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Abstract We discuss properties of the score statistics for testing the null hypothesis
of homogeneity in a Weibull mixing model in which the group effect is modelled as
a random variable and some of the covariates are measured with error. The statistics
proposed are based on the corrected score approach and they require estimation
only under the conventional Weibull model with measurement errors and does not
require that the distribution of the random effect be specified. The results in this
paper extend results in Gimenez, Bolfarine, and Colosimo (Annals of the Institute
of Statistical Mathematics, 52, 698–711, 2000) for the case of independent Weibull
models. A simulation study is provided.

Keywords Homogeneity test · Measurement errors · Corrected score ·Accelerated
failure time model

1 Introduction

Many failure time regression applications involve covariates that are measured
with error. For example, daily intake of saturated fat is imprecisely evaluated; in
cardiovascular research blood pressure is often subject to considerable hourly and
daily variation (Carroll et al 1995), inAIDS studies, CD4 counts are often measured
with substantial amount of variability (Tsiatis et al. 1995).
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Clustered failure time data arise in many contexts such as in familial studies,
ages at the onset of a disease are recorded for multiple members of the same fam-
ily; in multicentric clinical trials failure times are observed for multiple patients in
each center. It also follows that the observed survival times of siblings or married
couples in human studies or litter mates in animal studies are typically correlated.
Frequently, this correlation is due to omitted or neglected variables. In such situ-
ations there is natural interest in testing whether there is within group correlation
(or heterogeneity across groups) for given covariates.

A number of authors have proposed using the so called shared frailty model
to account for dependence between survival times. In such models, all individuals
within a group share a common unobserved random effect, the frailty, which acts in
a multiplicative way on each individual hazard rate. However, some authors (see
Hougaard et al. 1994; Keiding et al. 1997) present case studies which indicate that
modeling survival within a group by an accelerated failure time model may be
preferable in accounting for heterogeneity in survival times. In accelerated failure
time models, the logarithm of the event time follows a linear regression on the
covariate vector, and the random effect acts on a multiplicative way on the event
times. In this model a natural parametric approach is the Weibull regression model,
which according to Kimber (1996) has been applied successfully in a variety of
disciplines, including reliability and medical studies.

The score test where all variables are measured correctly (no variables mea-
sured with error) has been the subject of several papers in the literature. Some
basic results can be found in Cox (1983), Liang (1987) and Dean (1992), among
others. Extensions to generalized linear models (Hamerle 1990; Commenges et al.
1994; Jacqmin-Gadda, and Commenges, 1995; Lin 1997) and to survival analysis
(Gray 1995; Commenges and Andersen, 1995; Kimber 1996) have also been con-
sidered. Commenges and Jaqmin-Gadda (1997) generalizes most of the previous
results on homogeneity tests including generalized linear models and proportional
hazard models. Some authors propose using the Laplace method for approximat-
ing integrals (Breslow and Clayton, 1993; Lin 1997) as a way of approximating
the integrals involved in the elimination of the random effects. In survival data,
under the accelerated failure time assumption, with a random effect, Bolfarine and
Valença (2005) propose score type statistics for testing homogeneity hypothesis
using the observed information matrix which is asymptotically equivalent to the
score statistics based on the Fisher information matrix.

In this paper, we consider score tests for testing homogeneity in accelerated
failure time models with a random effect and covariables measured with errors, and
specialize the results for the Weibull model. We consider a functional nondiffer-
ential (Bolfarine and Arellano-Valle 1998) additive measurement errors model to
describe the random mechanism generating the measurement errors. Use is made
of the corrected score approach considered in Nakamura (1990) and Gimenez and
Bolfarine (1997). Asymptotic properties of the resulting statistic for testing homo-
geneity are investigate with simulation studies.

The paper is organized as follows. Section 2 presents the additive Weibull
measurement error model. In Sect. 3, a Taylor expansion is considered for the mar-
ginal likelihood function. Naive tests of homogeneity are considered in Sect. 4.
The corrected score test is derived in Sect. 5. Simulation studies are presented in



Testing in weibull error in variables models 117

Sect. 6. The corrected score vector and observed information matrix are presented
in the Appendix.

