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Abstract We consider the problem of testing the hypothesis about the covariance
matrix of random vectors under the assumptions that the underlying distributions
are nonnormal and the sample size is moderate. The asymptotic expansions of the
null distributions are obtained up to n−1/2. It is found that in most cases the null
statistics are distributed as a mixture of independent chi-square random variables
with degree of freedom one (up to n−1/2) and the coefficients of the mixtures are
functions of the fourth cumulants of the original random variables. We also pro-
vide a general method to approximate such distributions based on a normalization
transformation.

Keywords Covariance matrix · Test statistic · Characteristic function · Canonical
correlation · Multiple correlation coefficient

1 Introduction

Testing hypotheses about the covariance matrix is an important aspect of statisti-
cal inference in the multivariate analysis besides the testing hypothesis about the
mean vector. In the literature, these tests have been studied extensively under the
assumption of normality. See, for example, Anderson (1984), Muirhead (1982)
for a complete treatment. It is found that for the hypothesis considered below the
likelihood ratio tests are null robust (Kariya and Kim, 1997) within the ellipti-
cal family (Fang and Zhang, 1990). However, in the general situation, where the
underlying distributions are not necessarily normal and only the existence of cer-
tain moments is assumed, the robustness property of likelihood ratio test may not
hold. For instance, Kano (1995), Fujikoshi (1997, 2002a,b), Gupta et al. (2005)
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study the asymptotic distributions of some test statistics about the mean vector
under nonnormality. It is shown that the high order nonzero cumulants, especially
the skewness, have significant effect on the distributions of these statistics. Then it
is important to make (finiteness) corrections to obtain more precise approximations
to the true distributions. In this paper, we will derive the asymptotic expansions
of some test statistics about the covariance matrix up to order of n−1/2 and there-
fore extend the results of Gupta et al. (1975), Gupta (1977), Muirhead Waternaux
(1980), Gupta and Tang (1984), Muirhead (1985), Gupta and Nagar (1988), Tang
and Gupta (1990) to the general cases. The tests under consideration are (1) test-
ing that a covariance matrix equals a specified matrix; (2) testing equality of k
covariance matrices; (3) the sphericity test; (4) testing uncorrelation of two sets of
variables; (5) testing canonical correlation coefficients.

In Sect. 2, we introduce some notation and assumptions. The main results will
be presented in Sect. 3. A general method of approximating the mixture of inde-
pendent chi-square random variables of degree of freedom one is introduced in
Sect. 4. Some simulation results are demonstrated in Sect. 4 as well.

2 Notation and assumptions

We adopt the notation from Fujikoshi (2002a). Let y = (y1, . . . , yp)′ be a p-var-
iate random vector with the mean µ = (µ1, . . . , µp)′ and the covariance matrix
� = (σab). The kth cumulant of y are denoted by κi1...ik (Stuart and Ord, 1987).
Then the second, third and fourth order cumulants can be expressed as

κab = σab, κabc = E[(ya − µa)(yb − µb)(yc − µc)],

κabcd = E[(ya − µa)(yb − µb)(yc − µc)(yd − µd)]

−(σabσcd + σacσbd + σadσbc).

The multivariate kurtosis introduced by Mardia (1970) is denoted as κ
(1)
4 =∑

a,b,c,d κabcdσ
abσ cd , where �−1 = (σ ab) and the summation is over all possible

combinations of indices a, b, c, d such that 1 ≤ a, b, c, d ≤ p. And the follow-
ing cumulant functions are used in the asymptotic expansions of the characteristic
functions of the sample covariance matrix:

mab;cd = κabcd + σacσbd + σadσbc,

mab;cd;ef = κabcdef +
∑

[12]

κacef σbd +
∑

[4]

κaceκbdf +
∑

[8]

σacσbeσdf .

Here
∑

[j ] means the sum for all j possible combinations. Further, if y has been
standardized such that µ = 0 and � = Ip, where Ip is the identity matrix of dimen-
sion p, then κ

(1)
4 = ∑

a,b κaabb.
Secondly, let q = p(p + 1)/2; for any p × p symmetric matrix C, define a

q × 1 vector by vechC = (c11, c12, . . . , c1p, c22, · · · , cpp)′. Let ẽ = vechIp. We
will use these notation frequently later.

Thirdly, we need the following assumptions which allow an expansion with a
remainder o(n−η/2).

