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Abstract We study the large deviation principle for M-estimators (and maximum
likelihood estimators in particular). We obtain the rate function of the large devia-
tion principle for M-estimators. For exponential families, this rate function agrees
with the Kullback–Leibler information number. However, for location or scale fam-
ilies this rate function is smaller than the Kullback–Leibler information number.
We apply our results to obtain confidence regions of minimum size whose coverage
probability converges to one exponentially. In the case of full exponential families,
the constructed confidence regions agree with the ones obtained by inverting the
likelihood ratio test with a simple null hypothesis.

Keywords M-estimators · Maximum likelihood estimators · Large deviations ·
Empirical processes · Kullback–Leibler information

1 Introduction

We discuss the large deviation principle (LDP) for M-estimators. M-estimators
have many good properties and they are used in many different situations. Their
main property is that they are robust statistics. As an application, we obtain new
results on the large deviations of maximum likelihood estimators (mle’s).

The large deviations of mle’s have being considered by many authors. Let
{f (·, θ) : θ ∈ �} be a family of pdf’s, where � is a Borel subset of R

d . Let
{Xj }∞j=1 be a sequence of i.i.d.r.v.’s with a pdf belonging to {f (·, θ) : θ ∈ �}. An
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mle θ̂n = θ̂n(X1, . . . , Xn) of θ is a value such that

n∏

j=1

f (Xj , θ̂n) = sup
θ∈�

n∏

j=1

f (Xj , θ).

Given an estimator Tn of a parameter θ , the error of the estimation is |Tn − θ |. The
probability that the error of estimation is bigger than ε is Pθ {|Tn − θ | ≥ ε}. The
limit

J (Tn, ε, θ) := lim inf
n→∞ n−1 ln (Pθ {|Tn − θ | > ε}) . (1)

is called the inaccuracy rate of the estimator Tn. In the one dimensional case,
Bahadur (1967, 1971) proved that, if Tn is a consistent estimator of θ , then, for
each θ ∈ �,

lim
ε→0

lim inf
n→∞ ε−2n−1 ln (Pθ {|Tn − θ | ≥ ε}) ≥ −2−1v(θ), (2)

where v(θ) is the Fisher information at θ and Pθ is the probability when θ obtains,
i.e.

v(θ) = Eθ

[(
∂ ln f (X, θ)

∂θ

)2
]

= −Eθ
[
∂2 ln f (X, θ)

∂θ2

]
.

Bahadur also proved that, under regularity conditions, for each θ

lim
ε→0

lim inf
n→∞ ε−2n−1 ln

(
Pθ {|θ̂n − θ | ≥ ε}

)
= −2−1v(θ), (3)

This shows that mle’s are asymptotically efficient in the sense that they minimize
the former limit.

Bahadur et al. showed that if Tn is a consistent estimator of θ , for each θ ∈ �,
then, for each θ ∈ �,

lim inf
n→∞ n−1 ln (Pθ {|Tn − θ | > ε}) (4)

≥ − inf{K(f (·, θ1), f (·, θ)) : θ1 satisfying |θ1 − θ | > ε},
whereK is the Kullback–Leibler information of the densities f (·, θ1) and f (·, θ),
i.e., for densities f and g with respect to a probability measure µ,

K(f, g) =
∫

ln

(
f (t)

g(t)

)
f (t) dµ(t).

In this situation, mle’s are not optimal estimators. Kester and Kallenberg (1986)
gave examples of mle’s satisfying and not satisfying

lim inf
n→∞ n−1 ln

(
Pθ {|θ̂n − θ | > ε}

)
(5)

= − inf{K(f (·, θ1), f (·, θ)) : θ1 satisfying |θ1 − θ | > ε}.
For exponential families, there exists equality in the previous expression. We will
prove that for location families which are not member of an exponential family,
the previous equality does not hold.
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Our techniques are based on the (LPD) large deviation principle of empirical
processes. In Sect. 2, we present new results on the LPD for empirical processes
with values l∞(T ), where T is an index set and l∞(T ) is the set of bounded func-
tions in T with the norm |z|∞ := supt∈T |z(t)|. A sequence of stochastic processes
{Un(t) : t ∈ T } is said to follow the LDP in l∞(T ) with speed ε−1

n , where {εn} is
a sequence of positive numbers converging to zero, and with good rate function I
if:

(i) For each 0 ≤ c < ∞, {z ∈ l∞(T ) : I (z) ≤ c} is a compact set of l∞(T ).
(ii) For each set A ⊂ l∞(T ),

− inf{I (z) : z ∈ Ao} ≤ lim inf
n→∞ εn ln(P∗{{Un(t) : t ∈ T } ∈ A})

≤ lim sup
n→∞

εn ln(P∗{{Un(t) : t ∈ T } ∈ A})
≤ − inf{I (z) : z ∈ Ā},

where Ao (resp. Ā) denotes the interior (resp. closure) of A in l∞(T ) and P∗ (P∗)
denotes the inner (outer) probability. General references on the LDP are Deuschel
and Stroock (1989) and Dembo and Zeitouni, (1998). The main property of the
LDP is that it is closed by continuous functions: if {Un(t) : t ∈ T } satisfies
the LDP with speed ε−1

n and good rate function I and F : l∞(T ) → R
d is a

continuous function, then F({Un(t) : t ∈ T }) satisfies the LDP with speed ε−1
n

and with good rate function

IF (t) = inf{I (z) : z ∈ l∞(T ), F (z) = t}
[see for example Lemma 2.1.4 in Deuschel and Stroock (1989)].

From the LDP of estimators, it is possible to obtain the inaccuracy rates of
estimators. Suppose that a sequence of estimators {Tn} satisfies the LDP with rate
function Iθ (t), when θ obtains. Assuming that

inf{Iθ (t) : t satisfying |t − θ | > ε} = inf{Iθ (t) : t satisfying |t − θ | ≥ ε},
we have that

J (Tn, ε, θ) = inf{Iθ (t) : t satisfying |t − θ | ≥ ε}. (6)

In Sect. 3, we present sufficient condition to obtain the LDP for M-estimators.
Let g : S × � → R be a function such that g(·, t) : S → R is measurable for
each t ∈ �, where � be a Borel subset of R

d . A natural estimator of a parameter
θ ∈ � such that E[g(X, t) − g(X, θ)] > 0 for each t � = θ , is the estimator θ̂n
such that

n−1
n∑

j=1

g(Xj , θ̂n) = inf
t∈�

n−1
n∑

j=1

g(Xj , t). (7)

Since the estimator θ̂n is minimizing the stochastic process



n
−1

n∑

j=1

g(Xj , t) : t ∈ �



 , (8)
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it is expected that, under certain conditions, θ̂n satisfies the LDP with the rate
function

Iθ̂ (t) = inf{Ig(z) : z ∈ l∞(�), z(·) is minimized at t},
where Ig is the rate function of the LDP of the sequence of stochastic processes in
Eq. 8. Heuristically, this is true because in some sense, the function which assigns to
a function the value where the minimum of the function is attained is a continuous
function.

