, µ) 0.63 0.59 0.54 0.49 0.42 0.34 0.24 0.13 0.04

corresponding to the case k = 3 the local E-optimal designs can be calculated
by similar methods. For the sake of brevity we present only the limiting designs
[obtained from the local D- and E-optimal designs if µ → (1, 1, 1)] and investi-
gate the robustness with respect to the D- and E-optimality criterion. The support
points of the e6-optimal designs in the heteroscedastic polynomial regression model
(9) (with γ = 1) can be found as the extremal points of the Chebyshev function

P5(x) = (x5 − 11.7538x4 + 42.8513x3 − 55.6461x2 + 21.6271x − 1.1184)e−x

which are given by

x∗
1 = 0, x∗

2 = 0.2446, x∗
3 = 1.0031,

x∗
4 = 2.3663, x∗

5 = 4.5744, x∗
6 = 8.5654.

For the weights of the limiting design ξ̄ ∗
E := ξ̄ ∗

e6
we obtain from the results of Sect. 3

w∗
1 = 0.0492, w∗

2 = 0.1007, w∗
3 = 0.1089,

w∗
4 = 0.1272, w∗

5 = 0.1740, w∗
6 = 0.4401.

For the determination of this design we note that by Remark 3(5) we can restrict
ourselves to the case µ1 + µ2 + µ3 = 3. The support points in the general case
are obtained by a rescaling, while the weights have to be recalculated using Re-
mark 3(4). For the sake of brevity we do not present the local E-optimal designs,
but restrict ourselves to some efficiency considerations. For this we introduce the
parameterization µ1 = 1 + u + v, µ2 = 1 − u, µ3 = 1 − v, where the restriction
µ1 > µ2 > µ3 > 0 yields

u < v, v < 1, u > −v/2.

In Table 4 we show the E-efficiency defined in (23) of the design ξ̄ ∗
E , which is the

weak limit of the local E-optimal design ξ ∗
E(µ) as µ → (1, 1, 1) (see Theorem 2).

Two conclusions can be drawn from our numerical results. On the one hand we ob-
serve that the optimal design ξ̄ ∗

E is robust in a neighbourhood of the point (1, 1, 1).
On the other hand we see that the local E-optimal design ξ ∗

E(µ) is also robust
if the nonlinear parameters µ1, µ2, µ3 do not differ substantially [i.e. the “true”
parameter is contained in a moderate neighbourhood of the point (1, 1, 1)]. The
table also contains the D-efficiencies of the E-optimal designs defined in (24)
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Table 4 Efficiencies of local D-, E-optimal designs and of the corresponding limits ξ̄ ∗
D and ξ̄ ∗

E
(obtained as the weak limit of the corresponding local optimal designs as µ → (1, 1, 1)) in the
exponential regression model (26) (µ1 = 1 + u + v, µ2 = 1 − u, µ = 1 − v)

u 0 0 0 −0.2 −0.2 0.2 0.2 0.4 0.4 0.7
v 0.2 0.5 0.8 0.6 0.8 0.3 0.8 0.5 0.8 0.8

ID(ξ̄ ∗
D) 1.00 0.98 0.83 0.97 0.86 0.99 0.79 0.92 0.70 0.48

ID(ξ ∗
E(µ)) 0.78 0.85 0.90 0.86 0.90 0.66 0.90 0.61 0.86 0.50

ID(ξ̄ ∗
E) 0.75 0.78 0.74 0.78 0.75 0.77 0.71 0.78 0.65 0.47

IE(ξ̄ ∗
E) 0.98 0.76 0.43 0.71 0.48 0.93 0.36 0.53 0.19 0.02

IE(ξ ∗
D(µ)) 0.65 0.73 0.79 0.74 0.79 0.55 0.79 0.52 0.74 0.48

IE(ξ̄ ∗
D) 0.63 0.57 0.37 0.53 0.40 0.46 0.31 0.23 0.09 0.01

Table 5 Efficiencies (25) of the designs ξ̄ ∗
D and ξ̄ ∗

E [obtained as the weak limit of the corre-
sponding local optimal designs as µ → (1, 1, 1)] for estimating the individual coefficients in the
exponential regression model (26) (µ1 = 1 + u + v, µ2 = 1 − u, µ = 1 − v)