A1: E(‖y‖2(η+2)) < +∞;
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A2: The characteristic function of x = (y1, . . . , yp, y2
1 , y1y2, . . . , y2

p)′ satisfies
the Cramér’s condition, i.e., lim sup‖t‖→∞ |E(exp(it ′x))| < 1.

The restriction of the second assumption is based on one of the validity condi-
tions (Bhattacharya and Ghosh, 1978; Hall, 1992) for asymptotic expansions. Note
that the Cramér’s condition is satisfied if y is a continuous type random vector.

3 Main results

3.1 Testing that a covariance matrix equals a specified matrix

Let yi , i = 1, . . . , n be independent identically distributed (i.i.d.) samples from y.
Consider testing the null hypothesis H0 : � = �0. Without loss of general-
ity, we may assume that �0 = I . Under the assumption of normality, the likeli-
hood ratio test statistic is given by � = (e/n)pn/2etr(−A/2)|A|n/2, where A =∑n

i=1(yi − ȳ)(yi − ȳ)′, and etr(·) is the abbreviation of the expression exp{tr(·)}.
It has been shown that the likelihood ratio test above is biased. An unbiased test
can be obtained with a slight modification of � as

�1 = ep(n−1)/2etr

(

− (n − 1)S

2

)

|S|(n−1)/2,

where S = A/(n − 1), the sample covariance. The null and nonnull distributions
of �1 under normality as well as the null distribution under the elliptical family
have been obtained. See Muirhead (1982) for a summary. We shall extend these
results to more general situations where only the existence of certain moments is
assumed.

Let V = √
n(S − I ). Under the null hypothesis, we can expand the modified

test statistic as follows,

T1 = −2 log �1 = 1

2
trV 2 − 1

3
√

n
trV 3 + Op(n−1).

Then the characteristic function of T1, denoted by CT1(t), can be written as

CT1(t) = C1(t) + C2(t) + O(n−1),

where C1(t) = E
[

exp(it 1
2 trV 2)

]
, C2(t) = E

[
exp(it 1

2 trV 2)(− it

3
√

n
trV 3)

]
.

To compute the expectations, we need some lemmas.

Lemma 3.1 Suppose that y has the sixth moment. Then the characteristic function
of V can be expanded as

CV (T ) = exp

{
i2

2

∑

a≤b,c≤d

mab;cd tabtcd

}

×


1 + i3

6
√

n

∑

a≤b,c≤d,e≤f

mab;cd;ef tabtcd tef + o(n−1/2)



 , (1)

where T = ( 1
2 (1 + δab)tab), tab = tba; δab is the Kronecker delta, i.e., δaa = 1 and

δab = 0 for a �= b.
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Proof See Fujikoshi (2002a) Lemma 3.1. �	
Lemma 3.2 Suppose that y has the sixth moment and the characteristic function
of ỹ = vech(yy ′) satisfies

∫

Rq

|Cỹ(t)|rdt < ∞

for some r ≥ 1 . Then the probability density function of V can be expanded as

g(V ) = g0(V )
[
1 + 1

6
√

n

∑

a≤b,c≤d,e≤f

mab;cd;ef
(
e′

ab�ve′
cd�ve′

ef �v

−e′
ab�vλcd;ef − e′

cd�vλab;ef − e′
ef �vλab;cd

)
+ o(n−1/2)

]
, (2)

where

g0(V ) = (2π)−
q

2 |M|− 1
2 exp{−1

2
v′M−1v};

M and � are q × q matrices defined by M = (mab; cd) and � = (λab; cd) = M−1,
1 ≤ a ≤ b ≤ p, 1 ≤ c ≤ d ≤ p; v = vechV , and eab is obtained from v by
replacing all entries by 0 but vab by 1.

Proof Formally invert Eq. (1). �	
Using the notation introduced in Lemma 3.2, we first write 1

2 trV 2 = 1
2

∑
i≤j v2

ij

(2 − δij ) = v′	v, where 	 = Iq − 1
2 diagẽ. Secondly, noticing that the second term

inside the bracket of the density of V , Eq. (2), is a polynomial of odd degree in v,
we have

C1(t) =
∫

eitv′	vg0(V )dv + o(n−1/2) =
q∏

h=1

(1 − 2itλh)
− 1

2 + o(n−1/2),

where λh, h = 1, . . . , q are the characteristic roots of M	. Similarly, since trV 3

is a polynomial of odd degree in v, C2(t) is of order o(n−1/2). We summarize our
results in the following proposition.

