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Abstract This paper answers the long-standing question of whether the two-sided
Wilcoxon rank test for equal sample sizes is unbiased against a location parameter
family of distributions by giving a counterexample. It is also shown that the non-
randomized two-sided Wilcoxon test for equal sample sizes with the least positive
significance level is unbiased.

Keywords Rank test · Unbiasedness · Two-sample problem · Power curve ·
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1 Introduction

Lehmann (1959, p 240; 1986, p 322) has shown that the one-sided Wilcoxon
rank test is unbiased against one-sided location parameter family of distributions
under a more general setting. He then raised the question of whether the two-sided
Wilcoxon test is unbiased against two-sided location parameter family of distribu-
tions. Sugiura (1965) gave a counterexample for the case of unequal sample sizes.
It is given by nonrandomized Wilcoxon test with the least positive significance
level against exponential distributions. However, when the sample sizes are equal,
the test is shown to be unbiased. Then the same question for equal sample sizes was
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raised by Professor E.L. Lehmann to the first author in his personal communication
just after Sugiura (1965).Amrhein (1995) also gave a counterexample showing that
the two-sided Wilcoxon signed rank test for one-sample problem is biased against
a two-sided location parameter family of symmetric distributions. It is provided
for the discrete distributions with continuous component.

In this paper, we shall show that two-sided Wilcoxon test is not unbiased against
two-sided parameter family of distributions even when two sample sizes are equal.
The counterexample is provided by the nonrandomized two-sided Wilcoxon test
with the second smallest positive significance level when the distributions are
generated by beta distribution with singularity at the origin.

2 Unbiased and biased two-sided Wilcoxon tests

Let X1, . . . ,Xn and Y1, . . . , Yn be random samples of equal size n from absolutely
continuous distribution functions F(x) and G(x) with respect to Lebesgue measure
and their density functions be f(x) and g(x), respectively. We consider a location
parameter family of distributions defined by G(x) = F(x − �), where � is an
unknown location parameter. The hypotheses to be tested are H : � = 0 aga-
inst alternatives K : � �= 0, where the functional form of F(x) is unknown. Let
X(1) < · · · <X(n) be order statistics obtained from Xs and similarly Y(1) < · · · <
Y(n) from Ys. Note that the event X1, . . . , Xn < Y1, . . . , Yn is equivalent to X(n) <
Y(1) and that Y1, . . . , Yn < X1, . . . , Xn to Y(n) < X(1). We shall consider the
following two-sided Wilcoxon tests, φ1 and φ2:

φ1(X1, . . . , Xn; Y1, . . . , Yn) =
{

1 if X(n) < Y(1) or Y(n) < X(1)

0 otherwise (1)

and

φ2(X1, . . . , Xn; Y1, . . . , Yn) =




if X(n) < Y(1)or Y(n) < X(1)

1 or X(n−1) < Y(1) < X(n) < Y(2)

or Y(n−1) < X(1) < Y(n) < X(2)

0 otherwise.

(2)

The test φ1 has the smallest positive significance level α = 2(n!)2/(2n)! among
the nonrandomized two-sided Wilcoxon tests. The level of the test φ2 is α =
4(n!)2/(2n)! which is the second smallest. The power function of the test φ1 is
written by

β1(�) = P(X(n) < Y1, . . . , Yn) + P(Y1, . . . , Yn < X(1))

= n

∞∫
−∞

(1 − G(x))nF (x)n−1f (x) dx

+n

∞∫
−∞

G(x)n(1 − F(x))n−1f (x) dx (3)
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and that of φ2 by

β2(�) = β1(�) + nP (X(n−1) < Y1 < X(n) < Y2, . . . , Yn)

+nP (Y1, . . . , Yn−1 < X(1) < Yn < X(2))

= β1(�) + n2(n − 1)

∫∫
−∞<x<y<∞

(G(y) − G(x))(1 − G(y))n−1

×F(x)n−2f (x)f (y) dxdy + n2(n − 1)

×
∫∫

−∞<x<y<∞
G(x)n−1(G(y) − G(x))(1 − F(y))n−2f (x)f (y) dxdy.