We also consider M-estimators θ̂n defined by

n−1
n∑

j=1

h(Xj , θ̂n) = 0, (9)

where h(·, t) : S → R
d is a measurable function for each t ∈ �. Here, θ̂n is

estimating a value θ characterized by E[h(X, θ)] = 0. In this case, it is expected
that, under certain conditions, θ̂n satisfies the LDP with the rate function

Iθ̂ (t) = inf{Ih(z) : z ∈ l∞(�), z(t) = 0},
where Ih is the rate function of the LDP of {n−1 ∑n

j=1 h(Xj , t) : t ∈ �}. We will
show that

Iθ̂ (t) = − inf
λ∈Rd

ln E[exp(λ′h(X, t))]. (10)

For some one dimensional M-estimators, Sievers (1978) and Rubin and Rukhin
(1983) obtained that the rate of certain M-estimators is given by Eq. 10. Fu, Li,
an Zhao (1993) obtained much more general results for the large deviation of
one dimensional mle’s. Kester (1985) and Kallenberg (1986) found the inaccuracy
rates of mle’s from an exponential family. Borovkov and Mogulskii (1992) gave
upper and lower bounds for the large deviations of M-estimators parameterized
by a compact set. Joutard (2004) considered the large deviations of M-estimators
over a sequence of necessarily identically distributed sequence of r.v.’s when the
parameter set is compact. Our results apply non necessarily compact parameter
sets.

When applied to the mle’s, we obtain that, under certain conditions, when θ
obtains, the mle θ̂n satisfies the LDP with speed n and rate function

Iθ (t) := − inf
λ∈Rd

ln Eθ [exp λ′∇t ln f (X, t)], (11)

where ∇t denotes the (vector of partial derivatives) gradient of ln f (x, t). We
prove that for each t, θ ∈ �, Iθ (t) ≤ K(f (·, t), f (·, θ)). If for each t, θ ∈ �,
Iθ (t) = K(f (·, t), f (·, θ)), then the mle minimizes the limit in Eq.4 among all
possible estimators. However, in general Iθ (t) < K(f (·, t), f (·, θ)), for t �= θ .
Theorem 3.2 determines when Iθ (t) = K(f (·, t), f (·, θ)). For an exponential
family, we have that Iθ (t) = K(f (·, t), f (·, θ)). The only location families for
which Iθ (t) = K(f (·, t), f (·, θ)), for each t, θ ∈ �, are the ones which are
exponential families.
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In Sect. 4, we apply the results in Sect. 3 to obtain confidence regions whose
coverage probability approaches to 1 exponentially. Suppose that, when θ obtains,
θ̂n satisfies the LDP with speed n and rate function Iθ (·). Given 0 < α < ∞, define
Uθ,α := {t ∈ R

d : Iθ (t) < α} and

Cα(X1, . . . , Xn) := {θ ∈ � : θ̂n(X1, . . . , Xn) ∈ Uθ,α}. (12)

Assuming that {t ∈ R
d : Iθ (t) < α} is an open set, then Cα(X1, . . . , Xn) is a

confidence region for � such that for each θ ∈ �,

lim sup
n→∞

n−1 ln (Pθ {θ �∈ Cα(X1, . . . , Xn)}) (13)

= lim sup
n→∞

n−1 ln
(
Pθ {Iθ (θ̂n) ≥ α}

)

≤ − inf{Iθ (t) : Iθ (t) ≥ α} ≤ −α.
The confidence regions obtained in this way have some minimality properties. In
some sense, they are the smallest regions based on θ̂n satisfying Eq.13. Suppose
that given θ , Gθ,α is a set such that {t ∈ R

d : Iθ (t) < α} �⊂ Gθ,α , then,

lim inf
n→∞ n−1 ln

(
Pθ {θ̂n(X1, . . . , Xn) �∈ Gθ,α }

)
≥ − inf{Iθ (t) : t �∈ Gθ,α } > −α.

Hence, if

lim inf
n→∞ n−1 ln

(
Pθ {θ̂n(X1, . . . , Xn) �∈ Gθ,α}

)
≤ −α,

then {t ∈ R
d : Iθ (t) < α} ⊂ Gθ,α . Assuming that {t ∈ R

d : Iθ (t) < α} is
an open set, we have that {t ∈ R

d : Iθ (t) < α} ⊂ (Gθ,α)
o. When the mle’s are

sufficient statistics, one should expect that the regions in Eq.12 are the smallest
regions over all the regions satisfying Eq.13.

The classical asymptotic confidence intervals are constructed fixing the cover-
age probability to a fixed number less than one and letting the size of the region
go to zero as n → ∞. The procedure here is opposite. We allow the size of the
confidence region do not go to zero, but the coverage probability goes to one as the
sample size goes to infinity. In the case of full exponential families, the constructed
confidence regions agree with the ones obtained by inverting the likelihood ratio
test for a simple null hypothesis. In Brown et al. (2003), it is argued that for a big
group of exponential families the confidence intervals obtained by inverting the
likelihood ratio test are best overall. Our results complement the results of these
authors. These authors study the size of the confidence regions when the coverage
probability is constant.

Large deviations have many applications in statistics. Large deviations are used
in some definitions of efficiency (see Bahadur, 1971; Serfling, 1980; Nikitin, 1995).
Often in sequential analysis, it is of interest to use confidence intervals of fixed
length. Fu (1975) proved that the limits of the density of a sequence of estimators
is related with their large deviations. Jensen and Wood (1998) have used the large
deviations of mle’s to study the density of mle’s (see also Skovgaard, 1990).

The proofs of the theorems in Sects. 2, 3, 4 are in Sect. 5.We will use usual multi-
variate notation. For example, given u = (u1, . . . , ud)

′ ∈ R
d and
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v = (v1, . . . , vd)
′ ∈ R

d , u′v = ∑d
j=1 ujvj and |u| = (

∑n
j=1 u

2
j )

1/2. Given
θ ∈ R

d and ε > 0, B(θ, ε) = {x ∈ R
d : |x − θ | < ε}. Given a d × d matrix A,

‖A‖ = supv1,v2∈Rd ,|v1|,|v2|=1 v
′
1Av2. Given a rate function I and a set A, we denote

I (A) = inf{I (x) : x ∈ A}.

