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Abstract The estimation of multivariate regression functions from bounded i.i.d.
data is considered. The L2 error with integration with respect to the design measure
is used as an error criterion. The distribution of the design is assumed to be con-
centrated on a finite set. Neural network estimates are defined by minimizing the
empirical L2 risk over various sets of feedforward neural networks. Nonasymptot-
ic bounds on the L2 error of these estimates are presented. The results imply that
neural networks are able to adapt to additive regression functions and to regression
functions which are a sum of ridge functions, and hence are able to circumvent the
curse of dimensionality in these cases.

Keywords Neural networks · Nonparametric regression · Dimension reduction ·
Additive models · Curse of dimensionality

1 Introduction

Neural networks are frequently implemented in applications. They are motivated
by the desire to model human brain by computer. The original biological moti-
vation for such networks stems from McCulloch and Pitts (1943) who modeled a
neuron by a binary thresholding device in discrete time. This so-called perceptron
applies a threshold element to a linear combination of its d inputs:

g(x) = σ
(
aTx + b

)
,
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where x ∈ R
d is an input vector, a = (a1, . . . , ad)

T ∈ R
d , b ∈ R are the weights

and σ(x) = I{x∈[0,∞)} is the threshold element.
As shown by Minsky and Papert (1969), the class of functions which can be

approximated well by perceptrons is very limited. These limitations can be obviated
by adding additional layers of neurons called hidden layers which leads to multi-
layer perceptron neural networks. One example of such networks is feedforward
neural networks with one hidden layer defined by

f (x) =
k∑

i=1

ciσ
(
aT

i x + bi

)+ c0 (x ∈ R
d)

where k ∈ N is the number of hidden neurons, σ : R → [0, 1] is called sigmoid
function and a1, . . . , ak ∈ R

d , b1, . . . , bk, c0, . . . , ck ∈ R are the weights of the
network. The so-called squashing functions σ : R → [0, 1], i.e. nondecreasing
functions which satisfy

lim
x→−∞ σ(x) = 0 and lim

x→∞ σ(x) = 1,

are often used as sigmoid functions. The class of feedforward neural networks
with one hidden layer is very powerful. For example, as shown independently by
Cybenko (1989), Funahashi (1989) and Hornik, Stinchcombe and White (1989),
any continuous function on R

d can be arbitrarily approximated closely by such
networks in supremum norm on compact sets. General introductions to neural net-
works can be found, e.g., in the monographs (Anthony and Bartlett 1999; Devroye
et al. 1996; 1996; Györfi, Kohler, Krzyźak & Walk 2002; Hertz, Krogh & Palimir
1991; Ripley 1996).

In this article we use neural networks to estimate a regression function from
observed data. To describe the regression estimation problem precisely, let (X, Y ),
(X1, Y1), (X2, Y2), . . . be independent identically distributed R

d × R - valued
random vectors with EY 2 < ∞. In regression analysis you want to estimate Y after
having observed X, i.e., you have to determine a function f with f (X) “close” to
Y . If “closeness” is measured by the mean squared error, then you have to find a
function f ∗ such that

E
{∣
∣f ∗(X) − Y

∣∣2
}

= min
f

E
{|f (X) − Y |2} . (1)

Let m(x) := E{Y |X = x} be the regression function and denote the distribution
of X by µ. The well-known relation which holds for each measurable function f

E{|f (X) − Y |2} = E{|m(X) − Y |2} +
∫

| f (x) − m(x) |2 µ(dx) (2)

implies thatm is the solution of the minimization problem (1), and for an arbitraryf ,
the L2 error

∫ | f (x) − m(x) |2 µ(dx) is the difference between E{|f (X) − Y |2}
and E{|m(X) − Y |2}—the minimum of (2).

In the regression estimation problem the distribution of (X, Y ) (and conse-
quently m) is unknown. Given a sequence Dn = {(X1, Y1), . . . ,(Xn, Yn)} of inde-
pendent observations of (X, Y ), the aim is to construct an estimatemn(x)=mn(x, Dn)
of m(x) such that the L2 error

∫ |mn(x) − m(x)|2µ(dx) is small.
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A very powerful principle to construct regression estimates is the principle of
least squares. Here, the L2 risk

E{|f (X) − Y |2} (3)

of a function f : R
d → R is estimated by the so-called empirical L2 risk

1

n

n∑

i=1

|f (Xi) − Yi |2, (4)

and an estimate of the regression function (i.e., the function which minimizes
Eq. (3)) is constructed by minimizing the empirical L2 risk Eq. (4). Minimizing
Eq. (4) over all functions would result (at least if the X1, . . . , Xn are distinct) in an
estimate which interpolates the data. Obviously, this is not a reasonable estimate
of the regression function. Therefore, sets Fn of functions f : R

d → R are defined
which depend on the sample size n and get more and more complex for n tending to
infinity. Equation (4) is then minimized only over Fn, i.e., least squares estimates
mn are defined by

mn(·) = arg min
f ∈Fn

1

n

n∑

i=1

|f (Xi) − Yi |2. (5)

Here, and in the sequel, we assume for simplicity that the minima in Eq. (5) exist,
but we do not assume them to be unique.

The crucial point in the definition of least squares estimates is the choice of the
set Fn of functions over which the empirical L2 risk is minimized. On the one hand,
it should not be too “complex” in order to guarantee that the error introduced by
minimizing the empirical L2 risk instead of the L2 risk is small. On the other hand,
it must be chosen in such a way that the regression function can be approximated
well by functions from this set.

