
AISM (2006) 58: 311–326
DOI 10.1007/s10463-006-0036-x

Kunihiro Baba · Ritei Shibata

Multiplicative correlations

Received: 13 October 2004 / Revised: 27 July 2005 / Published online: 15 March 2006
©The Institute of Statistical Mathematics, Tokyo 2006

Abstract A multivariate distribution is said to have multiplicative correlation if
the correlation matrix R = (rij ) is written as rij = δiδj or rij = −δiδj (i �= j)
for a parameter vector δ = (δ1, . . . , δn). We first determine feasible values for δ
and show that variables with such a correlation matrix can always be decomposed
into a common “signal” variable plus individual “noise” variables. It is also shown
that a special case of this correlation matrix implies a sum constraint among vari-
ables and vice versa. Such properties illustrate why many multivariate distributions
have such a correlation structure. Furthermore, several invariance properties lead
to simple relations among several multivariate distributions.

Keywords Correlation modeling · Factorization of variables · Neural science ·
Partial correlation · Reduction method

1 Introduction

An n-dimensional multivariate distribution is said to have multiplicative correla-
tion if the correlation matrix R = (rij ) can be written as rij = δiδj or rij =
−δiδj (i �= j) for a parameter vector δ = (δ1, . . . , δn). A simple example of mul-
tivariate distribution which has a multiplicative correlation of the matrix notation
R = diag(1 ∓ δ2) ± δδT is the multivariate Poisson or the multivariate gamma
distribution derived by the so called reduction method (Mardia, 1970, p. 74.) Such
a distribution is derived as the joint distribution of Xi = Z0 + Zi(i = 1, . . . , n)
where Z0, Z1, . . . , Zn are independent Poisson or gamma distributed random vari-
ables (see, Johnson, Kotz, & Balakrishnan, 1997, p. 139; Kotz, Balakrishnan, &
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Johnson, 2000, p. 454). If we denote E(Zi) = var(Zi) = θi(i = 0, 1, . . . , n), then
X = (X1, . . . , Xn) has a multiplicative correlations,

corr(Xi, Xj ) =
√

θ0

(θ0 + θi)

√
θ0

(θ0 + θj )
(i �= j = 1, . . . , n).

The correlation matrix of this particular example is not only multiplicative, but
also has an equi-covariance property, where all pairs of variables share the same
covariance. A correlation structure similar to equi-covariance is equi-correlation.
For example, Abbott and Dayan (1999) have proposed the use of covariance matrix

Qij = σ 2{δij + c(1 − δij )}fi(x)fj (x) (1)

to describe the firing activities of neurons i and j . Here fi(x) is the mean firing
rate of neuron i for input x, δij is Kronecker’s delta, and c is a parameter. In this
model the same correlation c is shared by all pairs of variables and the correlation
matrix is clearly multiplicative. However, multiplicative correlation is not limited
to such equi-covariance or equi-correlation. Consider the multinomial distribution.
The correlation matrix is

corr(Xi, Xj ) = −
√

pipj

(1 − pi)(1 − pj )
,

which is multiplicative but there is no equi-covariance nor equi-correlation
structure. In this paper, we will investigate the reasons why such a multiplicative
correlation appears so frequently.

In Sect. 2, we first give a necessary and sufficient condition for a multiplicative
correlation matrix parameterized by δ to be a correlation matrix, i.e. non-negative
definite matrix with all elements less than or equal to one in absolute value.

In Sect. 3, we investigate several implications of multiplicative correlation for
the random vector X = (X1, . . . , Xn). One is a decomposition result which shows
that each Xi can be factorized into the sum of a common “signal” variable and
individual “noise" variables. A special case of multiplicative correlation is also
shown to be equivalent to the fact that the sample mean 1/n

∑n
i=1 Xi is almost

surely constant.
In Sect. 4, we show that several interesting relations hold among various fami-

lies of multivariate distributions with multiplicative correlation using an invariance
property of multiplicative correlation structure associated with conditioning. Such
families include the homogeneous or Liouville distributions. We also show that
multiplicative correlations lead to multiplicative partial correlations with a simple
relation holding between the two.

2 Multiplicative correlations and covariances

For later discussion, it is better to distinguish two types of multiplicative correla-
tion matrices parameterized by δ = (δ1, . . . , δn); positive multiplicative correlation
matrix R+(δ) = diag(1− δ2)+ δδT and negative multiplicative correlation matrix
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R−(δ) = diag(1+δ2)−δδT. Here diag(1±δ2) is a diagonal matrix with its diagonal
elements 1 ± δ2

1, . . . , 1 ± δ2
n. It is easily seen that the two classes of multiplicative

correlation matrices {R+(δ)} and {R−(δ)} have no common element, provided that
the δ has more than three non zero elements. Note that the parameterization in each
class is unique except for the sign of δ, provided, once again, that the δ has more
than three non zero elements. Royen (1991) derived a multivariate gamma distribu-
tion with multiplicative correlations and described such a correlation structure as
one-factorial. Positive multiplicative correlation is also called structure l in Khatri
(1967).