2 Large deviation principle of empirical processes

In this section, we study the LDP of empirical processes. Let {Xj }∞j=1 be a sequence
of i.i.d.r.v.’s with values in a measurable space (S,S). Let {f (·, t) : t ∈ T } be a
collection of measurable functions on (S,S), where T is an index set. Let X be a
copy ofX1. Necessary and sufficient conditions for the LDP of empirical processes
{n−1 ∑n

j=1 f (Xj , t) : t ∈ T } with speed nwere given in Arcones, (2003a). How-
ever, we need to represent the rate function in a convenient way. Our method, using
the dual (vector space of continuous linear functionals) of certain Orlicz space, is
a variation of the method used by Léonard and Najim (2002) to determine the rate
function of the LDP of empirical measures. We refer to the theory in Orlicz spaces
to Rao and Ren (1991).

A function� : R → R̄ is said to be aYoung function if it is convex,�(0) = 0;
�(x) = �(−x) for each x > 0; and limx→∞�(x) = ∞. The Orlicz space
L�(S,S) (abbreviated to L�) associated with the Young function � is the class
of measurable functions f : (S,S) → R such that E[�(λf (X))] < ∞ for
some λ > 0. Let � be the Fenchel–Legendre conjugate of �, i.e. �(x) =
supy∈R

(xy −�(y)). The Minkowski (or gauge) norm of the Orlicz space L�(S,S)
is defined by

N�(f ) = inf{t > 0 : E[�(f (X)/t)] ≤ 1}.
It is well known that the vector space L� with the norm N� is a Banach space.

In the case of large deviations, we have that given functions f1, . . . , fm such
that for some λ > 0 and each 1 ≤ k ≤ m, E[exp(λ|fk(X)|)] < ∞, then






(
n−1

n∑

j=1

f1(Xj ), . . . , n
−1

n∑

j=1

fm(Xj )

)




satisfies the LDP in R
m with speed n and rate function

I (u1, . . . , um) = sup
λ1,...,λm∈R




m∑

j=1

λjuj − ln E



exp




m∑

j=1

λjfj (X)











 (14)

(see Corollary 6.1.6 in Dembo and Zeitouni, 1998. We will work in the space

L�1 := {f : S → R : E[�1(λ|f (X)|)] < ∞ for some λ > 0},
where �1(x) = e|x| − |x| − 1. Let (L�1)∗ be the dual of (L�1, N�1). The func-
tion f ∈ L�1 �→ ln

(
E[ef (X)]

) ∈ R is a convex lower semicontinuous function.

Observe that if fn
L�1→ f , then fn(X)

P→ f (X), which, by the Fatou’s lemma,
implies that



Large deviations for M-estimators 27

ln
(
E[ef (X)]

) ≤ lim infn→∞ ln
(
E[efn(X)]

)
. The Fenchel–Legendre conjugate of

the previous function is:

J (l) := sup
f∈L�1

(
l(f )− ln

(
E[ef (X)]

))
, l ∈ (L�1)∗. (15)

J is a function with values in [0,∞]. Since J is a Fenchel–Legendre conjugate,
it is a nonnegative convex lower semicontinuous function. It is easy to see that if
J (l) < ∞, then:

(i) l(1) = 1, where 1 denotes the function constantly 1.
(ii) l is a nonnegative definite functional: if f (X) ≥ 0 a.s., then l(f ) ≥ 0.

Since the double Fenchel–Legendre transform of a convex lower semicontinu-
ous function coincides with the original function (see e.g., Lemma 4.5.8 in Dembo
and Zeitouni, 1998), we have that

sup
l∈(L�1 )∗

(l(f )− J (l)) = ln E[ef (X)]. (16)

We also will consider the convex function �2(x) = ex − 1. The Fenchel–
Legendre conjugate of �2 is

�2(x)=x ln
(x
e

)
+1, if x>0; �2(0)=1; and �2(x)=∞, if x<0.

(17)

We also have the following:

Lemma 2.1 If l ∈ (L�1)∗ and l(1) = 1, then

J (l) = sup
f∈L�1

(
l(f )− E[ef (X) − 1]

)
.

Given a nonnegative function γ on S such that E[γ (X)] = 1 and
E[�2(γ (X))] < ∞, then lγ (f ) = E[f (X)γ (X)] defines a continuous linear
functional in L�1 . Besides, it is easy to see that

J (lγ ) = sup
f∈L�1

E[f (X)γ (X)−�2(f (X))] = E[�2(γ (X))]. (18)

Observe that by the Fenchel–Young inequality,

sup
f∈L�1

E[f (X)γ (X)−�2(f (X))] ≤ E[�2(γ (X))].

Given 1 < M < ∞, taking f (x) = ln(γ (x))I (M−1 ≤ γ (x) ≤ M) and letting
M → ∞, we get that

sup
f∈L�1

E[f (X)γ (X)−�2(f (X))] ≥ E[�2(γ (X))].

Hence, Eq. 18 follows. E[�2(γ (X))] = E[γ (X) ln(γ (X))] is the Kullback–
Leibler information number of the probability measures γ (·) dµ(·) and dµ(·),
where µ(·) is the distribution of X. But, the set {lγ ∈ (L�1)∗ : E[γ (X)] =
1, E[�2(γ (X))] < ∞} does not have the compactness properties that {l ∈
(L�1)∗ : J (l) < ∞} has.

We may express, the rate function in Eq. 14 using the function J :
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Lemma 2.2 Let f1, . . . , fm ∈ L�1 . Then, for each u1, . . . , um ∈ R,

sup






m∑

j=1

λjuj − ln



E



exp




m∑

j=1

λjfj (X)











 : λ1, . . . , λm ∈ R






= inf
{
J (l) : l ∈ (L�1)∗, l(fj ) = uj for each 1 ≤ j ≤ m

}
.

In the case of one function f , the rate function is

If (t) := inf
{
J (l) : l∈(L�1)∗, l(f )= t}=sup{λt−ln(E[exp(λf (X))]) : λ∈R}.