In this article we study least squares estimates using neural networks, where
Fn is chosen to be as a class of feedforward neural networks with one hidden
layer. Such estimates have been investigated in many articles, e.g., concerning L2
consistency in White (1990) and Lugosi and Zeger (1995), and concerning rate of
convergence of the L2 error in Barron (1991, 1994) and McGaffrey and Gallant
(1994).

The derivation of rate-of-convergence results requires approximation results
concerning L2 norm or supremum norm. Barron (1994) imposed conditions on the
Fourier transform to derive such approximation results for neural networks. These
conditions do not fit the usual statistical framework for analyzing regression esti-
mates, where it is common to impose conditions such as Lipschitz continuity on
derivatives of the regression function like in Stone (1982), together with assump-
tions on the structure of the regression function such as additivity which make it
possible to derive good rates of convergence even for high-dimensional data and
hence to circumvent the so-called curse of dimensionality (cf. Stone 1985, 1994).
More precisely, it was shown in Stone (1985) that if the regression function is a sum
of univariate functions of its d components where these univariate functions are
p-times continuously differentiable, then the L2 error of suitably defined estimates
converges to zero with the rate n−2p/(2p+1). In contrast, if one does not assume
anything about the structure of the regression function, the optimal rate of conver-
gence for estimation ofp-times continuously differentiable functions isn−2p/(2p+d)
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(cf. Stone 1982), which converges to zero rather slowly provided the dimension
d of X is large. For additional results on additive models and related models see,
e.g., Andrews and Whang 1990; Bickel et al 1993; Breiman 1993; Breiman and
Freiman 1985; Breiman 1993; Burman 1990; Chen 1991, Hastie and Tibshirani
1990; Huang 1998; Kohler (1998); Linton 1997; Linton and Härdle 1996; Linton
1997; Linton and Nielsen 1995; Newey 1994; Stone 1994; Wahba et al 1995; and
the literature cited therein.

One can conclude from Barron (1994) that the rate of convergence of suitably
defined neural network regression estimates is “good” even if the dimension of
X is large, provided that the smoothness of the regression function increases with
increasing dimension of X. In the sequel we try to avoid such a condition and
impose instead of conditions on the structure of the regression function (such as
additivity) in order to circumvent the curse of dimensionality. Unfortunately, it
seems very hard to derive sharp approximation results for neural networks under
these assumptions.

Therefore, we analyze neural network regression estimates in the framework
proposed by Hamers and Kohler (2004), which enables us to avoid difficult approx-
imation problems. We assume that, as often in applications, the distribution of the
design (i.e., µ) is concentrated on a finite set. As a consequence, we need approx-
imation results for neural networks only concerning supremum norm on the finite
support of µ, which are rather easy to derive.

We give bounds on the expected L2 error of neural network estimates for general
regression functions, for additive regression functions and for regression functions
which are a sum of ridge functions. The results imply that neural networks are able
to adapt to additive regression functions and to regression functions which are a sum
of ridge functions, and hence are able to circumvent the curse of dimensionality in
these cases.

1.1 Notation

N and R are the sets of natural and real numbers, respectively. IA denotes the indi-
cator function, card(A) the cardinality of a set A. The natural logarithm is denoted
by log(·), the distribution of X is denoted by µ and supp(X) is the support of the
distribution of the random variable X. The Euclidean norm of x ∈ R

d is denoted
by ‖x‖, and the components of x are denoted by x(1), . . . , x(d).

1.2 Outline

The main results are stated in Sect. 2. In Sect. 3, we derive bounds on expected
maximal deviations of sample averages from their means which we use in the
proofs of the main results. Section 4 contains a general bound on the expected L2
error of least squares estimates. Approximation properties of neural networks are
derived in Sect. 5. The proofs of the main results are given in Sect. 6.

2 Main results

In the sequel we assume that Y is bounded in absolute value by some constant L
almost surely (a.s.) and that the distribution µ of X is concentrated on a finite set.
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Let K denotes the cardinality of the support of X. Define the class of neural
networks

Fn :=
{

f (x) = c0 +
K−1∑

i=1

ciσ (aT
i x + bi) : ai ∈ R

d, bi, ci ∈ R, |ci | ≤ 2L

}

,

where σ is an arbitrary squashing function. Choose m̃n(·) ∈ Fn such that

1

n

n∑

i=1

(m̃n(Xi) − Yi)
2 = inf

f ∈Fn

1

n

n∑

i=1

(f (Xi) − Yi)
2,

and define mn(·) by truncating m̃n(·) at ±L. Then analogously to Theorem 1 in
Hamers and Kohler (2004) the following theorem holds (which is actually weaker
than the bound in Hamers and Kohler (2004), cf. Remark 1 below):

Theorem 2.1 Let L ≥ 1, d ∈ N and K ∈ N. Assume that the distribution of
(X, Y ) satisfies (X, Y ) ∈ R

d × [−L, L]a.s. and card(supp(X)) = K . Let the
neural network estimate mn be defined as above. Then for all n ∈ N

E
∫

|mn(x) − m(x)|2µ(dx) ≤ cn · K

n

where

cn = 101L2 · (2d + 5) · log(48eL2n3) = O(log(n)).

The upper bound on the L2 error in Theorem 2.1 is of the parametric form
const · K·log n

n
and hence much smaller than the minimax bound n−2p/(2p+d) which

is usually derived in case of p-times differentiable regression functions. This is
not surprising: As we assume the distribution of X to be concentrated on a set of
cardinality K , we only need to estimate the value of the regression function at K
points which should be possible with a parametric rate of convergence of order
K/n. It is shown in Hamers and Kohler (2004) that the minimax estimation error
of a regression function under the assumption card(supp(X)) = K is indeed the
form of const · K/n, hence the upper bound in Theorem 2.1 is optimal up to a
logarithmic factor.