(4)

First, we shall note the symmetry of the power function of these tests in the
following theorem.

Theorem 1 The power functions are symmetric with respect to � = 0, namely,
we have β1(�) = β1(−�) and β2(�) = β2(−�).

Proof Put Yi − � = Zi for i = 1, . . . , n. Then X1, . . . , Xn and Z1, . . . , Zn

are all independent and Z1, . . . , Zn have the same joint distribution as that of
X1, . . . , Xn. Noting that the order statistics Y(i) − � = Z(i) and that (X(1), Z(n))
and (Z(1), X(n)) are exchangeable, we can write

β1(�) = P(X(n) < Z(1) + �) + P(Z(n) + � < X(1))

= P(X(n) < Z(1) + �) + P(X(n) + � < Z(1)), (5)

from which we can see that β1(�) = β1(−�). For the test φ2, we can rewrite

β2(�) = β1(�) + P(X(n−1) < Z(1) + � < X(n) < Z(2) + �)

+P(Z(n−1) + � < X(1) < Z(n) + � < X(2)).

Note that (X(1), X(2), Z(n−1), Z(n)) and (Z(1), Z(2), X(n−1), X(n)) are exchange-
able. We can rewrite the third term in R.H.S., giving

= β1(�) + P(X(n−1) < Z(1) + � < X(n) < Z(2) + �)

+P(X(n−1) < Z(1) − � < X(n) < Z(2) − �), (6)

which implies that β2(�) = β2(−�).
From Theorem 1, we may consider the power function only for � > 0. By the

same argument as in the proof of Theorem 1, we can see that the symmetry of the
power function is extended to βm,n(�) = βn,m(−�) for the two-sided Wilcoxon
test for unequal sample sizes m and n, the special case of which was shown in
Sugiura (1965). In particular, the derivative of the power function of the general
two-sided Wilcoxon test for equal sample sizes at � = 0 vanishes, if it is differen-
tiable. This may be a support for the unbiasedness of the two-sided Wilcoxon test
for equal sample sizes against many distributions. This is the case with the test φ1.

Theorem 2 Assume that the derivative of the power function β1(�) is
obtainable by differentiation under the integral sign. Then the test φ1 is unbiased
against the location parameter family of distributions.
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Proof By the assumption, we can differentiate the power function under the inte-
gral sign, giving

d

d�
β1(�) = n2

∞∫
−∞

f (x)g(x)
{

[(1 − G(x))F (x)]n−1 − [G(x)(1 − F(x))]n−1
}

dx

= n2

∞∫
−∞

f (x)g(x) (F (x) − G(x))

×
{

[(1−G(x))F (x)]n−2+· · ·+[G(x)(1−F(x))]n−2
}

dx. (7)

Note that F(x) − G(x) = F(x) − F(x − �) is nonnegative if � >0 and non-
positive if � < 0. Combined with expression (7), we can see that β1(�) ≥ β1(0)
for any �,which completes the proof. ��

Sugiura (1965) gave an example of biased two-sided Wilcoxon test in a form
of φ1 for unequal sample sizes. If the density function f(x) is bounded, the assump-
tion in Theorem 2 is satisfied by the dominated convergence theorem. However,
the following example shows that the test φ1 is unbiased against a wider location
parameter family of distributions. We now specify a family of unbounded distri-
butions

F(x) =



0 if x < 0
xρ

if 0 ≤ x ≤ 1
1 if x > 1

and f (x) =
{

ρxρ−1 0 < x < 1
0 otherwise

(8)

for 0 < ρ < 1. Assume that 0 ≤ � ≤ 1, then dividing the domain of integration
in Eq. 3 to the disjoint intervals (0, �) and (�, 1), we have

β1(�) = �ρn + nρ

1∫
�

(1 − (x − �)ρ)nxρn−1dx

+nρ

1∫
�

(x − �)ρn(1 − xρ)n−1xρ−1dx. (9)