Let µf = E[f (X)]. Let bf = inf{t ∈ R : P(f (X) > t) = 0} be the least
upper a.s. bound of f (X), where inf ∅ is interpreted as ∞. Let af = sup{t ∈ R :
P(f (X) < t) = 0} be the most lower a.s. bound of f (X), where sup ∅ is inter-
preted as −∞. It is well known that If is convex in R, If is continuous in [af , bf ],
If is infinity in R − [af , bf ], If (µf ) = 0, If (af ) = − lnP(f (X) = af ),
If (bf ) = − ln P(f (X) = bf ), If is nondecreasing in [µf ,∞) and If is non-
increasing in (−∞, µf ] (see Lemma 6 in Chernoff, 1952). This implies that for
t ≥ µf ,

inf{J (l) : l ∈ (L�1
)∗
, l(f ) ≥ t} = inf{J (l) : l ∈ (L�1

)∗
, l(f ) = t} (19)

and for t ≤ µf ,

inf{J (l) : l ∈ (L�1
)∗
, l(f ) ≤ t} = inf{J (l) : l ∈ (L�1

)∗
, l(f ) = t} (20)

By Theorem 1 in Chernoff, (1952), for each t ≥ µf ,

lim
n→∞ n

−1 ln



P




n
−1

n∑

j=1

f (Xj ) ≥ t








 = −If (t) (21)

and for each t ≤ µf ,

lim
n→∞ n

−1 ln



P




n
−1

n∑

j=1

f (Xj ) ≤ t








 = −If (t). (22)

The previous limits and the continuity of the function If imply that for each bf >
t ≥ µf ,

lim
n→∞ n

−1 ln



P




n
−1

n∑

j=1

f (Xj ) > t








 = −If (t) (23)

and for each af < t ≤ µf ,

lim
n→∞ n

−1 ln



P




n
−1

n∑

j=1

f (Xj ) < t








 = −If (t). (24)
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By Lemma 1 in Chernoff, (1952), if P(f (X) < 0) > 0 and P(f (X) >
0) > 0, then there exists λ0 ∈ R such that

− ln E[exp(λ0f (X))] = inf
λ∈R

(− ln E[exp(λf (X))]) . (25)

We also will use that by the Chebyshev inequality, we also have that for each
t ∈ R,

n−1 ln



P




n
−1

n∑

j=1

f (Xj ) ≥ t








 ≤ − sup
λ>0
(λt − ln (E[exp(λf (X))])). (26)

As to the LDP of empirical processes. If {n−1 ∑n
j=1 f (Xj , t) : t ∈ T } satisfies

the LDP in l∞(T ) with speed n, then the rate function is

I (z) := sup{It1,...,tm(z(t1), . . . , z(tm)): t1, . . . , tm∈T ,m≥1}, z∈ l∞(T ), (27)

where

It1,...,tm(u1, . . . , um) = sup
λ1,...,λm∈R




m∑

j=1

λjuj − ln E



exp




m∑

j=1

λjf (X, tj )













(28)

(see Arcones, 2003a). The next lemma shows that this rate can be represented using
the function J :

Lemma 2.3 Let I and let It1,...,tm be as in Eqs. 27 and 28. If {f (·, t) : t ∈ T } is
a totally bounded set of (L�1, N�1), then:

(i) For each z ∈ l∞(T ),
sup{It1,...,tm(z(t1), . . . , z(tm)) : t1, . . . , tm ∈ T ,m ≥ 1}
= inf{J (l) : l ∈ (L�1)∗, l(f (·, t)) = z(t), for each t ∈ T }.

(ii) For each k ≥ 0, {z ∈ l∞(T ) : I (z) ≤ k} is a compact set of l∞(T ).
(iii) For each t1, . . . , tm ∈ T and each u1, . . . , um ∈ R,

It1,...,tm(u1, . . . , um) = inf{I (z) : z(tj ) = uj for each 1 ≤ j ≤ m}.
The total boundedness condition in the previous lemma is best in the following

sense:

Lemma 2.4 Let {f (·, t) : t ∈ T } be a collection of functions of (L�1, N�1). Let
I and let It1,...,tm be as in Eqs. 27 and 28. Suppose that:

(i) For each k ≥ 0, {z ∈ l∞(T ) : I (z) ≤ k} is a compact set of l∞(T ).
(ii) For each t1, . . . , tm ∈ T , and each u1, . . . , um ∈ R,

It1,...,tm(u1, . . . , um) = inf{I (z) : z ∈ l∞(T ), z(t1) = u1, . . . , z(tm) = um}.
Then, {f (·, t) : t ∈ T } is a totally bounded set of (L�1, N�1).
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Finally, we present the main result to be used:

Theorem 2.5 Let {f (·, t) : t ∈ T } be a collection of measurable functions,
where T is a compact subset of R

d . Suppose that:

(i) For each t ∈ T , f (·, t) ∈ L�1 .
(ii) For each λ > 0, and each t ∈ T there exists a η > 0, such that

E[exp(λ sup
s∈T ,|s−t |≤η

|f (X, s)− f (X, t)|)] < ∞.

(iii) For each t ∈ T ,

lim
ε→0

sup
s∈T ,|s−t |≤ε

|f (X, s)− f (X, t)| = 0 a.s.

Then, {n−1 ∑n
j=1 f (Xj , t) : t ∈ T } satisfies the LDP in l∞(T ) with speed n

and rate function

I (z) = inf{J (l) : l ∈ (L�1)∗, l(f (·, t)) = z(t), for each t ∈ T }, z ∈ l∞(T ).

3 Large deviations for M-estimators

In this section, we present several results on the large deviations for M-estimators.
First, we consider the LDP for the M-estimators defined in Eq.7.

Theorem 3.1 Let � be a convex set of R
d . Let g : S × � → R be a function

such that for each x ∈ S, g(x, ·) is a convex function. Let θ ∈ �. Let {Km}m≥1 be
a sequence of compact convex sets of R

d contained in� and containing θ . Suppose
that:

(i) There exists a sequence of r.v.’s θ̂n = θ̂n(X1, . . . , Xn) such that Gn(θ̂n) =
inf t∈� Gn(t), where Gn(t) = n−1 ∑n

j=1 g(Xj , t).
(ii) For each t ∈ �, E[g(X, t)] ≥ E[g(X, θ)].

(iii) {g(·, t) : t ∈ �} ⊂ L�1 .
(iv) limm→∞ supt �∈∂Km infλ∈RE[exp(λ(g(X, t)− g(X, θ)))] = 0.
(v) For each t ∈ �o, there exists a function h(·, t) : S → R

d such that

lim
v→0

|v|−1N�1

(
g(·, t + v)− g(·, t)− v′h(·, t)) = 0.

(vi) For each t ∈ �o such that − infλ∈Rd E[exp(λ′h(X, t))] < 0, there exists
εt > 0 such that for each εt > ε > 0,

− inf
λ∈Rd

E[exp(λ′h(X, t))]< inf
t1:|t1−t |=ε

(
− inf
λ1,λ2∈Rd

E[exp(λ′
1h(X, t)+λ′

2h(X, t1))]

)
.