The upper bound in Theorem 2.1 is not satisfying in case the dimension d
of X is large. Even if each component of X takes on only two values, the car-
dinality of the support of X can be 2d which might be rather large compared to
sample sizes n occuring in applications. The only possibility to circumvent this
so-called curse of dimensionality is to impose additional assumptions on the struc-
ture of the regression function and to use estimates which are able to adapt to
these assumptions. Usual assumptions are additivities of the regression function
(cf. Stone 1985), i.e.,

m(x) = m1(x
(1)) + · · · + md(x

(d)) (x = (x(1), . . . , x(d))T ∈ R
d) (6)

for some univariate functions m1, . . . , md : R → R, or the assumption that the
regression function is a sum of ridge functions (cf. Friedman and Stuetzle 1981),
i.e.,

m(x) = m1(β
T
1 x) + · · · + md∗(βT

d∗x) (x ∈ R
d) (7)
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for some d∗ ∈ N, β1, . . . , βd∗ ∈ R
d , m1, . . . , md∗ : R → R. Note that Eq. (6) is

a special case of Eq. (7) (choose d∗ = d and let β1, . . . , βd be the unit vectors).
We show in the sequel that neural networks are able to adapt to both kinds of
assumptions.

Theorem 2.2 covers the case of an additive regression function. Let
Kj := card(supp(X(j))) define the class of neural networks as

Fn : =
{
f (x) = c0 +

K1+···+Kd−d∑

i=1

ciσ (aT
i x + bi) : ai ∈ R

d, bi, ci ∈ R,

|c0| ≤ 2Ld, |ci | ≤ 2L (i ≥ 1)

}

and let m̃n(·) and mn(·) be defined as in the general case.

Theorem 2.2 Let L ≥ 1, d ∈ N and K1, . . . , Kd ∈ N. Assume that the distribu-
tion of (X, Y ) satisfies (X, Y ) ∈ R

d × [−L, L]a.s., card(supp(X(j))) = Kj (j =
1, . . . , d) and

m(x) = m1(x
(1)) + · · · + md(x

(d)) (x = (x(1), . . . , x(d))T ∈ R
d)

for some functions m1, . . . , md : R → [−L, L]. Let the neural network estimate
mn be defined as above. Then for all n ∈ N

E
∫

|mn(x) − m(x)|2µ(dx) ≤ cn · K1 + · · · + Kd

n

where

cn = 101L2 · (2d + 5) · log(48eL2n3) = O(log(n)).

Theorem 2.2 can be generalized elegantly to the case that the regression func-
tion is a sum of ridge functions, i.e., Eq. (7) holds. With K∗

j := card(supp(βT
j X))

and

Fn : =
{
f (x) = c0 +

K∗
1 +···+K∗

d∗−d∗
∑

i=1

ciσ (aT
i x + bi) : ai ∈ R

d, bi ∈ R,

|c0| ≤ 2Ld∗, |ci | ≤ 2L (i ≥ 1)

}
,

we get

Theorem 2.3 Let L ≥ 1, d, d∗ ∈ N and K∗
1 , . . . , K∗

d∗ ∈ N. Assume that the distri-
bution of (X, Y ) satisfies (X, Y ) ∈ R

d×[−L, L]a.s.,K∗
j = card(supp(βT

j X)) (j =
1, . . . , d∗) and

m(x) = m1(β
T
1 x) + · · · + md∗(βT

d∗x) (x ∈ R
d)
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for some β1, . . . , βd∗ ∈ R
d and some functions m1, . . . , md∗ : R → [−L, L]. Let

the neural network estimate mn be defined as above. Then for all n ∈ N

E
∫

|mn(x) − m(x)|2µ(dx) ≤ cn · K∗
1 + · · · + K∗

d∗

n

where

cn = 101L2 · (2d + 5) · log(48eL2n3) = O(log(n)).

Remark 1 Clearly, the constants in the theorems above are not optimal, but we
believe that this is due to the mathematical difficulty in the (worst-case-) analysis
of the neural network estimator and especially in the difficulty involved in bound-
ing the covering number of sets of neural networks, and that the estimator really
behaves better in practice. This can actually be seen in the setting of Theorem 2.1,
where the neural network estimator will take on the same values as the estimator
defined in Theorem 1 of Hamers and Kohler (2004) for the values of X which
occur in the sample (because both are solutions to the minimization of the empiri-
cal L2 risk), and makes an error of at most 2L for the values of X for which there
are no observations in the sample. So, from looking at the proof of Theorem 1 in
Hamers and Kohler (2004), it is clear that, under the assumptions of Theorem 2.1,
the following error bound for the neural network estimator also holds:

E
∫

|mn(x) − m(x)|2µ(dx) ≤
(

(2L)2

e
+ 2L2

)
· K

n
.

Remark 2 The error bounds in Theorems 2.2 and 2.3 are useful also if the dimen-
sion of the predictor variable X is high, provided the regression function has a
structure which fits Theorem 2.2 or 2.3. Note that for high-dimensional data, the
sums of the cardinalities of the supports of the components of X, i.e., K1 +· · ·+Kd

or K∗
1 +· · ·+K∗

d∗ , respectively, can be much smaller than K , the cardinality of the
entire support of X, for example, suppose d = 20 and X taking on two different
values in each component, resulting in K1 + · · · + K20 = 20 · 2 = 40 compared
to the possible maximal cardinality of the entire support K = 220 ≈ 106.