We first derive necessary and sufficient conditions for R+(δ) or R−(δ) to be a
correlation matrix.

2.1 Positive multiplicative correlation

We first give the following lemma to prove Theorem 2.1, although the Theorem
2.1 itself can be proved by an induction. The lemma is useful in its own sight as
will be mentioned in Sect. 5.

Lemma 2.1 The following inequality holds true for the eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn of R+(δ).

1 − δ2
k1

= λ1 = · · · = λn1−1 < λn1 < 1 − δ2
k2

= λn1+1 = · · · = λn1+n2−1 < λn1+n2 < · · · < λn−nm
< 1 − δ2

km

= λn−nm+1 = · · · = λn−1 < λn, (2)

where δ2
k1

> δ2
k2

> · · · > δ2
km

are m distinct values in δ2
1, . . . , δ

2
n and n1, . . . , nm(∑m

i=1 ni = n
)

are the multiplicities of δ2
k1

, . . . , δ2
km

respectively.

In Lemma 2.1, we have used the convention that a series of equations in Eq. (2)
is void when the last suffix of λ is less than the first suffix in the equation. For exam-
ple, 1 − δ2

k1
= λ1 = · · · = λn1−1 < λn1 reduces to a simple inequality 1 − δ2

k1
< λ1

if n1 = 1.

Proof The characteristic equation of R+(δ) is

m∏
i=1

(1 − δ2
ki

− λ)ni−1 det
(

diag(1 − δ2
k − λ) + diag(n)δkδ

T
k

)
= 0, (3)

where δk = (δk1, . . . , δkm
) and n = (n1, . . . , nm). As is easily seen, the trivial

solutions are λ = 1 − δ2
ki

for which ni > 1. Then it is enough to find m other
solutions, since each of the eigenvalues found has multiplicity ni − 1. We seek
other solutions, provided that they are different from any of 1 − δ2

ki
, i = 1, . . . , m.

Then the Eq. (3) is equivalent to

m∑
i=1

(niδ
2
ki
)

(1 − δ2
ki

− λ)
= −1.
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Here we have used the formula det(A ± bbT) = det(A)(1 ± bTA−1b) for a
non-singular matrix A = diag(1 − δ2

k − λ). Note that the function f (λ) =∑m
i=1(niδ

2
ki
)/(1 − δ2

ki
− λ) is a strictly monotone increasing function of λ on

each interval (1 − δ2
ki
, 1 − δ2

ki+1
), and diverges to negative or positive infinity

on the boundaries of each interval for i = 1, . . . , m − 1. We now have a solu-
tion on each interval. Furthermore, we can find one more solution λn on the
interval (1 − δ2

km
, ∞), since f (λ) is also a monotone increasing function of λ

on this interval and diverges to negative infinity on the left boundary and zero
for large enough λ. We have now found the remaining m solutions such that
1 − δ2

k1
< λn1 < 1 − δ2

k2
< λn1+n2 < · · · < λn−nm

< 1 − δ2
km

< λn. ��
We note that the result Eq. (2) in Lemma 2.1 is not a direct consequence of the

well known inequality for eigenvalues of A and B such that A ≤ B nor of a more
sophisticated inequality in the framework of majorization (for example, Theorem
16.F.1 and Theorem 9.G.1.c in Marshall & Olkin, 1979). In fact, the result (2) is
much stronger than that obtained from such a general inequality because Lemma
2.1 is specialized for matrices like R+(δ) = diag(1 − δ2) + δδT.

We now have the following theorem.

Theorem 2.1 Assume that |δn| ≤ · · · ≤ |δ2| ≤ |δ1|. R+(δ) is a correlation matrix
if and only if

|δ1| ≤ 1 or |δ2| < 1 < |δ1| and
n∑

i=1

δ2
i /(1 − δ2

i ) ≤ −1.

Furthermore, it is a positive definite matrix if and only if

1 �= |δ2| ≤ |δ1| ≤ 1 or |δ2| < 1 < |δ1| and
n∑

i=1

δ2
i /(1 − δ2

i ) < −1.

Proof From Lemma 2.1, non-negativeness of the smallest eigenvalue λ1 is equiv-
alent to 1 − δ2

1 ≥ 0 if δ1 = δ2 and λ1 ≥ 0 otherwise. For the latter case, since
|δ2| < 1 < |δ1| and 1 − δ2

k1
< λ1 < 1 − δ2

k2
from Lemma 2.1, we see that λ1 ≥ 0

is equivalent to

f (0) =
m∑

j=1

(nj δ
2
kj

)

(1 − δ2
kj

)
=

n∑
i=1

δ2
i

(1 − δ2
i )

≤ −1.