Then, {θ̂n} satisfies the LDP with speed n and rate function

I (t) =
{− inf{ln(E[exp(λ′h(X, t))]) : λ ∈ R

d} if t ∈ �o,
∞ if t ∈ ∂�. (29)
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Observe that this is the natural rate. Under regularity conditions, {Gn(t) : t ∈
�} satisfies the LPD in l∞(�) with rate function

inf{J (l) : l ∈ (L�1
)∗
, l(g(·, t)) = z(t), for each t ∈ �}, z ∈ l∞(�).

In the proof of Theorem 3.1, it is shown that for each l ∈ (L�1
)∗

with J (l) < ∞,
the function l(g(·, t)), t ∈ �, is differentiable in�with derivative is l(h(·, t)), t ∈
�. Besides,

inf{J (l) : l ∈ (L�1
)∗
, l(g(·, t))= sup

t1∈�
l(g(·, t1))} (30)

= inf{J (l) : l ∈ (L�1
)∗
, l(h(·, t))=0}.

By Lemma 2.2, for each t ∈ T ,

inf{J (l) : l ∈ (L�1
)∗
, l(h(·, t)) = 0} = − inf

λ∈Rd
ln

(
E

[
exp(λ′h(X, t))

])
. (31)

The conditions assumed on Theorem 3.1 are minimal conditions. Example 3
shows that condition (i) in Theorem 3.1 is needed. Condition (iv) in Theorem 3.1
is used to show that the M-estimator is eventually inside a compact set. Condition
(vi) in Theorem 3.1 is used to get Eq.30.

It follows from the previous theorem that for each ε > 0,

− inf{I (t) : |t − θ | > ε} ≤ lim inf
n→ ∞ n−1 ln

(
P{|θ̂n − θ | > ε}

)

≤ lim sup
n→ ∞

n−1 ln
(
P{|θ̂n − θ | ≥ ε}

)

≤ − inf{I (t) : |t − θ | ≥ ε}.

A possible choice for the sequence of compact convex sets in Theorem 3.1 is

Km = {t ∈ � : |t − θ | ≤ m and d(t,�c) ≥ m−1}, m ≥ 1.

Example 1 Let {f (·, t) : t ∈ �} be a family of pdf’s with respect to a mea-
sure µ defined on a measurable space (S,S). We will assume that the support of
f (·, t) does not depend on t and that for each t ∈ �, ∇t ln f (x, t) exists. The
M-estimator with respect to the kernel g(x, t) = − ln f (x, t) is the mle. It is well
known that, by the concavity of the logarithmic function and the Jensen inequality,
for any densities f and g with respect to the measure µ,

∫

S

ln

(
f (x)

g(x)g(x)

)
dµ(x) ≤ 0. (32)

Hence, for each t, θ ∈ �

Eθ [ln f (X, t)] ≤ Eθ [ln f (X, θ)],
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whereEθ is the expectation whenX has pdf f (x, θ). If the conditions in the previ-
ous theorem apply when θ obtains (the data comes from the pdf f (·, θ)), θ̂n satisfies
the LDP with rate function

Iθ (t) = − inf
λ∈Rd

ln
(
Eθ

[
exp(λ′∇t ln f (X, t))

])

= inf{Jθ (l) : l ∈ (L�1
θ )

∗, l(∇t ln f (X, t)) = 0},

where L�1
θ , (L�1

θ )
∗ and Jθ are defined when θ obtains. We claim that for each

θ, t ∈ �, such that K(f (·, t), f (·, θ)) < ∞ and
∫ ∇t f (x, t) µ(x) = 0, then

Iθ (t) ≤ K(f (·, t), f (·, θ)). (33)

Observe that we may define lt ∈ (L�1
θ )

∗ by lt (g) = Et [g(X)] = Eθ [g(X)γt (X)],
g ∈ L�1

θ , where γt (x) = f (x, t)/f (x, θ). We have that Eθ [γt (X)] = 1 and

lt (∇t ln f (X, t)) =
∫

∇t f (x, t) dµ(x) = 0.

So, by Eq. 18,

Iθ (t) ≤ Jθ (lt ) = Eθ [�2(γt (X))] = K(f (·, t), f (·, θ)).

The next theorem discerns when there exists equality in Eq. 33:

Theorem 3.2 Suppose that
∫ ∇t f (x, t)dµ(x) = 0. Then,

(i) If there exist λt,θ ∈ R
d and ct,θ ∈ R such that

λ′
t,θ∇t ln f (x, t)+ ct,θ = ln f (x, t)− ln f (x, θ), Pt − a.s. (34)

then,

− inf
λ∈Rd

ln
(
Eθ

[
exp(λ′∇t ln(X, t))

]) = K(f (·, t), f (·, θ)) = ct,θ .

(ii) If there exists λt,θ ∈ R
d such that

− inf
λ∈Rd

ln
(
Eθ

[
exp(λ′∇t ln f (X, t))

])

= − ln
(
Eθ

[
exp(λ′

t,θ∇t ln f (X, t))
])

= K(f (·, t), f (·, θ)),

then

ln f (x, t)− ln f (x, θ)− λ′
t,θ∇t ln f (x, t) = K(f (·, t), f (·, θ)), Pt − a.s.
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Example 2 Let {f (x−θ) : θ ∈ R} be a one dimensional location family.Assume
that f (x) > 0, for each x ∈ R. Then, condition Eq. 34 holds for each t, θ ∈ R if
and only if for each t ∈ R, there exists λ(t) and c(t) such that

λ(t)
f ′(x)
f (x)

+ c(t) = ln f (x)− ln f (x − t), for each x ∈ R. (35)

It is easy to see that the normal pdf f (x) = (2π)−1/2σ−1 exp
(−2−1σ−2(x − µ)2

)
,

where µ ∈ R, and σ > 0, satisfies Eq.35 with λ(t) = t and c(t) = 2−1σ−2t2.
We also have that the pdf

f (x) = (
(α))−1|γ |αα exp
(−αeγ (x−θ) + αγ (x − θ)

)
(36)

where α > 0, γ �= 0 and θ ∈ R, satisfies Eq. 35 with λ(t) = γ−1 (1 − e−γ t )
and c(t) = α(e−γ t − 1 + γ t). IfX has the pdf in Eq.36 and Y = γ−1 ln(Xα)− θ ,
then Y has a Gamma(α, 1) distribution.

The following theorem determines the one dimensional location families for
which the rate function of the large deviations of the mle coincides with the
Kullback–Leibler information number.