Remark 3 In the above theorems the number of hidden neurons depends on the
structure of the regression function and the distribution of X. Of course, this is not
possible in an application because the distribution of (X, Y ) (and in particular the
regression function) is unknown. What can then be done is to consider the number
of hidden neurons as a parameter of the estimate and to choose this parameter in
a data-dependent way. A very popular method for doing this is splitting the data,
into the so-called learning data and testing data, where the learning data is used
to define estimates with various numbers of hidden neurons, then the empirical
L2 risk on the testing data is computed for each of these estimates, and finally the
estimate with minimal empirical L2 risk on the testing data is chosen. It follows
from Theorem 2 in Hamers and Kohler (2003) that for neural network estimates
obtained in this way similar bounds as in Theorems 2.1 to 2.3 hold.

Remark 4 In applications it is usually impossible to minimize the empirical L2
risk over sets of neural networks because this leads to nonlinear optimization
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problems. Instead, a steepest descent algorithm [the so-called- backpropagation,
cf. Rummelhart and McClelland (1986)] is used to iteratively minimize the empir-
ical L2 risk. This algorithm usually leads to a local minimum of the L2 risk, which
is not guaranteed to be a global minimum.

3 A bound on the expected maximal deviations of sample averages from
their means

A crucial step in the analysis of least squares estimates is to bound the difference
between the L2 risk and the empirical L2 risk of the estimate (i.e., the difference
between a mean and a sample average). In this section we introduce tools from
empirical process theory which are helpful for this purpose. The approach we will
use is similar to the one in Lee, Barlett and Williamson (1996), but we consider
expectations instead of tail probabilities which enable us to reduce the constants
in Theorem 4.1 below.

We first state a result proven in Hamers and Kohler (2003).

Lemma 3.1 Let L > 0 and let H be a class of functions h : R
d → R bounded in

absolute value by L. Let X1, . . . , Xn be independent R
d -valued random variables.

Then, for all c1 > 0

E

{

max
h∈H

(

E

{
1

n

n∑

i=1

h(Xi)

}

− 1

n

n∑

i=1

h(Xi) − c1 · 1

n

n∑

i=1

Var{h(Xi)}
)}

≤
(

2L

3
+ 1

2c1

)
log card(H)

n
.

Next, we extend this lemma to the case that H contains infinitely many func-
tions. In order to avoid measurability problems in the case of uncountable col-
lections of functions, we assume throughout this paper that the class of functions
considered is permissible in the sense of Pollard (1984, Appendix C). This mild
measurability condition is satisfied for most classes of functions used in the appli-
cations, including the classes of neural networks used in this paper.

We measure the “complexity” of a set F of functions f : R
d → R by the so-

called covering numbers: Let z1, . . . , zn ∈ R
d and set zn

1 = (z1, . . . , zn). Define
the distance d1(f, g) between f, g : R

d → R by

d1(f, g) = 1

n

n∑

i=1

|f (zi) − g(zi)|.

An L1-ε-cover of F on zn
1 is a set of functions f1, . . . , fk : R

d → R with the
property

min
1≤j≤k

d1(f, fj ) < ε for all f ∈ F .

Let N1(ε, F, zn
1) denote the cardinality k of the smallest L1-ε-cover of F on zn

1, and
set N1(ε, F, zn

1) = ∞ if there does not exist any L1-ε-cover of finite cardinality
of F on zn

1.
With this notation, we can generalize the above lemma as follows.
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Theorem 3.1 Let R > 0 and let G be a class of functions g : R
d → R bounded

in absolute value by R. Let Z, Z1, . . . , Z2n be independent identically distributed
R

d -valued random variables. Then, for all c2 > 0, ε > 0,

E

{

sup
g∈G

{

E{g(Z)} − 1

n

n∑

i=1

g(Zi) − c2E{g2(Z)}
}}

≤
(

6c2R
2 + 4

3
R + 12

5c2

)
· E{log

(N1(ε, G, Z2n
1 )
)}

n
+ (6c2R + 2)ε.

Proof The basic ideas of the proof follow the usual proof of Vapnik–Chervonenkis’
Theorem. The proof will be divided into four steps.

Step 1. In the first step, we replace E{g(Z)} by a mean taken over a ghost sample
and split the error into two terms. Let c3 with 0 < c3 < c2/2 be arbitrary. Then

E

{

sup
g∈G

{

E{g(Z)} − 1

n

n∑

i=1

g(Zi) − c2E{g(Z)2}
}}

= E

{

sup
g∈G

E

{
1

n

n∑

i=1

(g(Zn+i ) − g(Zi)) − c2E{g(Z)2}
∣∣∣
∣Z1, . . . , Zn

}}

≤ E
{

sup
g∈G

{
1

n

n∑

i=1

(g(Zn+i ) − g(Zi)) − c2E{g(Z)2}
}}

(since sup E ≤ E sup)

= E
{

sup
g∈G

{
1

n

n∑

i=1

(g(Zn+i ) − g(Zi)) − c3

n

n∑

i=1

(g(Zn+i )
2 + g(Zi)

2)

+c3

n

n∑

i=1

(g(Zn+i )
2 + g(Zi)

2) − c2E{g(Z)2}
}}

≤ E

{

sup
g∈G

{
1

n

n∑

i=1

(g(Zn+i ) − g(Zi)) − c3

n

n∑

i=1

(g(Zn+i )
2 + g(Zi)

2)

}}

+ 2E

{

sup
g∈G

{
c3

n

n∑

i=1

g(Zi)
2 − c2

2
E{g(Z)2}

}}

. (8)