A similar argument establishes the necessary and sufficient condition for the pos-
itiveness of λ1. The condition |δiδj | ≤ 1(i �= j = 1, . . . , n) is always satisfied
when either |δ1| ≤ 1 or |δ2| < 1 < |δ1| and

∑n
i=1 δ2

i /(1 − δ2
i ) ≤ 1 holds true. For

the latter case, it is enough to note that the following inequality holds true:

0 ≥ 1 +
n∑

i=1

δ2
i

(1 − δ2
i )

= (1 − δ2
1δ

2
2)

(1 − δ2
1)(1 − δ2

2)
+

n∑
i=3

δ2
i

(1 − δ2
i )

.

��
It is interesting to note that all |δi |’s are not necessarily less than or equal to 1.

The largest δ1 can be greater than 1 in absolute value. However, unless all other
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parameters are very small in absolute value, |δ1| cannot be far away from 1 since
it must satisfy the side condition

∑n
i=1 δ2

i /(1 − δ2
i ) < −1.

2.2 Negative multiplicative correlation

For negative multiplicative correlation matrix R−(δ) we need the following lemma,
which looks very similar to Lemma 2.1, but is not the same.

Lemma 2.2 The following inequality holds true for the eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn of R−(δ).

λ1 < 1 + δ2
k1

= λ2 = · · · = λn1 < λn1+1 < 1 + δ2
k2

= λn1+2 = · · · = λn1+n2 < λn1+n2+1 < · · · < λn−nm+1 < 1 + δ2
km

= λn−nm+2 = · · · = λn,

where δ2
k1

< δ2
k2

< · · · < δ2
km

are m distinct values in δ2
1, . . . , δ

2
n and n1, . . . , nm(∑m

i=1 ni = n
)

are multiplicities of δ2
k1

, . . . , δ2
km

respectively.

Proof Since the characteristic equation of R−(δ) is
m∏

i=1

(1 + δ2
ki

− λ)ni−1 det
(

diag(1 + δ2
k − λ) + diag(n)δkδ

T
k

)
= 0,

a similar argument follows as in the proof of Lemma 2.1. To find m non-trivial solu-
tions, it is enough to note that the equation above is equivalent to

∑m
i=1(niδ

2
ki
)/(1+

δ2
ki

− λ) = 1 provided that λ is equal to none of the 1 + δ2
ki

’s. We then find a solu-
tion on each interval (1 + δ2

ki
, 1 + δ2

ki+1) for i = 1, . . . , m − 1, by noting that
g(λ) = ∑m

i=1(niδ
2
ki
)/(1 + δ2

ki
− λ) has the same properties as those of f (λ) in

Lemma 2.1. The remaining solution on (−∞, 1 + δ2
k1

) can be found since g(λ) is
strictly monotone increasing, converges to zero as λ tends to negative infinity and
g(1 + δ2

k1
) = 0. ��

Theorem 2.2 R−(δ) is a correlation matrix if and only if
∑n

i=1 δ2
i /(1 + δ2

i ) ≤ 1.

It is a positive definite matrix if and only if
∑n

i=1 δ2
i /(1 + δ2

i ) < 1.

Proof From the proof of Lemma 2.2, non-negativeness of the minimum eigenvalue
λ1 is equivalent to

g(0) =
m∑

j=1

(nj δ
2
kj

)

(1 + δ2
kj

)
=

n∑
i=1

δ2
i

(1 + δ2
i )

≤ 1.

And the condition |δ1δ2| ≤ 1 follows from

1 ≥
n∑

i=1

δ2
i

(1 + δ2
i )

≥
2∑

i=1

δ2
i

(1 + δ2
i )

.

��
Compared with the condition in Theorem 2.1 for positive multiplicative

correlation, the condition in Theorem 2.2 for negative multiplicative correlation
looks simpler. However, it seems more restrictive, since, although there is no



316 K. Baba and R. Shibata

explicit restriction to the individual values of |δi | (such as most of them should
be less than 1), the total contribution of the terms δ2

i /(1 + δ2
i ) should not exceed 1.

Example 1 (Equi-correlation) From Theorem 2.1 and Theorem 2.2, we can eas-
ily see that the choice of parameter c for the equi-correlation model Qij given in
Eq. (1) is limited to the range −1/(n − 1) ≤ c ≤ 1.

The covariance matrix corresponding to a multiplicative correlation is appar-
ently of the form diag(b) ± aaT and we can discuss multiplicative structure either
through correlation or covariance. A multiplicative covariance can be derived from
a multiplicative correlation matrix by giving the variances, var(Xi) = σ 2

i , i =
1, . . . , n. We hereafter write such a covariance matrix as �+(a, b) = diag(b)+aaT

in case of R+(δ) and call it a positive multiplicative covariance matrix. Similarly,
we define a covariance matrix �−(a, b) = diag(b) − aaT in case of R−(δ) and
call it a negative multiplicative covariance matrix. Here a = (a1, . . . , an) is a
vector such that ai = σiδi, i = 1, . . . , n, and b = (b1, . . . , bn) is a vector such
that bi = σ 2

i (1 − δ2
i ), i = 1, . . . , n, for R+(δ) and bi = σ 2

i (1 + δ2
i ) for R−(δ).