2 Weibull measurement error models with a random effect

Consider a sample divided into k groups and let Tij be the event time correspond-
ing to the individual j in the group i, with j = 1, . . . , ni , and i = 1, . . . , k. The
log-linear Weibull model with a random effect, models log Tij as

log Tij = Ui + βTz zij + βxxij + σεij , (1)

where the ε′
ij s are independent and identically distributed (i.i.d.) random errors,

with standard extreme value density function given by f (ε) = exp(ε−eε), ε ∈ �.
We consider zij a covariate vector correctly observed and xij an unobserved vari-
able which is measured with error. We assume an additive functional measurement
error model relating the observed (surrogate) wij and the unobserved xij , which is
expressed as

wij = xij + ηij , (2)

with η′
ij s representing unobserved i.i.d. errors with distribution N(0, φ), that is,

the normal distribution with mean 0 and variance φ. The random effect for group
i is represented by

Ui = α + θ1/2Vi, (3)

where the V ′
i s are i.i.d. random variables with E[Vi] = 0, E[V 3

i ] = o(θ1/2),
E[V 2

i ] = 1 and E[V mi ] < ∞, m > 3, and otherwise unspecified distribution
function F . We assume that Ui, ηij and εij are all independent j = 1, . . . , ni
and i = 1, . . . , k. Hence, under the nondifferential functional additive measure-
ment error model structure specified by Eq. (2), xij are not observed and hence,
maximum likelihood methodology (such as asymptotic inference based on Fisher
information matrices) can not be implemented. Inference has to be based on the
(surrogate) observed wij , j = 1, . . . , ni , i = 1, . . . , k.

3 Marginal likelihood function

Consider that survival times are subject to right censoring and that censoring is
random, uninformative and independent ofUi , i = 1, . . . , k. Set δij = 1 to indicate
a failure time and δij = 0 to indicate a censoring time. Let Yij be the observed
log survival time for subject j in group i. Denote by λ = (γ T , θ)T , the vector
of parameters, with γ T = (α,βTz , βx, σ ). The hypothesis of homogeneity is then
H0 : θ = 0. The likelihood function with respect to the conditional distribution of
(Yij , δij ) given Vi for the Weibull model is

Lij (λ|u(vi), xij ) = (1/σ)δij exp[δij s(xij , vi)− exp(s(xij , vi))], (4)

where u(vi) = α + θ1/2vi and s(xij , vi) = (yij − u(vi)− βTz zij − βxxij )/σ .
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Furthermore, for vi = 0,Lij (λ|u(0), xij ) = Lij (γ, xij )which depends only on
γ . Let Yi = (Yi1, Yi2, . . . , Yini )

T and Y = (YT
1 , ...,YT

k )
T , with similar notation

for x, xi , w and wi . The marginal log-likelihood corresponding to the observed
sample is given by

l(λ, x) =
k∑

i=1

log
∫ ni∏

j=1

Lij (λ|u(vi), xij )dF(vi). (5)

Since the distribution of Vi in Eq. (3) is not specified (except for moments assump-
tions) we can not compute analytically the integral in Eq. (5). As considered in
Bolfarine and Valença (2005), an approximation follows by considering a Taylor
expansion about vi = 0, leading to

l(λ, x)= l0(γ, x)+
k∑

i=1

log

[
1+ hi(γ, xi )θ

2
+

∞∑

m=3

D
(m)
i (γ, xi )E(V mi )θ

m/2

m!