Step 2. To bound the first term of the right-hand side of Eq. (8), we first introduce
random signs: Since Z1, . . . , Z2n are i.i.d. random variables, the value of the
term considered remains unchanged if Zi values are interchanged, especially if,
for some i ∈ {1, . . . , n}, g(Zn+i )−g(Zi) is replaced by g(Zi)−g(Zn+i ) (and
g(Zn+i )

2 + g(Zi)
2 by g(Zi)

2 + g(Zn+i )
2). We do this at random: Let Ui (i =

1, . . . , n) be independent random variables independent of Z1, . . . , Z2n such
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that P{Ui = 1} = P{Ui = −1} = 1/2. Then

E

{

sup
g∈G

{
1

n

n∑

i=1

(g(Zn+i ) − g(Zi)) − c3

n

n∑

i=1

(g(Zn+i )
2 + g(Zi)

2)

}}

= E

{

sup
g∈G

{
1

n

n∑

i=1

Ui · (g(Zn+i ) − g(Zi))

−c3

n

n∑

i=1

(g(Zn+i )
2 + g(Zi)

2)

}}

.

Step 3. In this step, we introduce a finite covering of G so that we can apply Lemma
3.1. Since

E

{

sup
g∈G

{
1

n

n∑

i=1

Ui · (g(Zn+i ) − g(Zi)) − c3

n

n∑

i=1

(g(Zn+i )
2 + g(Zi)

2)

}}

= E
{

E
{

sup
g∈G

{
1

n

n∑

i=1

Ui · (g(Zn+i ) − g(Zi))

−c3

n

n∑

i=1

(g(Zn+i )
2 + g(Zi)

2)

}∣∣∣∣Z1, . . . , Z2n

}}
,

let us first consider

E

{

sup
g∈G

{
1

n

n∑

i=1

Ui · (g(zn+i ) − g(zi)) − c3

n

n∑

i=1

(g(zn+i )
2 + g(zi)

2)

}}

for fixed zi ∈ R
d(i = 1, . . . , 2n).

Let G∗ be a L1-ε-cover of minimal cardinality of G on z1, . . . , z2n, i.e., for each
g ∈ G there is a function g∗ ∈ G∗ such that

1

2n

2n∑

i=1

|g(zi) − g∗(zi)| < ε,

and card(G∗) = N1(ε, G, z2n
1 ).

W.l.o.g. we can choose G∗ such that |g∗(x)| ≤ R for all x ∈ R
d , g∗ in G∗. (It

is understood that G∗ may depend on z2n
1 , even if we did not show this in the

notation.)
The following calculations bound the error which may arise from replacing any
g ∈ G by its corresponding g∗, the function in G∗ closest to it (in the empirical
L1-norm):
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1

n

n∑

i=1

Ui(g(zi+n) − g(zi))

= 1

n

n∑

i=1

Ui(g(zi+n) − g∗(zi+n) + g∗(zi+n) − g∗(zi) + g∗(zi) − g(zi))

≤ 1

n

n∑

i=1

Ui(g
∗(zi+n) − g∗(zi)) + 1

n

2n∑

i=1

|g(zi) − g∗(zi)|

≤ 1

n

n∑

i=1

Ui(g
∗(zi+n) − g∗(zi)) + 2ε

and

1

n

n∑

i=1

(g(zi)
2 + g(zn+i )

2)

= 1

n

n∑

i=1

(g∗(zi)
2 + g∗(zn+i )

2) − 1

n

2n∑

i=1

(g∗(zi)
2 − g(zi)

2)

= 1

n

n∑

i=1

(g∗(zi)
2 + g∗(zn+i )

2) − 1

n

2n∑

i=1

(g∗(zi) − g(zi))(g
∗(zi) + g(zi))

≥ 1

n

n∑

i=1

(g∗(zi)
2 + g∗(zn+i )

2) − 1

n

2n∑

i=1

|g∗(zi) − g(zi)||g∗(zi) + g(zi)|

≥ 1

n

n∑

i=1

(g∗(zi)
2 + g∗(zn+i )

2) − 4Rε.

With this, we obtain

E

{

sup
g∈G

{
1

n

n∑

i=1

Ui · (g(zn+i ) − g(zi)) − c3

n

n∑

i=1

(g(zn+i )
2 + g(zi)

2)

}}

≤ E
{

max
g∈G∗

{
1

n

n∑

i=1

Ui · (g(zn+i ) − g(zi))

−c3

n

n∑

i=1

(g(zn+i )
2 + g(zi)

2) + (4Rc3 + 2)ε

}}

≤ E

{

max
g∈G∗

{
1

n

n∑

i=1

Ui · (g(zn+i ) − g(zi)) − c3

2n

n∑

i=1

(g(zn+i ) − g(zi))
2

}}

+(4Rc3 + 2) ε

(since a2 + b2 ≥ (a−b)2

2 ),

≤
(

4R

3
+ 1

c3

)
· log(N1(ε, G, z2n

1 ))

n
+ (4Rc3 + 2)ε,
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where we have applied Lemma 3.1 (with c1 = c3/2 and L = 2R, Xi = i · Ui ,
h(j)=−sign(j)·(g(zn+|j |)−g(z|j |)) ) in the last step. (Note that E{ 1

n
h(Xi)}=0

since we have chosen P{Ui = 1} = P{Ui = −1} = 1/2.)
Taking the expectation, we obtain the following bound for the first term of the
right-hand side of Eq. (8):

E

{

sup
g∈G

{
1

n

n∑

i=1

g(Zn+i ) − g(Zi) − c3

n

n∑

i=1

(g(Zn+i )
2 + g(Zi)

2)

}}

≤
(

4R

3
+ 1

c3

)
· E{log(N1(ε, G, Z2n

1 ))}
n

+ (4Rc3 + 2)ε.