u 0 0 0 −0.2 −0.2 0.2 0.2 0.4 0.4 0.7
v 0.2 0.5 0.8 0.6 0.8 0.3 0.8 0.5 0.8 0.8

I1(ξ̄
∗
E) 0.98 0.77 0.43 0.71 0.48 0.86 0.35 0.52 0.26 0.11

I1(ξ̄
∗
D) 0.63 0.56 0.36 0.53 0.40 0.59 0.30 0.41 0.22 0.10

I2(ξ̄
∗
E) 0.97 0.74 0.43 0.70 0.48 0.80 0.37 0.49 0.29 0.19

I2(ξ̄
∗
D) 0.65 0.59 0.42 0.55 0.43 0.63 0.38 0.48 0.33 0.23

I3(ξ̄
∗
E) 0.90 0.73 0.43 0.71 0.48 0.93 0.38 0.53 0.16 0.02

I3(ξ̄
∗
D) 0.71 0.59 0.38 0.53 0.40 0.46 0.47 0.23 0.04 0.01

I4(ξ̄
∗
E) 0.99 0.82 0.41 0.73 0.47 0.93 0.31 0.53 0.17 0.02

I4(ξ̄
∗
D) 0.60 0.50 0.29 0.51 0.36 0.48 0.20 0.25 0.10 0.01

I5(ξ̄
∗
E) 0.99 0.85 0.30 0.76 0.35 0.93 0.21 0.53 0.11 0.02

I5(ξ̄
∗
D) 0.55 0.39 0.12 0.33 0.14 0.46 0.09 0.23 0.05 0.01

I6(ξ̄
∗
E) 0.99 0.84 0.26 0.75 0.31 0.93 0.18 0.53 0.09 0.02

I6(ξ̄
∗
D) 0.53 0.34 0.08 0.27 0.10 0.45 0.06 0.22 0.03 0.01

and the E-efficiencies of the local D-optimal design ξ ∗
D(µ) and its corresponding

weak limit as µ → (1, 1, 1). Again the D-efficiencies of the E-optimal designs
are higher than the E-efficiencies of the D-optimal designs.

We finally compare briefly the limits of the local E- and D-optimal designs
if µ → (1, 1, 1) with respect to the criterion of estimating the individual coeffi-
cients in the exponential regression model (26). In Table 5 we show the efficiencies
of these designs for estimating the parameters in a1, b1, a2, b2, a3, b3 in the model
(26).We observe that in most cases the limit of the local E-optimal designs ξ̄ ∗

E yields
substantially larger efficiencies than the corresponding limit of the local D-optimal
design ξ̄ ∗

D . Moreover, this design is robust for many values of the parameter (u, v).

We conclude this section with some general recommendations regarding the
design of experiments in the exponential regression model (1). The limiting designs
have reasonable efficiencies for moderate values of maxi �=j |µi − µj |. Moreover,
Theorem 2 shows that local E- and optimal designs for estimating individual coeffi-
cients in the regression model (1) behave similarly if the quantity maxi �=j |µi−µj | is
small. The numerical results presented in this section indicate that this observation
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can be transferred to general values of the parameters µi . In all cases considered
in our study we found that local E-optimal designs yield substantially smaller
variances for the estimates of the individual parameters than the local D-optimal
designs. Therefore, if a confidence ellipsoid for the vector of parameters is not the
primary interest of the experimenter, the application of E-optimal designs for the
model (1) is strongly recommended.

5 Appendix

5.1 Proof of Theorem 2

Using the notation δj = rj δ and observing the approximation in (8) we obtain
from the Taylor expansion

e−(γ−rj δ)x = e−γ x

(

1 +
2k−1∑

i=1

δi
j x

i

i!