]
, (6)

where

D
(m)
i (γ, xi ) = ∂mLi(γ, xi )/∂αm

Li(γ, xi )
, (7)

with Li(γ, xi ) = ∏ni
j=1 Lij (γ, xij ) and l0(γ, x) = ∑k

i=1 logLi(γ, xi ). Moreover,

Lij (γ, xij ) follows from Eq. (4). Denote s(xij ) = s(xij , 0) = (yij − α − βTz zij −
βxxij )/σ . It can be shown (Bolfarine and Valença 2005) that the quantity defined
as hi(γ, xi ) = D

(2)
i (γ, xi ), can be written as

hi(γ, xi ) = 1

σ 2









ni∑

j=1

(
es(xij ) − δij

)



2

−
ni∑

j=1

es(xij )





, (8)

with i = 1, . . . , k. Let S(λ; x) = ∂l(λ, x)/∂λ be the score function. It can be
shown that the element of this vector, corresponding to the parameter θ , Sθ (λ; x) =
∂l(λ, x)/∂θ , under H0, is given by

Sθ(λ0, x) = 1

2

k∑

i=1

hi(γ, xi ), (9)

with hi(γ, xi ) given in Eq. (8), and λT0 = (γ T , 0).

4 Naive tests of homogeneity

We denote by I (λ; x) = −∂2l(λ, x)/∂λ∂λT the observed information matrix, and
by �(λ; x) = E[I (λ; x)] the expected (Fisher) information matrix. Clearly, the
above matrices and the score vector S(λ; x) are not available for the model defined
by Eqs. (1)–(3) since xij is not observed. One alternative is to replace the unob-
served xij by the observedwij , and ignore measurement error. Such procedures are
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often termed “naive” procedures. Let λ̃T0 = (γ̃ T , 0) be the naive estimator under
H0 (that is, the solution of S(λ,w) = 0, underH0 : θ = 0). The naive score statis-
tic could be defined with variance obtained by using the Fisher information matrix.
However this matrix is not computable in situations where the data is censored (at
random with unspecified distribution) and different naive statistics can be defined
depending on the estimated variance of the score statistic.

Denote the “naive” observed information matrix, partitioned according to the
parameter vector λ = (γ T , θ)T , by

I (λ,w) =
[
Iγ γ (λ,w) Iγ θ (λ,w)
Iθγ (λ,w) Iθθ (λ,w)

]
. (10)

According to Valença (2003), two naive score statistics to test the homogeneity
hypothesis can be defined, namely,

Z0 =
1
2

∑k
i=1 hi(γ̃ ,wi )√
V0(λ̃0,w)

, and ZH =
1
2

∑k
i=1 hi(γ̃ ,wi )√
VH(λ̃0,w)

, (11)

where hi is given in Eq. (8), with xij replaced by wij . The estimated variances V0
and VH are given by,

V0(λ̃0,w) = Iθθ (λ̃0,w)− Iθγ (λ̃0,w)
(
Iγ γ (λ̃0,w)

)−1
Iγ θ (λ̃0,w)

and

VH(λ̃0,w) = 1

4

k∑

i=1

(hi(γ̃ , wi)− h̄(γ̃ ,w))2

where Iθθ , Iθγ , Iγ θ and Iγ γ are given in Eq. (10), and h̄ = ∑k
i=1 hi/k.

In the uncensored situation, the Fisher information can be computed and in this
case Bolfarine and Valença (2005) show that the naive score statistics is given by

ZF =

{∑k
i=1

[∑ni
j=1(e

ŝ(wij ) − 1)
]2

− n

}

√∑k
i=1(2n

2
i + 2ni)− 24n/π2

,

where n = n1 + · · · + nk and ŝ(wij ) = (yij − α̂0 − β̂
T

0zzij − β̂0xwij )/σ̂0, with α̂0,

β̂0z, β̂0x and σ̂0 being the naive estimators of α, β̂z, βx and σ .
However, as is well known (Gimenez et al 2000), the naive score function

S(λ,w) is biased (i.e., E[S(λ,w)] �= 0) leading to inconsistent inferences, with
possible implications on the nominal levels of the naive statistics defined above.