Proposition 3.1 Under the conditions given in Lemma 3.2, the characteristic func-
tion of the test statistic T1 under null hypothesis can be expanded as CT1(t) =
∏q

h=1(1 − 2itλh)
− 1

2 + o(n−1/2), where λh are the characteristic roots of M	.

Hence, T1
d= ∑q

h=1 λhχ
2
h(1), where χ2

h(1) are independent chi-square random
variables with one degree of freedom.

Remark 1 Throughout the remaining part of this paper, we will use this notation

U
d= V to indicate |P(U ≤ x) − P(V ≤ x)| = o(n−1/2) uniformly in x.

Remark 2 It is noted that the third cumulants, hence the skewness, has no effect
on this test since M is a function of the fourth cumulants of the original random
vector. (See also Ito 1968).
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Recently, Yanagihara et al. (2004) obtained the asymptotic expansion of the
null distribution of T1 up to the order n−1. They showed that the term of the order
n−1 is a linear mixture of series of chi-square distributions, and that the coefficients
of this linear mixture are functions of high order (up to eighth) cumulants of the
original population. Then in practice we will have two problems to deal with. First,
how to estimate the coefficients or equivalently the high order cumulants? Second,
how to approximate the mixture of chi-square distributions? It is known that the
error of the empirical (moment) estimator is of order n−1/2. Then the n−1 terms in
the expansion will be dominated by the estimation error if the plug-in method is
used. For this reason, we confine our derivations up to order n−1/2 in this paper.
We will propose a novel approach to the approximation problem in Sect. 4.

3.2 Testing equality of k covariance matrices

Suppose that there are i.i.d. samples from k (≥2) populations. Let y
(i)
j denote the

j th sample from ith population, j = 1, . . . , ni , i = 1, . . . , k. Assume the mean
and the covariance of y

(i)
j are respectively µ(i) and �i . Consider testing the null

hypothesis H0 : �1 = �2 = · · · = �k . The modified likelihood ratio statistic for
the unbiased test under normality turns out to be

�2 =

k∏

i=1
|S(i)| ni−1

2

|S| n−k
2

where S(i) = ∑ni

j=1(y
(i)
j −ȳ(i))(y

(i)
j −ȳ(i))′/(ni − 1) , S = ∑k

i=1(ni −1)S(i)/(n−
k), n = ∑k

i=1 ni .
The exact null distribution of �2 was obtained by Gupta and Tang (1984). The

asymptotic approximation can be found in Muirhead (1982, p. 309). It is seen that
under the null hypothesis �2 is invariant under the transformation �−1/2(y

(i)
j −µi ),

assuming that � is the common covariance matrix. Therefore, without loss of
generality, we may assume � = Ip when we derive the asymptotic null distri-
bution. Let V (i) = √

ni(S
(i) − Ip), ρi = √

ni/n, V w = ρ1V
(1) + · · · + ρkV

(k),
ρ = (ρ1, . . . , ρk)

′.
In addition to the Assumptions A1 and A2, suppose that ni satisfies

A3: ρ−1
i = O(1) as n → ∞.

Next, let v(i) = vechV (i), vw = vechV w, vk = (v(1)′, v(2)′, . . . , v(k)′)′, and let
ei = (0, . . . , 0, 1, 0, . . . , 0)′ be a k × 1 vector with all entries zeros but the ith
one. Then we have v(i) = (e′

i ⊗ Im)vk and vw = (ρ ′ ⊗ Im)vk . The notation ‘⊗’ is
the usual Kronecker product.

Lemma 3.3 Under the conditions given in Lemma 3.2, the asymptotic density
function of vk can be obtained as follows.
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g(vk) = g0(vk)



1 + 1

6
√

n

k∑

i=1

∑

a≤b,c≤d,e≤f

1

ρi

m
(i)

ab;cd;ef

×
(
e′

ab�
(i)v(i) · e′

cd�
(i)v(i) · e′

ef �(i)v(i)

−e′
ab�

(i)v(i)λ
(i)

cd;ef − e′
cd�

(i)v(i)λ
(i)

ab;ef − e′
ef �(i)v(i)λ

(i)

ab;cd
)

+o(n−1/2)
]
,

where

g0(vk) = (2π)−
kq

2

k∏

i=1

|M(i)|− 1
2 exp

{

−1

2
vk

′M−1
k vk

}

,

and Mk = diag{M(1), . . . , M(k)}. The superscript (i) indicates the quantity is from
the ith population.