Theorem 3.3 Suppose that f is a second differentiable pdf satisfying Eq.35, then
either f is a normal pdf or f is as in Eq.36, for some α > 0, γ �= 0 and θ ∈ R.

By Theorem 2 in Ferguson (1962), the normal family, with a fixed σ 2, and the
family in Eq,36, with some fixed α > 0 and γ �= 0, are the only one dimensional
location families, which are exponential families.

Theorem 3.1 gives the following for a one dimensional location family:

Theorem 3.4 Let {Xj }be a sequence of i.i.d.r.v.’s with a pdf belonging to {f (·−t) :
t ∈ R} where f is a pdf. Suppose that the following conditions are satisfied:

(i) For each x ∈ R, f (x) > 0.
(ii) f has a continuous first derivative.

(iii) − ln f (·) is a strictly convex function.
(iv) limx→±∞ f (x) = 0.
(v) limt→±∞ infλ∈R

∫ ∞
−∞(f (x − t))λ(f (x))1−λ dx = 0.

(vi) For each t, λ ∈ R,
∫ ∞
−∞ exp(λf ′(x − t)/f (x − t))f (x) dx < ∞.

(vii) The function t ∈ R �→ f ′(X − t)/f (X − t) ∈ L�1 is continuous.

Then, there exists a sequence of r.v.’s θ̂n = θ̂n(X1, . . . , Xn) such thatGn(θ̂n) =
inf t∈� Gn(t), whereGn(t) = −n−1 ∑n

j=1 ln f (Xj − t). Besides, when θ obtains,

{θ̂n} satisfies the LDP with speed n and rate function I (t − θ), t ∈ R, where

I (t) = − inf
λ∈R

ln(E0[exp(λf ′(X − t)/f (X − t))]). (37)

Condition (v) in the previous theorem follows if for some 0 < λ < 1,∫ ∞
−∞(f (x))

1−λ dx < ∞ (using conditions (ii) and (iv)).
For a scale family of pdf’s, we have results similar to the ones for the location

family. For example, it is easy to see that if {λ−1f (λ−1x) : λ > 0} is a scale
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family, then this family satisfies Eq.34 if and only if f (x) = α1|x|−1g1(ln(−x)),
if x < 0 and f (x) = α1x

−1g2(ln x), if x > 0, where α1, α2 > 0, α1 + α2 =
1 and g1 and g2 are two pdf’s satisfying condition (35). Hence, g1 and g2 are
either normal or as in Eq.36. This implies that f (x) = α1f1(−x), if x < 0 and
f (x) = α1f2(x), if x > 0, where f1 and f2 are pdfs on (0,∞) for the form either
f (x) = (2π)−1/2σ−1x−1 exp

(−2−1σ−2(ln x − µ)2
)
, where µ ∈ R, and σ > 0,

or f (x) = (
(α))−1e−cxr rcαxαr−1, where α, r, c > 0.
A common family of pdf’s is the exponential family. Let µ be a measure on

R
d . Define ψ(t) := ln

∫
Rd et

′x dµ(x). Let � := {t ∈ R
d : ψ(t) < ∞}. Let

f (x, t) := et
′x−ψ(t). The family of pdf’s {f (x, t) : t ∈ �} is a full exponential

family with a canonical representation. By a change of parameter, any full expo-
nential family of distribution can have this representation (see Brown, 1986). It is
easy to see that a full exponential family of pdf’s satisfies Eq.34. If t ∈ �o, then
the Kullback–Leibler information of f (·, t) and f (·, θ) is

K(f (·, t), f (·, θ)) = ψ(θ)− ψ(t)+
∫
(t − θ)′x exp(t ′x − ψ(t)) dµ(x)(38)

= ψ(θ)− ψ(t)+ (t − θ)′∇ψ(t),
because by taking derivates inside the integral,

∇ψ(t) =
∫
x exp(t ′x) dµ(x)

(∫
exp(t ′x) dµ(x)

)−1

.

Theorem 3.1 gives the following for a full exponential family:

Theorem 3.5 With the notation above, let θ ∈ �o and let {Km}m≥1 be a sequence
of compact convex sets of R

d contained in � and containing θ . Suppose that:

(i) There exists a sequence of r.v.’s θ̂n = θ̂n(X1, . . . , Xn) such that

ψ(θ̂n)− θ̂ ′
nX̄n = inf

t∈�
(ψ(t)− t ′X̄n),

where X̄n := n−1 ∑n
j=1Xj ,

(ii) limm→∞ supt �∈Km infλ∈R (ψ(θ+λ(t−θ))− ψ(θ)− λ(ψ(t)− ψ(θ))) = −∞.

(iii) For each t1, t2 ∈ �o, ∇ψ(t1) �= ∇ψ(t2). Then, when θ obtains, θ̂n satisfies
the LDP with speed n rate function

I (t) =
{
K(f (·, t), f (·, θ)) if t ∈ �o,
∞ if t ∈ ∂�. (39)

Condition (ii) in Theorem 3.5 holds if limm→∞ inf t∈�cm
ψ(t)−ψ(θ)

|t−θ | = ∞, where

�m = {t ∈ � : d(t, ∂�) ≥ m−1, |t − θ | ≤ m}.
Observe that taking λ = τ0|t − θ |−1, where τ0 < d(θ,�c), we get that

inf
λ∈R

(ψ(θ + λ(t − θ))− ψ(θ)− λ(ψ(t)− ψ(θ)))

≥ ψ(θ + τ0|t − θ |−1(t − θ))− ψ(θ)− τ0|t − θ |−1(ψ(t)− ψ(θ)).
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Example 3 Consider the measure µ in R defined by µ{0} = µ{1} = 1 and
µ(R−{0, 1}) = 0. Letψ(t) := ln

∫
Rd et

′x dµ(x) = ln(1+et ) and let f (x, t) :=
etx−ψ(t) = etx/(1 + et ), for x ∈ {0, 1}. The family of pdf’s {f (x, t) : t ∈ R} is
a reparametrization of the Bernoulli distribution. In this situation, the mle is not
defined: supt∈R

(tX̄n − ln(1 + et )) is not attained if either X̄n = 0 or X̄n = 1.
Theorem 3.5 does not apply to this example. The mle exists as a random element
with values in [−∞,∞]. It is easy to see that the mle (when defined in [−∞,∞])
when θ obtains satisfies the LPD in [−∞,∞] with rate function

Iθ (t) =





ln(1/p) if t = −∞,
u ln(u/p)+ (1 − u) ln((1 − u)/(1 − p)) if t ∈ R,
ln(1/(1 − p)) if t = ∞.

where p = eθ /(1 + eθ ) and u = et /(1 + et ). This example shows that condition
(i) in Theorem 3.5 is needed.