References on corrections for testing in models with measurement errors are
often related to tests for evaluating the association between the true covariate and
the response. Tosteson and Tsiatis (1988) assuming a general structure for measure-
ment errors compare the local power of naive score tests with optimum score tests
for association in generalized linear models. Lagakos (1988) study the efficiency
loss of naive tests for association in univariate regression models, including the Cox
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model. Some other references on hypotheses testing in models with measurement
errors are given in Carroll et al (1995).

A homogeneity score test for clustered data under generalized linear models
with error in covariates (without censoring), is studied in Lin and Carroll (1999).
The authors use the SIMEX method (Cook and Stefanski 1994), to propose a gen-
eral score test to test the null hypothesis that all variance components are zero. An
extension of this result is given by Li and Lin (2003), which propose a SIMEX
score test for the variance components to test for the within-cluster correlation for
clustered survival data. This test is implemented by repeatedly fitting standard Cox
models. Here we propose to use the corrected score method to develop a score type
statistics to test homogeneity among groups in a Weibull measurement error model
with censored observations.

5 The corrected score approach

The corrected score approach for consistent inference in measurement error mod-
els was considered in Nakamura (1990) and Gimenez and Bolfarine (1997). The
corrected score function S∗(λ; w) = S∗(λ; w, Y ) is defined as a function whose
conditional expectation E [S∗(λ; w, Y )|x, Y )] = S(λ; x). If the corrected infor-
mation matrix is given by I ∗(λ,w) = −∂S∗(λ,w)/∂λ, then the value λ̂∗ such that
S∗(̂λ∗; w, Y ) = 0, with I ∗(̂λ∗,w) positive definite, is called a corrected estimate
of λ.

5.1 The corrected score vector for the Weibull model

With measurement errors normally distributed, properties of the normal moments
generating function can be used to obtain the corrected score vector for the Wei-
bull model in Eqs. (1–3). Specifically, given xij , the observedwij follows a normal
distribution with mean xij and variance φ which implies, using properties of the
normal generating function, that

E
[
exp(βxwij )|xij

] = exp(βxxij + f ) (12)

and

E
[
wij exp(βxwij )|xij

] = (xij + φβx) exp(βxxij + f ), (13)

where f = (β2
xφ)/2σ

2.
The corrected score vector can be obtained directly by using the naive score

vector and correcting it by using Eq. (12) and Eq. (13) above. The element of the
naive score vector corresponding to θ , underH0 is given in Eq. (9) with xij replaced
by wij . Closed form expressions for all the elements of the corrected score vector
are given in the Appendix. An alternative way of obtaining the corrected score
vector is to obtain first, the corrected log-likelihood function, when it is possible.
In this model it can be obtained by correcting directly the naive likelihood obtained
through Eq. (6) with the use of expressions Eq. (12) and Eq. (13). The resulting
expression is given by
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l∗(λ,w) = l∗0 (γ,w)

+
k∑

i=1

log

[
1 + h∗

i (γ, wi)θ

2
+

∞∑

m=3

D
∗(m)
i (γ, wi)θ

m/2E(V mi )

m!

]
,

(14)

where

l∗0 (γ,w) =
k∑

i=1

ni∑

j=1

{
δij

[
s(wij )− log σ

] − exp(s(wij )− f )
}
,

and

h∗
i (γ, wi) = 1

σ 2









ni∑

j=1

(
es(wij )−f − δij

)



2

−
ni∑

j=1

es(wij )−f − Fi





, (15)

with

s(wij ) = yij − α − βTz zij − βxwij

σ
, f = β2

xφ

2σ 2

and

Fi =
ni∑

j=1

[
exp(2s(wij )− 2f )− exp(2s(wij )− 4f )

]
.

Moreover, the quantity D∗(m)
i (γ, wi) is such that

E[D∗(m)
i (γ, wi)|Y, xi] = D

(m)
i (γ, xi),

withD(m)
i given in Eq. (7). Although an analytic expression forD∗(m)

i is not easily
found, it is really not necessary in obtaining the score statistic (Valença 2003).