Proof Note that g(vk) = ∏k
i=1 g(V (i)). Then make use of Lemma 3.2 and

simplify. �	
Return to the test statistic. Define T2 = −2 log �2. It can be expanded as

T2 = 1

2

k∑

i=1

trV (i)2 − 1

2
trV 2

w − 1

3
√

n

k∑

i=1

tr
V (i)3

ρi

+ 1

3
√

n
trV 3

w + op(n−1/2).

Using the notation introduced before, we can write 1
2

∑k
i=1 trV (i)2 − 1

2 trV 2
w =

vk
′�kvk , where �k = � ⊗ 	, � = Ik − ρρ ′. It is noted that the rank of �k is

(k −1)q. Finally proceeding in the same way as in the derivation of the asymptotic
characteristic function of T1, we obtain the representation of T2.

Proposition 3.2 Suppose that the conditions of Lemma 3.2 hold for each popula-
tion, then the characteristic function of the test statistic T2 under the null hypoth-
esis can be expanded as CT2(t) = ∏(k−1)q

h=1 (1 − 2itλh)
−1/2 + o(n−1/2). Hence,

T2
d= ∑(k−1)q

h=1 λhχ
2
h(1), where λh, i = 1, 2, . . . , (k − 1)q are the nonzero charac-

teristic roots of Mk�k .

So again the asymptotic distribution of the test statistic T2 is a mixture of inde-
pendent chi-square random variables. However, the approximation is actually up
to n−1/2 unlike what is stated in Muirhead (1982).

3.3 The sphericity test

The sphericity hypothesis is termed as H0 : � = λIp, where λ(>0) is unspecified.
Given an i.i.d. sample of size n, the (unbiased) likelihood ratio test statistic under
normality is given by

�3 = |S|
( 1

p
trS)p

.
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Its asymptotic distribution under normality can be found, for example, in Muir-
head (1982, p. 344). The locally best invariant (LBI) test is obtained by Sugiura
(1972) and shown to be null and nonnull robust with respect to the elliptical fam-
ily (Kariya and Kim, 1997). We shall find the asymptotic distribution of the test
statistic, T3 = −(n − 1) log �3, under general condition up to n−1/2.

let V = √
n(S

λ
−I ), then the asymptotic characteristic function and the density

function of V can be shown identical to Eqs. (1) and (2), respectively, provided the
assumptions of Lemma 3.2 hold. Next we expand T3 as

T3 = 1

2
trV 2 − 1

2p
(trV )2 + 1√

n

[
1

3p2
(trV )3 − 1

3
trV 3

]

+ op(n−1/2),

and write 1
2 trV 2− 1

2p
(trV )2 = v′	1v, where v = vechV , 	1 = Iq− 1

2 diagẽ− 1
2p

ẽẽ′.
It is noted that 	1 and 	 are slightly different and the rank of 	1 is q − 1. Finally,
we get

Proposition 3.3 Under the conditions of Lemma 3.2, the characteristic function
of the test statistic T3 under the null hypothesis can be expanded as CT3(t) =
∏q−1

h=1(1 − 2itλh)
− 1

2 + o(n−1/2). Hence, T3
d= ∑q−1

h=1 λhχ
2
h(1), where λh, h =

1, 2, . . . , q − 1 are the nonzero characteristic roots of M	1.

3.4 Testing uncorrelation of two sets of variables

Partition y = (y ′
1, y

′
2)

′ with y1 : p1 × 1, y2 : p2 × 1 (p1 ≤ p2) and the covari-

ance matrix correspondingly as � =
(

�11 �12
�′

12 �22

)

. Consider the null hypothesis

H0 : �12 = 0. Under normality, H0 is equivalent to testing the independence
between y1 and y2. The likelihood ratio test statistic is found to be

�4 = |I − S21S
−1
11 S12S

−1
22 |n/2,

where S is the sample covariance matrix partitioned in the same way as � (Muir-
head, 1982, p. 542). Note that �4 is invariant under the transformation y →(

B11 0
0 B22

)