In Theorem 3.1, we assumed that for each x, the function g(x, ·) is convex.
Next, we consider theorems which apply to other situations. Next, we consider the
one dimensional case.

Theorem 3.6 Let h : S × R → R be a function such that for each x ∈ S,
h(x, ·) : R → R is a nondecreasing function. Let θ̂ (1)n = inf{t : Hn(t) ≥ 0}
and let θ̂ (2)n = sup{t : Hn(t) ≤ 0}, where Hn(t) = n−1 ∑n

j=1 h(Xj , t). Let θ̂n
be a sequence of [−∞,∞]–valued r.v.’s such that θ̂ (1)n ≤ θ̂n ≤ θ̂ (2)n . Let θ ∈ R.
Suppose that:

(i) {h(·, t) : t ∈ R} ⊂ L�1 .
(ii) E[h(X, θ)] = 0.

(iii) For each t > θ , P(h(X, t) < 0) > 0, and for each t < θ , P(h(X, t) >
0) > 0.

Then, for each t > θ ,

lim
n→∞ n

−1 ln
(
P{θ̂n ≥ t}

)
= inf

λ∈R

ln(E[exp(λh(X, t−))]);

for each t ≥ θ ,

lim
n→∞ n

−1 ln
(
P{θ̂n > t}

)
= inf

λ∈R

ln(E[exp(λh(X, t+))]);

for each t < θ ,

lim
n→∞ n

−1 ln
(
P{θ̂n ≤ t}

)
= inf

λ∈R

ln(E[exp(λh(X, t+))]);

and for each t ≤ θ ,

lim
n→∞ n

−1 ln
(
P{θ̂n < t}

)
= inf

λ∈R

ln(E[exp(λh(X, t−))]),

where h(x, t−) = lims→t− h(x, s) and h(x, t+) = lims→t+ h(x, s).
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The previous theorem is very close to Theorem 2 in Rubin and Rukhin (1983).
However, there is an error in Theorem 2 in Rubin and Rukhin (1983).

Example 4 Given a sequence of i.i.d.r.v’s {Xj }∞j=1 and 0 < p < 1, a sample p-

quantile θ̂n is defined as in the previous theorem with h(x, t) = I (x ≤ t) − p.
Suppose that P(X ≤ θ) = p. Theorem 3.6 gives that for each t > θ , such that
P{X > t} > 0,

lim
n→∞ n

−1 ln(P{θ̂n ≥ t}) = − ln

(
pp(1 − p)1−p

(F (t−))p(1 − F(t−))1−p

)
,

and

lim
n→∞ n

−1 ln(P{θ̂n > t}) = − ln

(
pp(1 − p)1−p

(F (t))p(1 − F(t))1−p

)
;

and for each t < θ , such that P{X < t} > 0,

lim
n→∞ n

−1 ln(P{θ̂n ≤ t}) = − ln

(
pp(1 − p)1−p

(F (t))p(1 − F(t))1−p

)

and

lim
n→∞ n

−1 ln(P{θ̂n < t}) = − ln

(
pp(1 − p)1−p

(F (t−))p(1 − F(t−))1−p

)
.

Example 5 Condition (iii) in Theorem 3.6 is needed. Suppose thath(x, t) = (t−x)
I (0 < x < t), if t > 0; h(x, 0) = 0; and h(x, t) = (t − x)I (t < x < 0), if
t < 0. Suppose that X has a nondegenerate distribution symmetric about 0. Then,
the rate functions of the large deviations of θ̂ (1)n and θ̂ (2)n are different. We have
that θ̂ (1)n = −∞, if Xi ≥ 0, for each 1 ≤ i ≤ n; θ̂ (1)n = max{Xi : Xi < 0},
if Xi < 0, for some 1 ≤ i ≤ n; θ̂ (2)n = ∞, if Xi ≤ 0, for each 1 ≤ i ≤ n;
θ̂ (2)n = min{Xi : Xi > 0}, if Xi > 0, for some 1 ≤ i ≤ n. We have that for
each t ≥ 0, limn→∞ n−1 ln(P{θ̂ (1)n ≥ t}) = −∞ and limn→∞ n−1 ln(P{θ̂ (2)n ≥
t}) = − ln 2; and for each t ≤ 0, limn→∞ n−1 ln(P{θ̂ (1)n ≤ t}) = − ln 2 and
limn→∞ n−1 ln(P{θ̂ (2)n ≤ t}) = −∞.

Theorem 3.6 gives the large deviations for the mle over an one-dimensional
exponential family under minimal conditions:

Theorem 3.7 Le µ be a measure in (R,B(R)) such that:

(i) For each a ∈ R, µ(R − {a}) > 0.

(ii) � := {t ∈ R :
∫

etx dµ(x) < ∞} has nonempty interior.

Let ψ(t) := ln
∫

etx dµ(x), t ∈ �, and let f (x, t) := exp (tx − ψ(t)), x ∈ R,
t ∈ �. Let aψ = inf{t ∈ R :

∫
etx dµ(x)} and let bψ = sup{t ∈ R :∫

etx dµ(x)}. Let {Xj }be a sequence of i.i.d.r.v.s from the pdff (·, θ), where θ ∈ �o.
Let θ̂n = inf{t ∈ �o : n−1 ∑n

j=1(ψ
′(t) − Xj) ≥ 0}, where inf(∅) = aψ .
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Then, for each bψ > t ≥ θ ,

lim
n→∞ n

−1 ln
(
P{θ̂n ≥ t}

)
= −K(f (·, t), f (·, θ))

and for each aψ < t ≤ θ ,

lim
n→∞ n

−1 ln
(
P{θ̂n ≤ t}

)
= −K(f (·, t), f (·, θ)).

The following theorem deals with the multivariate case.

Theorem 3.8 Let � be a subset of R
d . Let h : S × � → R

d be a function.
Let {Km}m≥1 be a nondecreasing sequence of compact sets of R

d contained in �.
Suppose that:

(i) There exists a sequence of r.v.’s θ̂n = θ̂n(X1, . . . , Xn) such thatHn(θ̂n) = 0,
where Hn(t) := n−1 ∑n

j=1 h(Xj , t).
(ii) {h(·, t) : t ∈ �} ⊂ L�1 .

(iii) t ∈ � �→ h(·, t) ∈ L�1 is a continuous function.
(iv) inf t ∈�−K1 |H(t)| > 0, where H(t) = E[h(X, t)].
(v) For each t > 0, limm→∞ supλ> 0(λt − ln(E[exp(λRm(X))])) = ∞, where

Rm(x) : = supt∈�−Km
∣∣∣ h(x,t)−H(t)H(t)

∣∣∣.
(vi) For eachm ≥ 1, {n−1 ∑n

j=1 h(Xj , t) : t ∈ Km} satisfies the LDP in l∞(Km)
with speed n.