The corrected score under the null hypothesis is obtained by using the corrected
log-likelihood function l∗ in Eq. (14), that is, S∗(λ0; w) = ∂l∗(λ,w)/∂λ|λ=λ0 . The
corrected information matrix under H0 is defined by

I ∗(λ0,w) = −
(
∂S∗(λ; w)

∂λ

)
|λ=λ0 . (16)

Closed form for the elements of this matrix are given in the Appendix.
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5.2 Score tests based on the corrected score

Gimenez et al. (2000) consider the development of hypothesis testing statistics
based on the corrected score function, using an additive model, and investigate the
asymptotic distribution of the tests in the situations where the parameter is in a
open subset of the parametric space.

The following theorem describes the main asymptotic results related to the
corrected score test. We start defining the following matrices:

�∗
k (λ,w) =

k∑

i=1

E
[
S∗
i (λ,wi )S∗T

i (λ,wi )
]

and �∗
k(λ,w) = E

[
I ∗(λ,w)

]
.

Suppose that there are positive matrices �∗(λ) and �∗(λ) such that as, k → ∞,

1

k
�∗
k (λ,w) → �∗(λ) and

1

k
�∗
k(λ,w) → �∗(λ). (17)

Define

�∗(λ) = �∗−1(λ)�∗(λ)�∗−1(λ). (18)

We consider the above matrices partitioned according to the parameter vector
λ = (γ T , θ)T , as in Eq. (10).

Theorem 5.1 Consider the hypothesis H0 : θ = θ0 against the alternative H1 :
θ �= θ0. Let λ0 = (γ, θ0) the parameter under the hypothesis H0, with λ̂∗

0 repre-
senting the solution to the equation S∗(λ,w) = 0, under H0. Define the statistic
Qc as

Qc = [S∗
θ (̂λ

∗
0,w)]2

kV̂ ∗(̂λ∗
0)

,

where

V̂ ∗(λ) = [
V ∗
F (λ)

]T
�∗
θθ (λ)V

∗
F (λ) = [

V ∗
F (λ)

]2
�∗
θθ (λ),

with

V ∗
F (λ, ) = �∗

θθ (λ)−�∗
θγ (λ)

{
�∗
γ γ (λ)

}−1
�∗
γ θ (λ),

where the elements given above correspond to the elements of the partitioned matri-
ces given in Eqs. (17) and (18), partitioned as in Eq. (10). Then, under appropriate
regularity conditions it follows, under H0, that

Qc →D χ2
(1).

The proof of this theorem and some other related results can be found in Gimenez
et al. (2000). Note that we can not use directly Theorem 5.1 to test the hypothesis
H0 : θ = 0 against the one-sided alternative H1 : θ > 0, which is our main
goal. Besides, since θ is a variance, the null hypothesis puts the parameter on the
boundary of the parametric space.
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Moran (1971) and Self and Liang (1987) deal with boundary problems in
hypothesis testing using likelihood ratio tests. Vu and Zhou (1997) derive the
nonstandard asymptotic distribution of a generalization of the likelihood ratio test,
representing extensions of less general results in Moran (1971), Chant (1974) and
Self and Liang (1987) by covering a large class of estimation problems which
allows sampling from nonidentically distributed random variables including, for
example, models with covariates or incidental parameters, as is the case with the
functional model we are considering. The equivalence between likelihood ratio
and score statistics for one sided situations when the parametric space is open
has been established in Silvapulle and Silvapulle (1995) (see also Paula and Artes
2000). We assume that this is the case with the situation considered in this paper.
We investigate this asymptotic distribution through simulation studies in moderate
and small sample situations for the model considered in this paper.