Step 4. By applying the techniques of the Steps 1–3 (with g replaced by g2) to
the second term of the right-hand side of Eq. (8), one gets, after a long but
straightforward calculation, the following bound:

2E

{

sup
g∈G

{
c3

n

n∑

i=1

g(Zi)
2 − c2

2
E{g(Z)2}

}}

≤ c2 + 2c3

2
·
(

2

3
+ (c2 + 2c3)

2(c2 − 2c3)

)
R2 · E{log(N1(ε, G, Z2n

1 ))}
n

+(6c2 − 4c3)Rε.

For our purposes, c3 = 0.42 · c2 is a good choice. The above term can then be
bounded from above by

6R2 · c2 · E{log(N1(ε, G, Z2n
1 ))}

n
+ (6c2 − 4c3)Rε,

and the term obtained in Step 3 by

(
4R

3
+ 12

5c2

)
· E{log(N1(ε, G, Z2n

1 ))}
n

+ (4Rc3 + 2)ε.

Summing up these bounds, the proof is complete. 	


4 A general result on least squares regression estimates

Let Fn be a set of functions f : R
d → R. Choose m̃n ∈ Fn such that

1

n

n∑

i=1

(m̃n(Xi) − Yi)
2 = inf

f ∈Fn

1

n

n∑

i=1

(f (Xi) − Yi)
2.

(For better readability and ease of notation, we assume here that the infimum is
taken for some f ∈ Fn and omit the arbitrarily small ε which had to be added
throughout otherwise.)

Define mn(·) by truncating m̃n(·) at ±L. Then the following theorem holds:
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Theorem 4.1 Let n ∈ N and 1 ≤ L < ∞. Assume |Y | ≤ L a.s. Then, for mn

defined as above,

E
{∫

|mn(x) − m(x)|2µ(dx)

}
≤ 100L2 · E

{
log

(N1
(

1
4Ln

, Fn, X
2n
1

))}

n
+ 7

n

+2 inf
f ∈Fn

{∫
|f (x) − m(x)|2µ(dx)

}
.

Proof We use the error decomposition

∫
|mn(x) − m(x)|2µ(dx)

= E{|mn(X) − Y |2|Dn} − E{|m(X) − Y |2}
= E{|mn(X) − Y |2|Dn} − E{|m(X) − Y |2}

−2

(
1

n

n∑

i=1

|mn(Xi) − Yi |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
)

+2

(
1

n

n∑

i=1

|mn(Xi) − Yi |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
)

.

First, consider

E

{
1

n

n∑

i=1

|mn(Xi) − Yi |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
}

:

E

{
1

n

n∑

i=1

|mn(Xi) − Yi |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
}

≤ E

{
1

n

n∑

i=1

|m̃n(Xi) − Yi |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
}

(since |Yi | ≤ L a.s.)

= E

{

inf
f ∈Fn

{
1

n

n∑

i=1

|f (Xi) − Yi |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
}}

≤ inf
f ∈Fn

E

{
1

n

n∑

i=1

|f (Xi) − Yi |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
}

= inf
f ∈Fn

E
{|f (X) − Y |2 − |m(X) − Y |2}

= inf
f ∈Fn

∫
|f (x) − m(x)|2µ(dx).
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It remains to show that

E
{

E{|mn(X) − Y |2|Dn} − E{|m(X) − Y |2}

−2

(
1

n

n∑

i=1

|mn(Xi) − Yi |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
)}

≤ 100L2 · E{log
(N1(

1
4Ln

, Fn, X
2n
1 )
)}

n
+ 7

n
.

Set Z = (X, Y ), Zi = (Xi, Yi) and g(z) = g(x, y) = (mn(x)−y)2 − (m(x)−y)2

for |y| ≤ L, g(z) = 0 else. Then, |g(x, y)| ≤ 4L2 for all (x, y) ∈ R
d × R and

E{g(Z)2|Dn} ≤ 8L2E{g(Z)|Dn}. (9)

(cf. Barron 1991, Eq. (39)).
Now, we can rewrite

E{|mn(X) − Y |2|Dn} − E{|m(X) − Y |2}

−2

(
1

n

n∑

i=1

|mn(Xi) − Yi |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
)

as

E{g(Z)|Dn} − 2

n

n∑

i=1

g(Zi)

= 2

(

E{g(Z)|Dn} − 1

n

n∑

i=1

g(Zi) − 1

2
E{g(Z)|Dn}

)

≤ 2

(

E{g(Z)|Dn} − 1

n

n∑

i=1

g(Zi) − 1

16L2
E{g(Z)2|Dn}

)

,

where we have used Eq. (9) in the last step. Applying Theorem 3.1 (with c2 =
1

16L2 , R = 4L2, ε = 1
n
) to the last term, we obtain

E
{

E{|mn(X) − Y |2|Dn} − E{|m(X) − Y |2}

−2

(
1

n

n∑

i=1

|mn(Xi) − Y |2 − 1

n

n∑

i=1

|m(Xi) − Yi |2
)}

≤ 2

((
6L2 + 16

3
L2 + 12 · 16L2

5

)
· E

{
log

(N1
(

1
n
, Gn, Z

2n
1

))}

n
+

3
2 + 2

n

)

,

where Gn is the class of functions
{
g : R

d × R → R : g(x, y) = (f (x) − y)2 − (m(x) − y)2 ((x, y) ∈ R
d × R)

for some f ∈ F̄n

}
,
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and F̄n is the class of all functions which can be obtained from functions contained
in Fn by truncation at ±L. Since, for any g1, g2 ∈ Gn and z2n