(y − c), where Bii (pi × pi), i = 1, 2, are nonsingular real matrices

and c is an arbitrary constant vector in R
p. Without loss of generality, we may as-

sume that µ = 0 and � =
(

Ip1 �12
�′

12 Ip2

)

when we derive the asymptotic distribution

of the test statistic, T4 = −2 log �4.
Let V = √

n(S − �). Under the null hypothesis, the asymptotic distribution
of V is given by Eq. (2). On the other hand, we can expand

T4 = trV 12V 21 − 1

3
√

n
(trV 3 − trV 3

11 − trV 3
22) + op(n−1/2),

and write trV 12V 21 = v′	4v, where v = vechV , 	4 = ∑
1≤i≤p1,p1+1≤j≤p eije

′
ij ,

and eij is defined in Lemma 3.2. Note that 	4 is a diagonal matrix with [(a−1)(p−
a/2 + 1) + b]th diagonal element equal 1 for 1 ≤ a ≤ p1, p1 + 1 ≤ b ≤ p and
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others equal 0. (Obviously the rank of 	4 is p1p2.) Then Let M∗
4 be the nonzero

block from M	4, i.e., M∗
4 = (mab,cd) with 1 ≤ a, c ≤ p1, p1 + 1 ≤ b, d ≤ p.

Finally we get

Proposition 3.4 Under the conditions of Lemma 3.2, the characteristic function
of the test statistic T4 under the null hypothesis can be expanded as CT4(t) =
|Ip1p2 − 2itM∗

4 |−1/2 + o(n−1/2). Hence, T4
d= ∑p1p2

h=1 λhχ
2
h(1), where λh, h =

1, 2, . . . , p1p2 are the characteristic roots of M∗
4 .

3.5 Testing canonical correlation coefficients

Let the random vector y and its mean and covariance matrix be partitioned in the
same fashion as in Sect. 3.4. The canonical correlation is the measure of correla-
tion structure between y1 and y2 after being reduced to the simplest form possible
by means of linear transformations of y1 and y2. Let ρ2

1 , . . . , ρ2
p1

(1 ≥ ρ2
1 ≥

· · · ≥ ρ2
p1

≥ 0) be the characteristic roots of the matrix �−1
11 �12�

−1
22 �21. Then

their positive square roots with 1 ≥ ρ1 ≥ · · · ≥ ρp1 ≥ 0 are called the pop-
ulation canonical correlation coefficients. Their sample versions are denoted by
r1, r2, . . . , rp1 . [Anderson (1984, Chapter 12) or Muirhead (1982, Chapter 11)].

The hypothesis of interest is Hp1−k : ρk+1 = · · · = ρp1 = 0 (ρk > 0) for
k = 0, 1, . . . , p1 − 1. When k = 0, it is equivalent to testing H0 : �12 = 0 which
has been treated in the previous section. The motivation for this test is to reduce the
dimensionality between two sets of variables. In other words, we try to determine
the number of useful canonical variables which represent all the information. The
likelihood ratio statistic for Hp1−k under normality is given by

�p1−k =
p1∏

i=k+1

(1 − r2
i ).

The asymptotic distribution of the test statistic, defined by Tp1−k = −n log �p1−k ,
has been investigated by Bartlett (1938, 1947), Lawley (1959), Fujikoshi (1976),
Glyun and Muirhead (1978), among others. Muirhead Waternaux (1980) derive the
asymptotic distribution of r2

i and the asymptotic null distribution of Tp1−k as well.
Their result is summarized in the following proposition via our notation.

Proposition 3.5 Assume that the population has finite fourth order cumulants, then
when the null hypothesis Hp1−k is true, the limiting characteristic function of the
test statistic Tp1−k is CTp1−k

(t) = |I(p1−k)(p2−k) − 2itM∗
p1−k|−1/2, where M∗

p1−k =
(mab,cd) with k + 1 ≤ a, c ≤ p1, p1 + k + 1 ≤ b, d ≤ p. Hence, Tp1−k

L→
∑(p1−k)(p2−k)

h=1 λhχ
2
h(1), where λh, h = 1, 2, . . . , (p1 − k)(p2 − k) are the charac-

teristic roots of M∗
p1−k . (Here

L→ stands for convergence in distribution.)

Remark 3 Although proposition 3.5 obtains the limiting null distribution of Tp1−k ,
we conjecture that it is also the asymptotic distribution up to order O(n−1/2) as for
the other test statistics considered earlier. Further investigation is needed. Never-
theless, if the population is from an elliptical distribution, then it is found that both
the limiting null distribution and the limiting nonnull distribution of Tp1−k possess
a neat form (Muirhead Waternaux, 1980).
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As an important special case when p1 = 1 and p2 = p − 1, the canonical cor-
relation coefficient is reduced to the multiple correlation coefficient. Since it has
its own interest, we will study its asymptotic distribution.