5.3 The proposed corrected score test of homogeneity

Consider the hypothesis H0 : θ = 0 against H1 : θ > 0 with the model defined in
Sect. 2. Based on the results given in Theorem 5.1, we define the statistics ZC and
Q as:

ZC =
1
2

∑k
i=1 h

∗
i (γ̂

∗, wi)√
VC(λ̂

∗
0,w)

, and Q =
{

0 if ZC ≤ 0,
Z2
C if ZC > 0,

where λ̂∗
0 = (γ̂ ∗T , 0)T , is the corrected estimate under the null hypothesis (solution

of S∗(λ; w) = 0, under H0 : θ = 0) and h∗
i is given in Eq. (15). Considering the

matrices partitioned according to λ = (γ T , θ)T , VC is defined as

VC(λ0,w) = [
V ∗

0 (λ0,w)
]2
G∗
θθ (λ0,w),

where

V ∗
0 (λ0,w) = I ∗

θθ (λ0,w)− I ∗
θγ (λ0,w)

{
I ∗
γ γ (λ0,w)

}−1
I ∗
γ θ (λ0,w), (19)

with I ∗
θθ , I

∗
θγ , I ∗

γ θ and I ∗
γ γ being elements of I ∗ given in Eq. (16).G∗

θθ is the element
corresponding to θ in the matrix

G∗(λ0,w) = I ∗−1(λ0,w)�̂∗(λ0,w)I ∗−1(λ0,w),

with

�̂∗(λ0,w) =
k∑

i=1

S∗
i (λ0,wi )STi (λ0,wi ).

Under H0, we consider that the limiting distribution of Q, as k → ∞, can be
approximated by a mixture of chi-squared distributions, 1/2χ2

(0) + 1/2χ2
(1), where

χ2
0 denotes the degenerate distribution at the origin. This procedure produces the

same critical region obtained with the unilateral test using the statistic ZC which
rejects the null hypothesis for large positive values of this statistic.



124 D.M. Valença and H. Bolfarine

We can use the sandwich structure of the variance ofZC to define another naive
statistic, Znaive = 1/2

∑k
i=1 hi(γ̃ , wi)/(Vnaive(λ̃0,w))1/2, where λ̃0 = (γ̃ T , 0)T is

the naive estimate under H0, hi(γ̃ , wi) is given in Eq. (8), with xij replacing wij
and Vnaive is obtained similarly to VC , but using the usual observed information
matrix and the sandwich estimator instead of the corrected functions.

6 Simulation study

A simulation study was conducted to compare the performance of the proposed test
based on the corrected score ZC , with the naive testing statistics Z0 and ZH given
in Eq. (11) andZnaive defined in the previous section. Note that in the case of φ = 0
the naive statistic Znaive = ZC . The log-survival times Yij were generated within
each group under a log-linear Weibull model given in Sect. 2, with two covariates,
one (zij ) measured without error, generated according to the N(3, 1) and the true
(unobserved) (xij ) generated according to theN(2, 1). The covariate observed with
error is wij = xij + φ1/2η̇ij , where φ is the (measurement) error variance and η̇ij
is generated according to the N(0, 1). Parameter values were taken as α = 0.5,
βz = 0.8 and βx = 1. We took σ = 0.75 (shape parameter for the Weibull model),
corresponding to a situation of an increasing hazard function (σ < 1) as is typi-
cally encountered in practice. The random effect Vij are taken as independent and
identically distributed (i.i.d) N(0, 1). The censoring times Cij were generated as
i.i.d uniform on U(0, ψ). We consider uncensored samples and sample with 50%
censoring, which is achieved by conveniently choosing ψ . Three different sample
sizes were considered with groups of sizes k=25, k=50 and k=100, with ni=5 in
all cases. The nominal significance level was taken as 5%. Under each parameter
combination, test sizes were computed based on 1,000 simulated samples which
were executed using subroutine BFGS in program Ox (Doornik 2001) to do estima-
tion under the null hypothesis. S-plus subroutines were used to present the results
graphically.

Table 1 shows the empirical (simulated) significance levels for the statistics
described above. Notice that without measurement errors (φ=0), the naive statis-

Table 1 Simulated levels of corrected (ZC) and naive (Z0, ZH ,Znaive) tests of homogeneity for
different sample sizes and different values of the variance of the measurement error with and
without censoring. Results based on 1,000 simulated samples.