1 ⊆ R
d × [−L, L]

1

2n

2n∑

i=1

|g1(zi) − g2(zi)|

= 1

2n

2n∑

i=1

|(f1(xi) − yi)
2 − (m(xi) − yi)

2

−((f2(xi) − yi)
2 − (m(xi) − yi)

2)|

= 1

2n

2n∑

i=1

|(f1(xi) − yi)
2 − (f2(xi) − yi)

2|

= 1

2n

2n∑

i=1

|(f1(xi) + f2(xi) − 2yi)(f1(xi) − f2(xi))|

≤ 4L · 1

2n

2n∑

i=1

|f1(xi) − f2(xi)|,

we can construct an L1-4Lε-cover of Gn on z2n
1 from an L1-ε-cover of F̄n on x2n

1 ,
which implies

N1

(
1

n
, Gn, z

2n
1

)
≤ N1

(
1

4Ln
, F̄n, x

2n
1

)
≤ N1

(
1

4Ln
, Fn, x

2n
1

)
,

and the proof is complete. 	


5 Approximation properties of neural networks

In this section, we derive three approximation results to bound

inf
f ∈Fn

∫
|f (x) − m(x)|2µ(dx)

for general regression functions, for additive regression functions and for regression
functions which are a sum of ridge functions. We start with the general case.

Lemma 5.1 Let K ∈ N and let m : R
d → R be an arbitrary function bounded

in absolute value by L. Suppose that the distribution µ of X is concentrated on a
subset of R

d of cardinality K .
Then, for arbitrary δ > 0 and arbitrary-squashing function σ , there is a neural

network of the form f (x) = c0 +∑K−1
i=1 ciσ (aT

i x + bi), where ai ∈ R
d, bi, ci ∈ R

and |ci | ≤ 2L, such that
∫

|f (x) − m(x)|2µ(dx) < δ.
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Proof W.l.o.g., assume
√

δ < K2L. Set supp(X) =: {x1, . . . , xK}. Since for each
of the K(K−1)

2 subsets of the form {xi, xj } (i 
= j), the set of all vectors v ∈ R
d

for which vTxi = vTxj (i.e., the set of all v ∈ R
d such that vT(xi − xj ) = 0)

is a hyperplane in R
d , the set of all vectors v ∈ R

d for which there is at least
one pair (xi, xj ) (i 
= j) such that vT xi = vT xj is the union of at most K(K−1)

2
hyperplanes in R

d , and thus a proper subset of R
d . So, there is a vector ã ∈ R

d

such that ãTxi 
= ãTxj for all 1 ≤ i < j ≤ K . Define t1, . . . , tK ∈ R
d such that

{t1, . . . , tK} = {x1, . . . , xK} and ãTt1 < ãTt2 < · · · < ãT tK .
Since σ is a squashing function, there are z1 < z2 ∈ R such that σ(z1) <

√
δ

2K2L

and σ(z2) > 1 −
√

δ
2K2L

. Set

a = z2 − z1

mini∈{1,... ,K−1}{ãT ti+1 − ãT ti} · ã and bj = −aT tj + z1

for j = 1, . . . , K − 1.

Then, by monotonicity of σ and the choice of z1, z2,

σ(aT ti + bj ) ≤ σ(aT tj + bj ) = σ(aT tj − aT tj + z1) <

√
δ

2K2L
for i ≤ j

and

σ(aTti + bj ) ≥ σ(aT(tj+1 − tj ) + aTtj + bj )

= σ

(
z2 − z1

mini∈{1,... ,K−1}{ãT ti+1 − ãTti} · ãT(tj+1 − tj ) + z1

)

≥ σ(z2 − z1 + z1)

> 1 −
√

δ

2K2L
, for i > j.

With ai = a, bi = −aTti + z1, c0 = m(t1) and ci = m(ti+1) − m(ti) (i =
1, . . . , K − 1), set

f (x) = c0 +
K−1∑

i=1

ciσ (aT
i x + bi).

Obviously, f satisfies the conditions imposed on the ai’s, bi’s and ci’s.
For j = 1, . . . , K − 1,

|m(tj+1) − m(tj ) − (f (tj+1) − f (tj ))|

= |cj −
K−1∑

i=1

ci(σ (aTtj+1 + bi) − σ(aTtj + bi))|

≤ |cj (1 − (σ (aTtj+1 + bj ) − σ(aTtj + bj )))|

+|
K−1∑

i = 1
i 
= j

ci(σ (aTtj+1 + bi) − σ(aTtj + bi))|
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< 2L ·
√

δ

K2L
+ (K − 2)2L ·

√
δ

2K2L

=
√

δ

K
.

Thus, for j = 1, . . . , K ,

|m(tj ) − f (tj )|

= |
j−1∑

i=1

{m(ti+1) − m(ti) − (f (ti+1) − f (ti))} + m(t1) − f (t1)|

≤ (j − 1) ·
√

δ

K
+ |c0 − c0 −

K−1∑

i=1

ciσ (aT t1 + bi)|

≤ (j − 1) ·
√

δ

K
+ (K − 1) · 2L ·

√
δ

2K2L
<

j
√

δ

K
≤

√
δ,

which together with supp(X) = {x1, . . . , xK} = {t1, . . . tK} implies

∫
|f (x) − m(x)|2µ(dx) ≤ sup

x∈supp(X)

|f (x) − m(x)|2 < δ.

	

The next lemma covers the case of an additive regression function.