Note that the converse is not always true. Multiplicative covariance matrix does
not necessarily imply multiplicative correlation matrix, since we allow any σ 2

i to
be 0.

Theorem 2.3 Assume that b1 ≤ b2 ≤ · · · ≤ bn. The matrix �+(a, b) is a covari-
ance matrix if and only if

0 ≤ b1 or b1 < 0 < b2 and 1 +
n∑

i=1

a2
i

bi

≤ 0.

It is a positive definite matrix if and only if

0 ≤ b1 ≤ b2 �= 0 or b1 < 0 < b2 and 1 +
n∑

i=1

a2
i

bi

< 0.

The matrix �−(a, b) is a covariance matrix if and only if 0 < b1 and
∑n

i=1 a2
i /bi ≤

1. It is a positive definite matrix if
∑n

i=1 a2
i /bi < 1.

Theorem 2.3 is a direct consequence of Theorems 2.1 and 2.2. However, the dis-
tribution of the eigenvalues is also of interest. Provided that a has no zero elements,
the following inequalities are rather trivial in view of Lemmas 2.1 and 2.2.

For the eigenvalues of �+(a, b)

bk1 = λ1 = · · · = λn1−1 < λn1 < bk2

= λn1+1 = · · · = λn1+n2−1 < λn1+n2 < · · · < λn−nm
< bkm

= λn−nm+1 = · · · = λn−1 < λn,

and for the eigenvalues of �−(a, b)

λ1 < bk1 = λ2 = · · · = λn1 < λn1+1 < bk2

= λn1+2 = · · · = λn1+n2 < λn1+n2+1 < · · · < λn−nm+1 < bkm

= λn−nm+2 = · · · = λn.
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Here bk1 < bk2 < · · · < bkm
are m distinct elements of b and n1, . . . , nm(∑m

i=1 ni = n
)

are the multiplicities of bk1, . . . , bkm
, as same as in Lemma 2.1

or Lemma 2.2. It is interesting to note that these inequalities depend only on the
values of b. This can also be seen by noting that the characteristic equation here is∏m

i=1(bki
− λ)ni−1 det

{
diag(bk − λ) ± γ γ T

} = 0, where bk = (bk1, . . . , bkm
) and

γ = (γk1, . . . , γkm
) with γ 2

ki
= ∑

j :bj =bki
a2

j .
If there is a zero element ai in a, the inequalities above should be modified by

noting that the corresponding bi becomes an eigenvalue. Ronning (1982) proved a
similar inequality in the cases of the multinomial, Dirichlet or multivariate hyper-
geometric distributions. Watson (1996) independently noted that such an inequal-
ity holds true for the multinomial distribution. However, our result above is not
restricted to such special multivariate distributions, but applies, in general, to any
multivariate distributions with multiplicative covariances.

Example 2 (Equi-covariance) From Theorem 2.3, we can easily see that the covari-
ance r for the equi-covariance matrix should satisfy

0 ≤ r ≤ σ 2
1 , σ 2

1 < r < σ 2
2 and

n∑
i=1

r

(σ 2
i − r)

≤ −1, or r < 0 and

n∑
i=1

r

(σ 2
i − r)

≥ −1,

where σ 2
1 and σ 2

2 are the minimum and the second minimum of the variances of
Xi , respectively.

3 Implications of multiplicative correlations or covariances

In this section, we investigate the implications of multiplicative correlation or
covariance matrices. In Sect. 3.1, we first give a factorization theorem. The mean-
ing of multiplicative correlation becomes clearer through the factorization of vari-
ables, at least for the case of positive multiplicative correlations. In Sect. 3.2 we
give one reason why negative multiplicative correlation matrices arise so frequently,
although other explanations are also no doubt possible.

3.1 Characterizations

In view of the reduction method mentioned in Section 1, we might expect that the
Xi can be represented as a common variable plus individual variables if the correla-
tion is multiplicative. For the multivariate normal distribution, such a factorization
is almost trivial, and Curnow and Dunnett (1962) or Gupta (1963) showed that a
simple calculation of the distribution is possible when the correlation is positive
multiplicative. Six (1981) extended their results to the case of negative multipli-
cative correlation. The following theorem gives us a general factorization theorem
for positive and negative multiplicative correlations.
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Theorem 3.1 A random vector X = (X1, . . . , Xn) with zero means has a non-
singular multiplicative covariance var(X) = diag(b)±aaT with b > 0 if and only
if each element of X is written as

Xi = γ aiZ0 +
√

biZi, i = 1, . . . , n, (4)

where Z0, Z1, . . . , Zn are random variables with zero means and unit variances,
in which Z1, . . . , Zn are uncorrelated each other but correlated with Z0 as

corr(Z0, Zi) = cai√
bi

, i = 1, . . . , n,

where |c| ≤ 1/κ for �+(a, b) and 1 ≤ |c| ≤ 1/κ for �−(a, b) with κ2 =∑n
i=1(a

2
i /bi). The constants γ and c satisfy the equation,

γ 2 + 2γ c =
{

1 for �+(a, b)
−1 for �−(a, b) .