0% Censored 50% Censored

φ k Zc Znaive Zo ZH Zc Znaive Zo ZH

25 0.027 0.027 0.057 0 0.021 0.021 0.055 0
0 50 0.024 0.024 0.048 0 0.019 0.019 0.045 0

100 0.029 0.029 0.030 0 0.029 0.029 0.039 0
25 0.019 0.057 0.087 0.001 0.013 0.038 0.087 0

0.2 50 0.032 0.135 0.123 0.001 0.034 0.082 0.112 0.001
100 0.033 0.224 0.173 0.002 0.033 0.104 0.110 0.002
25 0.014 0.096 0.111 0.007 0.018 0.052 0.116 0.002

0.4 50 0.029 0.213 0.177 0.022 0.016 0.098 0.131 0.009
100 0.038 0.408 0.307 0.065 0.021 0.131 0.149 0.013
25 0.015 0.122 0.117 0.005 0.002 0.049 0.110 0.007

0.6 50 0.035 0.238 0.181 0.036 0.027 0.098 0.144 0.017
100 0.042 0.520 0.391 0.173 0.035 0.199 0.214 0.042
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tics Z0, presents simulated levels closest to the nominal levels. On the other hand,
as φ increases, the naive statistics tend to present empirical levels much higher than
the nominal levels. On the contrary, the correct statistics presents a much better
behaviour, specially as k increases. As φ increases, the erratic behaviour of all tests
exceptZC can also be depicted from Fig. 1, which is also based on 1,000 simulated
samples generated according to the population described above with 100 groups
and a sample ni=5 from each group. We can evaluate in a detailed way the effect of
the parameter φ on the simulated levels of the tests. As noted above, it is clear that
the naive tests yields simulated levels very far from the nominal levels (5%) as φ
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Fig. 1 Simulated levels of corrected (ZC) and naive (Z0, ZH ,Znaive) tests of homogeneity for
increasing values of the variance of the measurement error (results based on 1,000 simulated
samples)
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increases, while the corrected testing statistics ZC presents simulated (empirical)
levels (sizes) quite close to the nominal levels. Although censoring has the effect of
reducing the level of the tests, in general the use of the corrected testing statistics
ZC leads to reasonable improvement in the level of the test.

7 Final discussion

In this paper we discuss homogeneity tests for Weibull mixed models with mea-
surement errors. We use the correct score approach for deriving the corrected sta-
tistics. Closed form expressions are obtained for the corrected score vector and for
the corrected observed information matrix. In the process we also have obtained
the corrected likelihood for the Weibull mixed model with measurement errors
which can also be used for obtaining the corrected score and observed information
matrices. Simulation studies have demonstrated that the corrected score statistics
behaves better than alternative statistics that can be defined in terms of closeness
to the nominal levels.
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Appendix 1 The corrected score for the Weibull mixed model

Appendix 1.1: Corrected score vector

For the log-linear Weibull model defined in Sect. 2, the corrected score vector
S∗(λ0,w), partitioned according to λ = (α,βTz , βx, σ, θ) obtained by differentiat-
ing the corrected log-likelihood in Eq. (14) is given by the following partitions:

S∗
α(λ0,w) = 1

σ

k∑

i=1

ni∑

j=1

{
es(wij )−f − δij

} ;

S∗
βz
(λ0,w) = 1

σ

k∑

i=1

ni∑

j=1

{
es(wij )−f − δij

}
zij ;

S∗
βx
(λ0,w) = 1

σ

k∑

i=1

ni∑

j=1

{[
es(wij )−f − δij

]
wij + φβx

σ
es(wij )−f

}
; (20)

S∗
σ (λ0,w) = 1

σ

k∑

i=1

ni∑

j=1

{
s(wij )e

s(wij )−f − δij
(
1 + s(wij )

) − 2f es(wij )−f
} ;

S∗
θ (λ0,w) = 1

2

k∑

i=1

h∗
i (γ, wi)
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where

h∗(γ,wi) = 1

σ 2

k∑

i=1









ni∑

j=1

(
es(wij )−f − δij

)



2

−
ni∑

j=1

es(wij )−f −
ni∑

j=1

e2s(wij )−2f +
ni∑

j=1

e2s(wij )−4f




 . (21)

with s(wij ) = (yij − α − βTz zij − βxwij )/σ , and f = (β2
xφ)/2σ

2.