First write � =
(

σ11 σ ′
12

σ 12 �22

)

, σ 12 : (p − 1) × 1. The multiple correlation

coefficient between y1 and y2 is defined to be R̄ = (σ ′
12�

−1
22 σ 12/σ11)

1/2. Because

of invariance, it can be assumed without loss of generality that � =
(

1 P ′
P Ip−1

)

,

where P = (R̄, 0, · · · , 0)′. Let S be the sample covariance matrix from a sam-
ple of size n and denote the sample multiple correlation coefficient by R2 =
s ′

12S
−1
22 s12/s11. The asymptotic distribution of R2 under normality can be found in

Muirhead (1982, p. 172). Next we will derive the asymptotic distribution R2 under
nonormality.

Letu11 = √
n(s11 − 1)/(1−R̄2),u12 = √

n(1−R̄2)−1/2(Ip−1−PP ′)−1/2(s12−
P) and U 22 = √

n(Ip−1 − PP ′)−1/2(S22 − Ip−1)(Ip−1 − PP ′)−1/2. Then we can
expand

R2 = R̄2 + 1√
n
R̄(1 − R̄2)(2u12 − R̄u11 − R̄u22) + Op(n−1),

where u12 and u22 are the first component of u12 and the (1,1)th component of U 22,
respectively.

When R̄ �= 0, 1, define T5 = √
n(R2 − R̄2)/2R̄(1 − R̄2). Then the asymptotic

distribution of T5 can be obtained along the same course as in Muirhead (1982,

p. 179) where he derives it for the elliptical family. At last we can get T5
L→

N(0, σ 2
R), where σ 2

R = α′M∗
5 α/(1 − R̄2)2, α = (−R̄/2, 1, −R̄)′ and M∗

5 =
(mab; cd) with 1 ≤ a ≤ b ≤ 2, 1 ≤ c ≤ d ≤ 2.

For testing the hypothesis R̄ = 0, we define T6 = nR2. Under the null hypoth-
esis, it can be expanded as

T6 = u′
12u12 + Op(n−1/2).

Note that u12 = √
ns12 after replacing R̄ by 0 in the definition. Then under nonnor-

mality we obtain the asymptotic null distribution of T6 as
∑p−1

h=1 λhχ
2
h(1), where

λh, h = 1, 2, . . . , p − 1 are the characteristic roots of M∗
6 = (m1a; 1b) with 2 ≤

a ≤ b ≤ p.
A special function of R̄ is θ̄ = R̄2/(1 − R̄2) (Muirhead, 1985) with the sample

version defined as θ = R2/(1 − R2). It can be verified that
√

n(θ − θ̄ )/2θ̄ and
nθ have the same asymptotic distributions as T5 and T6, respectively, provided the
same assumptions hold.

3.6 Additional remarks

We have studied the asymptotic expansions of the null distributions of some sta-
tistics for testing the hypothesis about the covariance matrix. It is found that in
most cases the test statistics are distributed, up to O(n−1/2), as quadratic forms
in normal variables, or equivalently as mixtures of independent chi-square vari-
ables with degree of freedom one. It is also found that the coefficients of the
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mixtures are functions of the fourth cumulants of the original random variables.
They are expressed in terms of the characteristic roots of certain matrix in the
corresponding quadratic forms. (In the following section, we will see that only
the trace of some powers of the matrix are needed to obtain the approximation.)
These facts imply that the likelihood ratio test statistics obtained under normal-
ity are robust to the departure of the skewness to a certain level (O(n−1/2)) but
are sensitive to the change of the kurtosis unlike those for testing about the mean
vectors.

To close this section, we would conjuncture there be some new test statistics
(criteria) which will accommodate the effect of nonnormality so that their distri-
butions will be the same as under normality up to a higher order (n−1 at least).
Further investigation is needed.