Proof If X is represented as in Eq. (4), then a direct calculation yields the mul-
tiplicative covariance var(X) = diag(b) ± aaT. On the other hand, if X has the
desired covariance matrix, define a random variable

Z0 =
{

(1 − c2κ2)

(1 + σκ2)

}1/2

X0 ± (c2 + σ)1/2aT�−1X

by introducing a new random variable X0 with mean zero and unit variance but inde-
pendent of any Xi, i = 1, . . . , n. Here σ is 1 for �+(a, b) or is −1 for �−(a, b),
and the sign ± shows alternative definitions. It can be easily seen that the Z0 and
Zi = [Xi − {±(c2 + σ)1/2 − c}aiZ0]/

√
bi satisfy the desired properties from the

non-negative definiteness of the covariance of Z and Theorem 2.3. ��
The parameter γ in Theorem 3.1 can be written as γ = −c ± √

c2 + 1 for
�+(a, b) and γ = −c ± √

c2 − 1 for �−(a, b). Hence the factorization is not
unique even when c is fixed which determines a global level of correlations of Zi’s
with Z0. It is worthy of noting that Zi’s are always assumed to be uncorrelated
with Z0 in factor analysis.

Corollary 3.1 A random vector X = (X1, . . . , Xn) with zero means has a non-
singular multiplicative covariance var(X) = diag(b)±aaT with b > 0 if and only
if each element of X is written as

Xi = aiZ0 +
√

biZi, i = 1, . . . , n,

where Z0, Z1, . . . , Zn are random variables with zero means and unit variances,
in which Z1, . . . , Zn are uncorrelated each other but it can be correlated with Z0
as

corr(Z0, Zi) =
{

0 for �+(a, b)

−ai/
√

bi for �−(a, b)
, i = 1, . . . , n.
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The factorization in Corollary 3.1 for positive multiplicative correlation is
known as the fundamental theorem of factor analysis (see, for example, Steiger,
1979, p. 158). Also, it is clear that the reduction method mentioned in Sect. 1 is
based on the factorization with ai = a for i = 1, . . . , n, and corr(Z0, Zi) = 0.
However, Corollary 3.1 suggests a more general way of defining new multivariate
distributions by choosing different ai’s or allowing the Zi’s to be correlated with
Z0. It is interesting to note that the variables Zi(i = 0, 1, . . . , n) should have a spe-
cific correlation with Z0 when Xi(i = 0, 1, . . . , n) have a negative multiplicative
correlation. It is also interesting that the common variable Z0 is uncorrelated with
Xi’s, as is easily shown. The following examples suggest how the factorization in
Corollary 3.1 can be applied in practice.

Example 3 Variance reduction methods such as antithetic variates method (for
example, Hammersley and Handscomb, 1964, p. 60) in Monte Carlo simulation
typically make use of negatively correlated random numbers. We can generate n
negatively correlated random numbers using the formula

Xi = µ + aiZ0 +
√

biZi, i = 1, . . . , n,

where Z1, . . . , Zn+1 are independent random variables with zero mean and unit
variances and Z0 = −∑n

i=1 aiZi/
√

bi +Zn+1 for positive ai’s. Then, from Corol-
lary 3.1 it follows that X = (X1, . . . , Xn) has a negative multiplicative covariance
matrix given by var(X) = diag(b) − aaT, where all correlation coefficients are
negative.

Example 4 Assume that there are two groups of assets; the returns X = (X1, . . . ,
Xn) in a group are uncorrelated with variances σ 2

1 , . . . , σ 2
n , but the returns

Y = (Y1, . . . , Yn) in another group have the same variances but a positive multipli-
cative covariance �+(a, σ 2 −a2) where σ 2 −a2 = (σ 2

1 −a2
1, . . . , σ

2
n −a2

n) > 0. It
is well known that the minimal risk portfolio wTZ for the return Z = (Z1, . . . , Zn)

with the weights w such that wT1 = 1 has the variance 1/1T�−11 where var(Z) =
�. Therefore, for example, when

∑
i �=j aiaj /{(σ 2

i − a2
i )(σ

2
j − a2

j )} < 0, the risk

1/1T{diag(σ 2 − a2) + aaT
}−11 of the minimal risk portfolio for Y is less than

the risk 1/1Tdiag(σ 2)
−11 of the minimal risk portfolio for X. Even when Y has a

negative multiplicative covariance �−(a, σ 2 + a2) for a < 1 < σ , the minimal
risk 1/1T{diag(σ 2 + a2) − aaT

}−11 for Y is less than the minimal risk for X when
1/2 <

∑n
i=1 a2

i /(σ
2
i + a2

i ) < 1.