)

+ o(δ2k−1) , (j = 1, . . . , k)

the representation

f (x) = Lf̄ (x)e−γ x + H(δ),

where the vectors f and f̄ are defined in (4) and (11), respectively, the remainder
term is of order

H(δ) = (
o(δ2k−1), o(δ2k−2), . . . , o(δ2k−1), o(δ2k−2)

)T

and the matrix L is given by

L =













1 δ1
δ2

1
2!

δ3
1

3! . . .
δ2k−1

1
(2k−1)!

0 1 δ1
δ2

1
2! . . .

δ2k−2
1

(2k−2)!
...

...
...

...
...

...

1 δk
δ2
k

2!
δ3
k

3! . . .
δ2k−1
k

(2k−1)!

0 1 δk
δ2
k

2! . . .
δ2k−2
k

(2k−2)!













.

Consequently, the information matrix in the general exponential regression model
(2) satisfies

M−1(ξ) = L−1T
M̄−1(ξ)L−1 + o(δ4k−2) ,

where M̄(ξ) is the information matrix in the heteroscedastic polynomial regres-
sion model (9) defined by (10). It can be shown by a straightforward but tedious
calculation (see the technical report of Dette, Melas, & Peplysev, 2002) that for
small δ

δ2k−1L−1 = (2k − 1)!(0
...l)T + o(1),

where 0 is 2k × (2k − 1) matrix with all entries equals 0 and the vector l is defined
by (12) in Theorem 2. This yields for the information matrix of the design ξ
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δ4k−2M−1(ξ) = ((2k − 1)!)2
(
M̄−1(ξ)

)
2k,2k

l lT + o(1).

Therefore, if δ is sufficiently small, it follows that maximal eigenvalue of the matrix
M−1(ξ) is simple.

For a proof of the second part of Theorem 2 we note the local E-optimal design
ξ ∗
E(µ) is defined by

ξ ∗
E(µ) = arg min

ξ
max

c,cTc=1
cTM−1(ξ)c.

If δ → 0 it therefore follows from the arguments of previous paragraph that this
design converges weakly to the design ξ̄ ∗

e2k
, which minimizes a function

max
c, cTc=1

(cTl)2eT
2kM̄

−1(ξ)e2k,

Finally, the proof of the third part of Theorem 2 can be obtained by similar argu-
ments and is left to the reader. �

5.2 Proof of Theorem 3

In Sect. 3 we have already shown that the function �∗(µ) as solution of (17) is
uniquely determined. In this paragraph we prove that the Jacobi matrix

G = G(µ) =
(

∂2�

∂θi∂θi

(�∗(µ), µ)

)3m−3

i,j=1

is nonsingular. It then follows from the Implicit Function Theorem (see Gunning
and Rossi, 1965) that the function �(�, µ) is real analytic. For this purpose we
note that a direct calculation shows

qTq
∂2�

∂w∂w
(�∗(µ), µ) = 0,

qTq
∂2�

∂x∂w
(�∗(µ), µ) = 0,

qTq
∂2�

∂x∂x
(�∗(µ), µ) = E = diag{(qTf (x∗

i ))
2wi}i=2,... ,2k,

qTq
∂2�

∂q−∂q−
(�∗(µ), µ) = (M(ξ ∗) − �I2k)−,

qTq
∂2�

∂q−∂x
(�∗(µ), µ) = BT

1 ,

qTq
∂2�

∂q−∂w
, (�∗(µ), µ) = BT

2 ,

where the matrices B1 and B2 are defined by

BT
1 = 2

(

qTf (x∗
2 )w2f

′
−(x∗

2 )
... . . .

...qTf (x∗
2k)w2kf

′
−(x∗

2k)

)

,

BT
2 = 2

(

qTf (x∗
2 )f−(x∗

2 )−qTf (0)f−(0)
... . . .