4 Approximation and simulation

As seen previously most test statistics under null hypothesis are distributed as a
mixture of independent chi-square random variables with degree of freedom one.
Many authors have studied both the exact and the approximate distributions of this
type of statistics, e.g., Jensen and Solomon (1972), David (1977), Solomon and
Stephens (1977), Konishi at al. (1988) among others. For a review, see Johnson and
Kotz (1970, Chapter 29), Mathai and Provost (1992). Some recent developments
include Kuonen (1999), Lu and King (2002), etc. A simple approximation to this
type of mixture is the Satterthwaite method, which approximates the mixture distri-
bution by a distribution βχ2(ν) such that the first two moments agree. In our cases,
the parameters β and ν can be easily determined (up to n−1/2) as β = tr(M∗)2/trM∗
and ν = (trM∗)2/tr(M∗)2, where M∗ is the matrix of the corresponding quadratic
form.

The paper by Konishi at al. (1988) derives higher order asymptotic expansions
of the distributions to yield satisfactory accuracy. Based on this, we will further
devise a transformation that converts the null test statistic to a standard normal var-
iable with a controlled error. It thereby provides a more applicable way to test the
hypothesis in practice. Some Monte Carlo simulations are presented in the second
subsection.

4.1 Approximation

Let T be a generic statistic such that T = ∑k
j=1 λjχ

2
j (1). Let mr = ∑k

j=1 λr
j ,

r = 1, 2, . . . Assume that ws = ms/m1 = O(1), for s = 2, 3, . . . Then an
approximation of the distribution of T via transformation is obtained by Konishi
at al. (1988) as follows.

Theorem 4.1 Let W = √
m1[( T

m1
)h − 1 − 1

m1
h(h − 1)w2]/

√
2h2w2. Then the

asymptotic expansion of the distribution of W is given by

P(W ≤ x) = �(x) − m−1
1 a2(x)φ(x) + O(m

−3/2
1 ),
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where h = 1− 2m1m3

3m2
2

, �(x) and φ(x) are the standard normal distribution function

and density function, respectively, and

a2(x)=w−3
2

[
w3

(

−2

3
w3 + 2

3
w2

2

)

H1(x)+
(

1

2
w4w2 − 20

27
w2

3 + 2

9
w3w

2
2

)

H3(x)
]
.

Here Hj(x) is the Hermite polynomial of degree j .

Remark 4 The theorem obtained by Konishi at al. (1988) actually gives the asymp-
totic expansion for a general quadratic form which is equivalent to T with noncen-
tral chi-square variables. And the expansion is derived up to order m−3

1 . Here we
ignore the terms higher than m−1

1 because the remaining terms are quite involved.
More importantly it is because the magnitude of the remaining terms would be com-
parable to the errors brought into the m−1

1 term when we replace the coefficients
by their estimators.

Next we shall apply the normalization transformation derived by Xu and Gupta
(2005).

Corollary 4.1 Under the assumptions of Theorem 4.1, we have

|W | − 1

m1
a2(|W |) d= |Z|, (3)

where Z ∼ N(0, 1). Here the equality in distribution is up to order O(m−1
1 ).

Finally, the null hypothesis is rejected if the LHS of Eq. (3) is greater than zα/2,
where zα/2 is the upper α/2 percentile of the standard normal distribution and α is
the nominal size of the test.

4.2 Simulation

Consider the null hypothesis H0 : � = �0 as an example to see the performance of
the asymptotic expansion and the approximation discussed above. The other cases
can be studied in a similar fashion.

To take nonnormality into account, we consider the following model. Let y be
a four dimensional random vector with independent components as follows:

(a) y1: standard normal distribution;
(b) y2: standardized skew t distribution with degrees of freedom 6 and 4 (Jones

and Faddy, 2003);
(c) y3: standard Laplace distribution;
(d) y4: standardized χ2 distribution with degrees of freedom 12.

(Then the kurtosis of the chosen model is κ
(1)
4 = 5.7228.) The Monte Carlo studies

can be summarized as follows. First, generate a sample of size n from the model.
Second, compute T1, W (defined in Theorem 4.1), and the normalized test statistic
from Eq. (3) replace the coefficients mi and wi by their estimators, i.e., we estimate
the matrix M by its sample version. Third, determine the empirical size of the test
after 10,000 repetitions. Meanwhile, we shall compute the empirical size of the
two-sided test by the Satterthwaite method.
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Fig. 1 Actual sizes of the normalized test statistic (denoted by asterisk) in comparison to those
by the Satterthwaite method (denoted by circle)

The results are displayed in Fig. 1. From that, it can be seen that our approxi-
mation yields satisfactory results compared with the Satterthwaite approximation
even for the moderate sample sizes.
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