The following corollary is a direct consequence of Corollary 3.1 for multipli-
cative correlations.

Corollary 3.2 A random vector X = (X1, . . . , Xn) with zero means and variances
σ 2

i = var(Xi), i = 1, . . . , n, has a positive definite multiplicative correlation
matrix if and only if each element of X is written as

Xi/σi =
{

δiZ0 + (1 − δ2
i )

1/2
Zi for R+(δ)

δiZ0 + (1 + δ2
i )

1/2
Zi for R−(δ)

, i = 1, . . . , n,



320 K. Baba and R. Shibata

where Z0, Z1, . . . , Zn are random variables with zero means and unit variances,
in which Z1, . . . , Zn are uncorrelated each other, but can be correlated with Z0 as

corr(Z0, Zi) =
{

0 for R+(δ)

−δi/
(
1 + δ2

i

)1/2
for R−(δ)

, i = 1, . . . , n.

3.2 A further characterization of negative multiplicative covariance

The following theorem explains why negative multiplicative covariance matrix
arises frequently.

Theorem 3.2 Assume that an n-dimensional random vector X has covariance
matrix �−(a, b). Then, b = (

∑n
i=1 ai)a if and only if

∑n
i=1 Xi is almost surely

constant.

Proof The fact that
∑n

i=1 Xi is almost surely constant is equivalent to

var

(∑
i

Xi

)
= 1T {diag(b) − aaT} 1 =

∑
i

bi −
(∑

i

ai

)2

= 0.

From the Schwarz’s inequality we have

∑
i

bi =
(∑

i

ai

)2

=
(∑

i

ai√
bi

√
bi

)2

≤
(∑

i

bi

)(∑
i

a2
i

bi

)

and it is clear that bi is proportional to ai since
∑n

i=1 a2
i /bi ≤ 1. ��

This theorem says that the negative multiplicative covariance matrix takes the
form of

var(X) =
(

n∑
i=1

ai

)
diag(a) − aaT

if and only if there is a sum constraint
∑n

i=1 Xi = const a.s. Multivariate Pólya-
Eggenberger distribution is an example of family of distributions which have such
a special type of negative multiplicative covariance matrix.

Example 5 Multivariate Pólya-Eggenberger distribution is a class of distributions
whose joint probability functions take the form of

p(x1, . . . , xn) =
(

t

x1, . . . , xn

){∏n
i=1 α

[xi ,c]
i

}
α[t,c]

,

where xi and αi, i = 1, . . . , n, are non-negative integers, c is an integer, t =∑n
i=1 xi, α = ∑n

i=1 αi , and α[x,c] = α(α + c) · · · {α + (x − 1)c} with α[0,c] = 1
(see Johnson et al., 1997, p. 201). Multivariate Pólya-Eggenberger distribution
includes multinomial distribution (c = 0), multivariate hypergeometric distribu-
tion (c = 1), or multivariate negative hypergeometric distribution (c = −1).
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Distributions in the class have negative multiplicative covariance matrices since
there is a constraint like t = ∑n

i=1 Xi . In fact, by a direct calculation, we have

E(X) = t
α

α
and var(X) = t (α + tc)

α2(α + c)

{
αdiag(α) − ααT} ,

with α = (α1, . . . , αn). We can expect that the Dirichlet distribution has a negative
multiplicative covariance as in Theorem 3.2, since it is a limit of multivariate Pólya-
Eggenberger distribution (see Johnson et al., 1997, p. 211). In fact, the covariance
matrix of Dirichlet distribution is written as

(
νdiag(ν) − ννT

)
/
{
ν2(ν + 1)

}
where

ν = ∑n
i=1 νi.

4 Invariance of multiplicative covariance

We can interpret the result in Theorem 3.2 in the following manner. The conditional
distribution of X = (X1, . . . , Xn) given

∑n
i=1 Xi has a special type of negative

multiplicative covariance, provided that X has a negative multiplicative covari-
ance. The following Theorem 4.1 is a converse of Theorem 3.2, but it holds true
more generally.

Theorem 4.1 Let (X, T ) be an (n + 1)-dimensional random vector. Assume that
the conditional variance of X given T is

var(X|T = t) = σ(t)
(
diag(b) ± aaT)

for a function σ(t) > 0. If the conditional expectation takes the form of

E(X|T = t) = µ(t)a + c

for an n-dimensional constant vector c, then the unconditional covariance is

var(X) = E (σ(T )) diag(b) + {var(µ(T )) ± E (σ(T ))} aaT,

which is again multiplicative.