Appendix 1.2: Corrected observed information matrix

Let β = (α,βTz , βx)
T and consider the corrected observed information matrix I ∗

in Eq. (16), partitioned according to λ = (βT , σ, θ)T . The partitions of I ∗(λ̂∗
0,w),

being λ̂∗
0 = (α̂, β̂

T

z , β̂x, σ̂ , 0)T the solution of S∗(λ,w) = 0, under H0 are given
by

I ∗
θθ (̂λ

∗
0,w) 	 1

4

k∑

i=1

[
h∗
i (γ̂ , wi)

]2
,

I ∗
σσ (λ̂

∗
0) = 1

σ̂ 2




k∑

i=1

ni∑

j=1

ŝ∗2(wij )e
ŝ(wij )−f̂ + r(1 − 2f̂ )



 ,

I ∗
θσ (̂λ

∗
0,w) = 1

2σ̂ 3

k∑

i=1








2
ni∑

j=1

(
eŝ

∗(wij )−f̂ − δij

)
− 1








ni∑

j=1

ŝ∗(wij )eŝ(wij )−f̂





+2σ̂ 2h∗
i (γ̂ , wi)

}

−2
k∑

i=1

ni∑

j=1

(
ŝ∗(wij )e2ŝ(wij )−2f̂ − (ŝ(wij )− 4f̂ )e2ŝ(wij )−4f̂

)
,

I ∗
βθ (λ̂

∗
0,w) = 1

2σ̂ 3

k∑
i=1





Ji

ni∑
j=1

eŝ(wij )−f̂ −
ni∑
j=1

Mij

Ji

ni∑
j=1

zijeŝ(wij )−f̂ −
ni∑
j=1

zijMij

Ji

ni∑
j=1

ŵ∗
ije

ŝ(wij )−f̂ −
ni∑
j=1

ŵ∗
ijMij + 2β̂xφ

σ̂

ni∑
j=1

e2ŝ(wij )−4f̂





,
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I ∗
ββ(λ̂

∗
0,w) = 1

σ̂ 2

k∑
i=1

ni∑
j=1





eŝ(wij )−f̂ zTije
ŝ(wij )−f̂ ŵ∗

ije
ŝ(wij )−f̂

zijeŝ(wij )−f̂ zijzTije
ŝ(wij )−f̂ zij ŵ∗

ije
ŝ(wij )−f̂

ŵ∗
ije

ŝ(wij )−f̂ zij ŵ∗
ije

ŝ(wij )−f̂ ŵ∗2
ij eŝ(wij )−f̂ − φr

n




,

I ∗
βσ (λ̂

∗
0) = 1

σ̂ 2

k∑
i=1

ni∑
j=1





ŝ∗(wij )eŝ(wij )−f̂

zij ŝ∗(wij )eŝ(wij )−f̂

ŵ∗
ij ŝ

∗(wij )eŝ(wij )−f̂ + rφβ̂x
σ̂




,

where ŝ(wij ) = (yij − α̂ − β̂
T

z zij − β̂xwij )/σ̂ , f̂ = f (̂λ∗
0) = (β̂2

xφ)/(2σ̂
2),

ŝ∗(wij ) = ŝ(wij ) − 2f̂ and ŵ∗
ij = wij + (β̂xφ/σ̂ ), and with ri representing

failure numbers in group i, to a total number of r = r1+· · ·+rk failures. Besides, to
simplify the expressions in partition I ∗

βθ given below, we use the following notation

Ji = 2
ni∑

j=1

(eŝ(wij )−f̂ − δij ) Mij = eŝ(wij )−f̂ + 2e2ŝ(wij )−2f̂ − e2ŝ(wij )−4f̂ .
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