...qTf (x∗
2k)f−(x∗

2k)−qTf (0)f−(0)

)

,
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respectively, and w = (w2, . . . , w2k)
T and x = (x2, . . . , x2k)

T. Consequently, the
Jacobi matrix of the system (17) has the structure

G = 1

qTq




D BT

1 BT
2

B1 E 0
B2 0 0



 . (27)

Because (p∗Tf (x∗
i ))

2 = λmin we obtain q∗Tf (x∗
i ) = (−1)i c̃ (i = 1, . . . , 2k) for

some constant c̃, and the matrices B1 and B2 can be rewritten as

BT
1 = 2c̃

(

w2f
′
−(x∗

2 )
.
.
. − w3f

′
−(x∗

3 )
.
.
.w4f

′
−(x∗

4 )
.
.
. . . .

.

.

. − w2k−1f
′
−(x∗

2k−1)
.
.
.w2kf

′
−(x∗

2k)

)

,

BT
2 =2c̃

(

f−(0)+f−(x∗
2 )

.

.

.f−(0)−f−(x∗
3 )

.

.

. . . .
.
.
.f−(0)−f−(x∗

2k−1)
.
.
.f−(0)+f−(x∗

2k)

)

.

In the following we study some properties of the blocks of the matrix G defined
in (27). Note that the matrix D in the upper left block of G is nonnegative definite.
This follows from

min
v

vTM(ξ ∗)v
vTv

≤ min
u

uTM−(ξ ∗)u
uTu

and the inequality

λmin(M−(ξ ∗)) ≥ λmin(M(ξ ∗)) = �(�∗(µ), µ),

where M− denotes the matrix obtained from M deleting the first row and column.
Thus we obtain for any vector u ∈ R

2k−1

uTDu = uTM−(ξ ∗)u − �uTu ≥ uTu(λmin(M−(ξ ∗)) − �) ≥ 0,

which shows that the matrix D is nonnegative definite. The diagonal matrix E is
negative definite because all it’s diagonal elements are negative. This property fol-
lows from the equivalence Theorem 1, which shows that the function (q∗Tf (x))2

is concave in a neighbourhood of every point x∗
i , i = 2, . . . , 2k. Moreover, the ma-

trices B1 and B2 are of full rank and we obtain from the formula for the determinant
of the block matrix that

detG = −detEdet(D − BT
1 E−1B1)det(BT

2 (D − BT
1 E−1B1)

−1B2).

Since each determinant is nonzero, the matrix G is nonsingular, which completes
the proof of the theorem. �
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plexitätsreduktion in multivariaten Datenstrukturen, Teilprojekt A2, Sachbeihilfe De 502/18-1,
436 RUS 113/712/0-1) is gratefully acknowledged. The authors are also grateful to two unknown
referees for their constructive comments, which led to a substantial improvement of an earlier
version of this paper.



Local c- and E-optimal designs for exponential regression models 425

References

Alvarez, I., Virto, R., Raso, J., Condon, S. (2003). Comparing predicting models for the Es-
cherichia coli inactivation by pulsed electric fields. Innovative Food Science & Emerging
Technologies, 4(2), 195–202.

Becka, M., Urfer, W. (1996). Statistical aspects of inhalation toxicokinetics. Environmental and
Ecological Statistics, 3, 51–64.

Becka, M., Bolt, H.M., Urfer, W. (1993). Statistical evaluation of toxicokinetic data. Environ-
metrics, 4, 311–322.

Chaloner, K., Verdinelli, I. (1995). Bayesian experimental design: a review. Statistical Science,
10, 273–304.

Chernoff, H. (1953). Local optimal designs for estimating parameters. Annals of Mathematical
Statistics, 24, 586–602.

Dette, H., Haines, L. (1994). E-optimal designs for linear and nonlinear models with two param-
eters. Biometrika, 81, 739–754.

Dette, H., Studden, W.J. (1993). Geometry of E-optimality. Annals of Statistics, 21, 416–433.
Dette, H., Haines, L., Imhof, L.A. (1999). Optimal designs for rational models and weighted

polynomial regression. Annals of Statistics, 27, 1272–1293.
Dette, H., Melas, V.B., Pepelyshev, A. (2002). Optimal designs for a class of

nonlinear regression models. Preprint, Ruhr-Universität Bochum. http://www.ruhr-uni-
bochum.de/mathematik3/preprint.htm

Dette, H., Melas, V.B., Pepelyshev, A. (2004). Optimal designs for estimating individual coeffi-
cients in polynomial regression – a functional approach. Journal of Statistical Planning and
Inference, 118, 201–219.