Proof The result follows by direct calculations;

E(Xi |T = t) = aiµ(t) + ci, E(X2
i |T = t) = (bi ± a2

i )σ (t) + (aiµ(t) + ci)
2

and

E(XiXj |T = t) = ±aiajσ (t) + (aiµ(t) + ci)
(
ajµ(t) + cj

)
.

��
It is worth noting that the unconditional covariance matrix can be positive or

negative multiplicative irrespective of whether the conditional covariance matrix
is positive or negative multiplicative.
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Example 6 (Homogeneous Distribution) It is known that X is distributed as a mul-
tivariate homogeneous distribution if and only if the conditional distribution of X
given the sum

∑n
i=1 Xi is multinomial (see, Johnson et al., 1997, p. 20). Since the

conditional expectation and covariance matrix are written as E(X|T = t) = tp
and var(X|T = t) = t

(
diag(p) − ppT

)
, the conditions in Theorem 4.1 are satis-

fied by taking σ(t) = µ(t) = t and c = 0. Therefore, we see that the homogeneous
distribution always has a multiplicative covariance matrix given by

var(X) = E(T )diag(p) + (var(T ) − E(T )) ppT.

The sign of var(T ) − E(T ) depends on the distribution of T . For example, it is
always negative multiplicative if the distribution of T is binomial, and positive
multiplicative if the distribution is negative binomial. Although it can be seen from
the fact that the resulting distribution of X is multinomial or negative multinomial,
respectively, it can also be shown by a direct calculation of var(T ) − E(T ). It is
trivial, but interesting, to note that X is a vector of orthogonal variables if T is Pois-
son distributed because var(T ) = E(T ). For the multivariate Pólya-Eggenberger
distributions in Example 5, t is a parameter and can be replaced by a non-nega-
tive integer valued random variable T . Then it is clear from Theorem 4.1 that the
covariance matrix of X is again multiplicative for any choice of T .

Example 7 (Random Scaling) It is clear from Theorem 4.1 that the randomly scaled
X = T Y has a multiplicative covariance as far as

E(Y ) = ka for a constant k, var(Y ) = diag(b) ± aaT

and T is independent of Y . Several multivariate continuous distributions can be
derived by using such a random scaling. For example, the multivariate Liouville
distribution or multivariate beta distribution of the second kind (or inverted Di-
richlet) are derived from the Dirichlet distribution by taking respectively Liouville
distributed T or second kind beta distributed T (see, Kotz et al., 2000, p. 491, 530;
Gupta & Richards, 2001). In view of Theorem 4.1, multiplicative covariance struc-
tures are preserved through such a derivation. The random scaling for multivariate
continuous distributions plays a similar role to that of the reduction method for
multivariate discrete distributions. Unfortunately the converse of Theorem 4.1 is
not so simple. It heavily depends on the shape of the distribution and the problem
is left for future investigation.

To see another invariance, we need the following proposition, where a/b =
(a1/b1, . . . , an/bn).

Proposition 4.1 Assume that �+(a, b) and �−(a, b) are positive definite. Then

�+(a, b)
−1 = �− (ca/b, 1/b) for c2 = 1/(1 + aTdiag(b)−1a)

and

�−(a, b)
−1 = �+ (ca/b, 1/b) for c2 = 1/(1 − aTdiag(b)−1a),

provided that b > 0.
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We now show another invariance property of multiplicative covariances or
correlations.

Theorem 4.2 Assume that X = (X1, . . . , Xn) has a multiplicative covariance
�±(a, b). Partition X as X = (X1, X2) with m-dimensional vector X1 and (n −
m)-dimensional vector X2, and its parameter vectors as a = (a1, a2) and b =
(b1, b2), simultaneously. If var(X2) is non-singular and all elements of b2 are
positive, then the partial covariance of X1 given X2 is also multiplicative and is
�±(a1/c, b1) with c2 = 1 ± aT

2 diag(b2)
−1a2.

Proof Partition �±(a, b) into

(
�11 �12
�21 �22

)
=
(

diag(b1) ± a1a
T
1 ±a1a

T
2

±a2a
T
1 diag(b2) ± a2a

T
2

)
.

From Proposition 4.1, the partial covariance matrix of X1 given X2 is written as

�11 − �12�
−1
22 �21 = diag(b1) ± a1a

T
1 − a1a

T
2 (diag(b2) ± a2a

T
2 )

−1
a2a

T
1

= diag(b1) ± a1a
T
1 /{1 ± aT

2 diag(b2)
−1a2}.

��

For multiplicative correlations, the following corollary holds true, which is a
direct consequence of Theorem 4.2.