Lemma 5.2 Let K1, . . . , Kd ∈ N and let m : R
d → R be a function of the

form m(x) = m1(x
(1)) + · · · + md(x

(d)), where the mi are univariate functions
bounded in absolute value by L. Suppose that the distribution of the j th component
X(j) of X is concentrated on a subset of R of cardinality Kj . Then, for arbitrary
δ > 0 and arbitrary-squashing function σ , there is a neural network of the form
f (x) = c0 +∑K1+···+Kd−d

i=1 ciσ (aT
i x + bi), where ai ∈ R

d, bi, ci ∈ R, |c0| ≤ 2Ld
and |ci | ≤ 2L(i ≥ 1), such that

∫
|f (x) − m(x)|2µ(dx) < δ. (10)

Proof From the proof of Lemma 5.1, it is easily concluded that there are neural
networks f1, . . . , fd of the form

fj (t) = cj,0 +
Kj −1∑

i=1

cj,i · σ(a∗
j t + bj,i) (t ∈ R, a∗

j , bj,i , cj,i ∈ R)

with

|mj(t) − fj (t)| <

√
δ

d
for t ∈ supp(X(j)). (11)
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Set aj = a∗
j · ej (ej denoting the j th d-dimensional unit vector), c0 = ∑d

j=1 cj,0

and f (x) = c0 +∑d
j=1

∑Kj −1
i=1 cj,i · σ(aT

j x + bj,i). Then for any x ∈ supp(X) we
have x(j) ∈ supp(X(j)) and hence

|m(x) − f (x)|

= |
d∑

j=1

mj(x
(j)) −

d∑

j=1

{cj,0 +
Kj −1∑

i=1

cj,i · σ(aT
j x + bj,i)}|

= |
d∑

j=1

{mj(x
(j)) − cj,0 −

Kj −1∑

i=1

cj,i · σ(a∗
j x

(j) + bj,i)}|

< d ·
√

δ

d
=

√
δ.

From this the assertion follows as in the proof of Lemma 5.1. 	

Additive models can be generalized by replacing the components of X by

projections of X onto vectors βj ∈ R
d , and by assuming that m(x) is a sum of

univariate functions mj , where each of these univariate functions is applied to one
of the very projections of X:

m(x) =
d∗∑

j=1

mj(β
T
j x) for some β1, . . . , βd∗ ∈ R

d .

Choosing the f1, . . . , fd∗ such that Eq. (11) in the proof of Lemma 5.2 holds for
t ∈ supp(βT

j X), and replacing aj by a∗
j · βj , the proof of Lemma 5.3 is exactly

along the lines of the proof of Lemma 5.2.

Lemma 5.3 Let d∗ ∈ N, β1, . . . , βd∗ ∈ R
d and let m : R

d → R be a function of
the form

m(x) = m1(β
T
1 x) + · · · + md∗(βT

d∗x) (x ∈ R
d),

where the mi are univariate functions bounded in absolute value by L. Set K∗
j =

card(supp(βT
j X)). Then, for arbitrary δ > 0 and arbitrary-squashing function σ ,

there is a neural network of the form

f (x) = c0 +
K∗

1 +···+K∗
d∗−d∗

∑

i=1

ciσ (aT
i x + bi),

where ai ∈ R
d, bi, ci ∈ R, |c0| ≤ 2Ld∗ and |ci | ≤ 2L (i ≥ 1), such that

∫
|f (x) − m(x)|2µ(dx) < δ.
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6 Proof of Theorems 2.1–2.3

Let Fn be the set of neural networks considered in Theorem 2.1, 2.2 or 2.3. Then,
according to Lemma 5.1, 5.2 or 5.3, respectively, the assumptions on X and on the
structure of m imply

inf
f ∈Fn

∫
|f (x) − m(x)|2µ(dx) = 0.

Thus, the application of Theorem 4.1 yields

E
{∫

|mn(x) − m(x)|2µ(dx)

}
≤ 100L2 · E

{
log

(N1
(

1
4Ln

, Fn, X
2n
1

))}

n
+ 7

n
.

So all we need in the sequel is a bound on the covering number.
With standard techniques from Vapnik–Chervonenkis-theory, it can be shown

that for

Fn =
{

f (x) = c0 +
kn∑

i=1

ciσ (aT
i x + bi) : ai ∈ R

d, bi, ci ∈ R,

kn∑

i=0

|ci | ≤ γn

}

,

the L1-covering number can be upper-bounded by

N1
(
ε, Fn, X

n
1

) ≤
(

6eγn(kn + 1)

ε

)(2d+5)kn+1

(see Györfi et al. 2002, proof of Theorem 16.1).
So, for Fn as in Theorem 2.1, we get

N1

(
1

4Ln
, Fn, X

2n
1

)
≤
(

6e · 2LK · K
1

4Ln

)(2d+5)(K−1)+1

,

giving

E
{

log

(
N1

(
1

4Ln
, Fn, X

2n
1

))}
≤ (2d + 5)K log(48eL2K2n),

for Fn as in Theorem 2.2

N1

(
1

4Ln
, Fn, X

2n
1

)
≤
(

6e · 2L · (K1 + · · · + Kd)
2

1
4Ln

)(2d+5)(K1+···+Kd−d)+1

,

and for Fn as in Theorem 2.3

N1

(
1

4Ln
, Fn, X

2n
1

)

≤
(

6e · 2L · (K∗
1 + · · · + K∗

d∗)2

1
4Ln

)(2d+5)(K∗
1 +···+K∗

d∗−d∗)+1

,

yielding similar bounds on E
{
log

(N1
(

1
4Ln

, Fn, X
2n
1

))}
and thus completing the

proofs of these three results. 	
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