Dette, H., Wong, W.K. (1999). E-optimal designs for the Michaelis Menten model. Statistics &
Probability Letters, 44, 405–408.

Fang, Z., Wiens, D. (2004). Bayesian minimally supported D-optimal designs for an exponential
regression model. Communications in Statistics – Theory and Methods, 33, 1187–1204.

Fedorov, V.V. (1972). Theory of optimal experiments. New York: Academic Press.
Ford, I., Torsney, B., Wu, C.F.J. (1992). The use of a canonical form in the construction of local

optimal designs for non-linear problems. Journal of the Royal Statistical Society, Series B, 54,
569–583.

Ford, I., Silvey, S.D. (1980). A sequentially constructed design for estimating a nonlinear para-
metric function. Biometrika, 67, 381–388.

Gunning, R.C., Rossi, H. (1965). Analytical functions of several complex variables. NewYork:
Prentice-Hall, Inc.

Han, C., Chaloner, K. (2003). D- and c-optimal designs for exponential regression models used
in pharmacokinetics and viral dynamics. Journal of Statistical Planning and Inference, 115,
585–601.

He, Z., Studden, W.J., Sun, D. (1996). Optimal designs for rational models. Annals of Statistics,
24, 2128–2142.

Heiligers, B. (1994). E-optimal designs in weighted polynomial regression. Annals of Statistics,
22, 917–929.

Jennrich, R.I. (1969). Asymptotic properties of non-linear least squares estimators. Annals of
Mathematical Statistics, 40, 633–643.

Karlin, S., Studden, W.J. (1966). Tchebycheff systems: with applications in analysis and statistics.
New York: Interscience.

Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Annals
of Statistics, 2, 849–879.

Landaw, E.W., DiStefano, J.J. III. (1984). Multiexponential, multicompartmental, and noncom-
partmental modeling. II. Data analysis and statistical considerations. American Journal of
Physiology, 246, 665–677.

Melas, V.B. (1978). Optimal designs for exponential regression. Mathematische Operationsfors-
chung Statistik, Series Statistics, 9, 45–59.

Melas, V.B. (1982). A duality theorem and E-optimality (translated from Russian). Industrial
Laboratory, 48, 275–296.

Melas, V.B. (2001). Analytical properties of local D-optimal designs for rational models. In:
MODA 6 – advances in model-oriented design and analysis (pp. 201–210). A.C. Atkinson, P.
Hackel, W. G. Müller (Eds.) Heidelberg: Physica Verlag.



426 H. Dette et al.

Pronzato, L., Walter, E. (1985). Robust experimental design via stochastic approximation. Math-
ematical Biosciences, 75, 103–120.

Pukelsheim, F., Rieder, S. (1992). Efficient rounding of approximate designs. Biometrika, 79,
763–770.

Pukelsheim, F., Torsney, B. (1991). Optimal weights for experimental designs on linearly inde-
pendent support points. Annals of Statistics, 19, 1614–1625.

Pukelsheim, F. (1993). Optimal design of experiments. New York: Wiley.
Ratkowsky, D.A. (1983). Nonlinear regression. New York: Dekker.
Ratkowsky, D.A. (1990). Handbook of nonlinear regression models. New York: Dekker
Seber, G.A.J., Wild, C.J. (1989). Nonlinear regression. New York: Wiley.
Silvey, S.D. (1980). Optimum design. London: Chapman and Hall.
Studden, W.J., Tsay, J.Y. (1976). Remez’s procedure for finding optimal designs. Annals of Sta-

tistics, 4, 1271–1279.
Wu, C.F.J. (1985). Efficient sequential designs with binary data. Journal of the American Statis-

tical Association, 80, 974–984.