Corollary 4.1 If X has a multiplicative correlation R±(δ), then the partial corre-
lation of X1 given X2 is also multiplicative and R±(δ̃) with

δ̃i = δi{
1 ± c(1 ∓ δ2

i )
}1/2 , i = 1, . . . , m,

where c = ∑n
j=m+1 δ2

j /(1 ∓ δ2
j ).

We see that the partial covariance is proportional to the original covariance
but the partial correlation is not, although the multiplicative property is retained
for both cases. An important implication of Theorem 4.2 or Corollary 4.1 is that
zero correlation always implies zero partial correlation. This is due to the mul-
tiplicative parameterization of the correlation or covariance matrix, but it is not
always true without such a parameterization. A simple example is for the case of
n = 3. The partial covariance between X1 and X2 is σ12 − σ13σ23/σ33 in general,
which is not necessarily zero even if the original covariance σ12 = 0. However,
σ13 or σ23 becomes zero if σ12 = 0 under the multiplicative parameterization of
the covariance, so that the zero covariance implies zero partial covariance.
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5 Concluding remarks

As a concluding remark, we note that many known multivariate distributions have
multiplicative correlation or covariance structure. In Johnson et al. (1997), eight
families of discrete distributions were introduced and these are given as in Table 1.
This table shows whether each of these families has multiplicative correlation
structure or not together with reasons. As has been discussed before, multinomial,
negative multinomial, Poisson, hypergeometric and Pólya-Eggenberger distribu-
tion have multiplicative correlation structure. Although power series distributions
or multivariate distributions of order s have no multiplicative correlation in gen-
eral, subfamilies such as the logarithmic series distributions (Johnson et al., 1997,
p. 157), multivariate negative multinomial of order s (p. 255) or multivariate log-
arithmic series distributions of order s (p. 260) have multiplicative correlation
structure. However, at this stage, we do not know the exact reason why such sub-
families have multiplicative correlation structure. Apparently, Ewens distributions
have no multiplicative correlation structure.

In terms of continuous distributions, seven families of explicit continuous
distributions were introduced in Kotz et al. (2000). Table 2 shows whether each
family has multiplicative correlation structure or not in the same way as Table 1.
For multivariate normal distributions we define a subfamily where the correla-
tion matrix is multiplicative and call this the multiplicatively correlated normal.
Although multivariate exponential, multivariate gamma, multivariate logistic or
multivariate Pareto distributions have no multiplicative correlations in general,
subfamilies like Moran and Downton’s multivariate exponential distributions

Table 1 Discrete multivariate distributions in Johnson et al. (1997)

Family Subfamily Positive or negative Reason

35 Multinomial Negative Example 5
36 Negative multinomial Positive Example 6
37 Poisson Positive Reduction method
38 Power series Logarithmic series Positive ?
39 Hypergeometric Negative Example 5
40 Pólya-Eggenberger Negative Example 5
41 Ewens – – –
42 Distributions of Negative binomial of order s Positive ?

order s Logarithmic distr. of order s Negative ?

Table 2 Continuous multivariate distributions in Kotz et al. (2000)

Family Subfamily Positive or negative Reason

45 Normal Multiplicatively correlated normal Both
47 Exponential Moran and Downton’s Positive Equi-correlation
48 Gamma Cheriyan and Ramabhadran’s Positive Reduction Method
49 Dirichlet Positive Example 5
49 Inverted Dirichlet Negative Example 7
50 Liouvill Both Example 7
51 Logistic Gumbel-Malik-Abraham Positive Equi-correlation

Farlie-Gumbel-Morgenstern Negative Equi-correlation
52 Pareto The first kind Positive Equi-correlation
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(Kotz et al., 2000, p. 400), Cheriyan and Ramabhadran’s multivariate gamma
distributions (p. 454), Gumbel-Malik-Abraham’s (p. 552) and Farlie-Gumbel-
Morgenstern’s (p. 561) multivariate logistic distributions, or multivariate Pareto
distributions of the first kind (p. 599) have equi-covariance or equi-correlation
structure which is multiplicative. Example 5 or Example 7 shows that Dirichlet,
inverted Dirichlet or multivariate Liouville distributions have multiplicative corre-
lation structure.

An open problem is the estimation of the parameters a and b. For example, a
one-factor model such as

Xi = E(Xi) + aiZ0 +
√

biZi, i = 1, . . . , n,

is frequently used in the analysis of asset returns. In our framework, this is equiv-
alent to estimate a or b by assuming a multiplicative model. An advantage of such
an approach is that it is distribution free. For example, we can check if multipli-
cative correlation model fits to data or not by consulting Lemma 2.1 before the
estimation of parameters. We note that a multiplicative covariance matrix does not
necessarily imply a unique factorization, but allows various choices of orthogonal
or non-orthogonal factorizations. We hope to develop an efficient estimation algo-
rithm of the parameters a and b. It is also interesting to investigate if measurement
exchangeability (Kelderman, 2004) can be extended to non-normal distribution
which has a multiplicative correlation structure.
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