The derivative of the power function is written by

d

d�
β1(�) = n2ρ2

1∫
�

{
(1 − (x − �)ρ)n−1(x − �)ρ−1xρn−1

−(x − �)ρn−1(1 − xρ)n−1xρ−1
}

dx

= n2ρ2

1∫
�

xρ−1(x − �)ρ−1
{
(1 − (x − �)ρ)n−1xρ(n−1)

−(x − �)ρ(n−1)(1 − xρ)n−1
}

dx. (10)
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The term in the curly bracket in the integrand in the last expression in Eq. 10 is
factorized to

{xρ −(x − �)ρ}[{(1−(x−�)ρ)xρ}n−2+ · · · +{(x−�)ρ(1−xρ)}n−2], (11)

which is positive since � > 0. Hence β1(�) is a strictly increasing function for
0 ≤ � ≤ 1. We note that β1(1) = 1, β1(0) = α and (d/d�)β1(0 + 0) = 0. It is
clear that β1(�) = 1 for � > 1. Combined with Theorem 1, we can say that the
test φ1 is unbiased against the location parameter family generated by Eq. 8.

We shall now show that the test φ2 is biased. For numerical computation, the
expression of the power function (9) is not appropriate because the integral becomes
unstable near at � = 0. A useful expression is given by putting xρ = z in each
integral,

β1(�) = �ρn + n

1∫
�ρ

(1 − (z1/ρ − �)ρ)nzn−1dz

+n

1∫
�ρ

(z1/ρ − �)ρn(1 − z)n−1dz. (12)

When 0 < � < 1, the power function of the test φ2 is written by dividing the
domain of integration in Eq. 4 into three disjoint intervals given by 0 < � < x <
y < 1, 0 < x < � < y < 1, 0 < x < y < � < 1 and changing the variables
(x,y) to (u, v) by xρ = u and yρ = v,

β2(�) = β1(�) + n2(n − 1)

×
∫∫

�ρ<u<v<1

{(v1/ρ−�)ρ −(u1/ρ −�)ρ}{1−(v1/ρ −�)ρ}n−1un−2dudv

+n2�ρ(n−1)

1∫
�ρ

(v1/ρ − �)ρ{1 − (v1/ρ − �)ρ}n−1dv

+n2(n − 1)

∫∫
�ρ<u<v<1

(u1/ρ − �)ρ(n−1)

×
{
(v1/ρ − �)ρ − (u1/ρ − �)ρ

}
(1 − v)n−2dudv. (13)

Note that β2(1) = 1 and that clearly β2(�) = 1 for � > 1. Expressions (13)
greatly save the computing time for numerical integrations by Mathematica 4.2.

For n = 2, the significance level of Wilcoxon test φ2 is 2/3. Put ρ = 0.16
and � = 0.01, for example. Then numerical integrations based on Eqs. 12 and
13, yield β2(0.01) = 0.655287, showing that the test φ2 is biased. Moreover,
we can show the global behavior of the power function in the neighborhood of
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Fig. 1 Power function of two-sided Wilcoxon test φ2 for n=2 with level 2/3

� = 0 in Fig. 1a. The parameter ρ = 0.16 is so chosen that the value of the power
function at � = 0.01 is the smallest. The test φ2 is biased also for ρ = 0.25 and
slightly biased for ρ = 0.5, since β2(0.01) = 0.666605. However, it is unbiased for
ρ = 0.7. These graphs of the power function are shown in Fig. 1c, d. The graph of
Fig. 1c, d look almost the same.
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Fig. 2 Power function of two-sided Wilcoxon test φ2 for n=3 with level 1/5

It might be instructive to note that for n = 3, these distributions no longer yield
a biased Wilcoxon test φ2 as shown in Fig. 2. We failed to find the value of ρ such
that the test φ2 for n = 3 is biased.

Numerical computations in this paper are performed by Mathematica 4.2, with
Power Mac G4/400.
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