(vii) For each t ∈ �o such that − infλ∈Rd E[exp(λ′h(X, t))] < 0, and each
t1 ∈ �,

− inf
λ∈ Rd

E[exp(λ′h(X, t))] < − inf
λ1,λ2∈Rd

E[exp(λ′
1h(X, t)+ λ′

2h(X, t1))].

Then, θ̂n satisfies the LDP with speed n and rate function

I (t) = − inf{ln(E[exp(λ′h(X, t))]) : λ ∈ R
d}.

Condition (v) in the previous theorem can be checked using Theorem 2.1.

Example 6 The previous theorem applies to many common parametric families
of pdf’s. For example, consider the mle over the family of pdf’s {f (x, t) :=

1√
2πt

e− (x−t)2
2t2 : t > 0}, i.e. t−1(X − t) has a standard normal distribution. If θ

obtains, θ̂n satisfies the LDP with speed n and rate function Iθ (t) = r(t/θ), where

r(a) : = 2−1 ln(2 + (4 + 5a2(2 − a)2)1/2)− 2−1 ln(5a2)

+2−1 − 2−1a + (3/4)a2 − 2−2(4 + 5a2(2 − a)2)1/2.

It is easy to see that if t �= θ , Eq.34 does not hold. The Kullback–Leibler informa-
tion is

K(f (·, t), f (·, θ)) = (
t

θ
)2 − (

t

θ
)− ln(

t

θ
).

For each t �= θ,K(f (·, t), f (·, θ)) > Iθ (t), i.e. for a �= 1, a2 −a− ln a > r(a).
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4 Confidence regions

As mentioned in the introduction, the LDP of statistics can be used to obtain confi-
dence regions of non vanishing size such that their coverage probability goes to one
exponentially fast. These confidence regions have a certain minimality properties.
Let � be a parameter set. Suppose that, when θ obtains, θ̂n satisfies the LDP with
speed n and continuous rate function Iθ (·). Given 0 < α < ∞, let

Cα(X1, . . . , Xn) : = {θ ∈ � : Iθ (θ̂n(X1, . . . , Xn)) < α}. (40)

Assuming thatUθ,α := {t ∈ R
d : Iθ (t) < α} is an open set, thenCα(X1, . . . , Xn)

is a confidence region for � such that

lim sup
n→∞

n−1 ln (Pθ {θ �∈ Cα(X1, . . . , Xn)}) ≤ −α. (41)

By the results in Sect. 3, the rate function for the LDP of mle’s is

Iθ (t) = − inf
λ∈Rd

ln Eθ [exp(λ′∇t ln f (X, t))]. (42)

Because of the equivariance properties of the mle, the constructed confidence
regions satisfy the usual equivariance properties. For a location family of pdf’s,
i.e., � = R

d , f (x, t) = f (x − t), θ ∈ �, where f is a fixed pdf, then

− inf
λ∈Rd

lnEθ [exp(λ′(∇ ln f )(X − t))] = I (t − θ),

where

I (t) = − inf
λ∈Rd

lnE0[exp(λ′(∇ ln f )(X − t))].

Hence, the confidence region in Eq.40 is Cα(X1, . . . , Xn) : = {θ ∈ � : I (θ̂n −
θ) < α}. Similarly, for a scale family (� = (0,∞), f (x, t) = t−1f (t−1x), where
f is a fixed pdf), Iθ (t) = I (t/θ), where

I (t) = − inf
λ∈R

ln E1

[
exp

(
∂

∂t
ln (t−1f (t−1X))

)]
.

Example 7 Let X1, . . . , Xn be a i.i.d.r.v.’s from an exponential distribution with
mean θ > 0. The mle of θ is θ̂n = X̄n. From the results in Sect. 3, θ̂n satisfies the
LDP with rate function

Iθ (t) = − inf
λ

ln Eθ [exp(λ
∂

∂t
ln f (X, t))] = (t/θ)− 1 − ln(t/θ),

when θ obtains. Given α > 0, take aα < 1 < bα such that

aα − 1 − ln(aα) = bα − 1 − ln(bα) = α. (43)

Then, the confidence region in Eq.40 is (b−1
α θ̂ , a

−1
α , θ̂ ). By Example 9.3.4 in Casella

and Berger (2002), the shortest confidence interval based on the pivotal quantity
θ−1X̄n has the form [b−1X̄n, a

−1X̄n], where a1+n−1
e−a = b1+n−1

e−b. As n → ∞,
this condition goes to Eq.43. Simulations show that the two confidence intervals
are very close.
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For mle’s from a full exponential family the constructed confidence regions
agree with the confidence regions obtained by inverting the acceptance region of
the likelihood ration test with the null hypothesis H0 : t = θ .

Theorem 4.1 Consider the parametric family {f (x, t) : = et
′x−ψ(t) : t ∈ �} in

Theorem 3.2. Assuming that supt ∈� L(t) is attained in the interior of �, then

−n−1 ln

(
L(θ)

supt∈� L(t)

)
= ψ(θ)− ψ(θ̂n)− (θ − θ̂ )′∇ψ(θ̂n)

= K(f (·, θ̂n), f (·, θ)),

where L(t) := ∏n
j=1 f (Xj , t).

5 Proofs

Proof of Lemma 2.1 If l(1) = 1, then

sup
f∈L�1

(
l(f )− E[ef (X) − 1]

) = sup
f∈L�1 ,λ∈R

(
l(λ1 + f )− E[eλ+f (X) − 1]

)

= sup
f∈L�1 ,λ∈R

(
λ+ l(f )− eλE[ef (X)] + 1

)

= sup
f∈L�1

(
l(f )− ln E[ef (X)]

)
,

(the maximum over λ is attained when 1 = eλE[ef (X)]). ��

Proof of Lemma 2.2 Define

I (1)(u1, . . . , um)=sup






m∑

j=1

λjuj−ln



E



exp




m∑

j=1

λjfj (X)











: λ1, . . . , λm∈R




,

and

I (2)(u1, . . . , um) = inf
{
J (l) : l ∈ (L�1

)∗
, l(fj ) = uj for each 1 ≤ j ≤ m

}
.

Then, I (1) and I (2) are convex lower semicontinuous functions. To prove that the
two functions are equal, it suffices to prove that their Fenchel conjugates agree.
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Using Eq.16, we have that for each λ1, . . . , λm ∈ R,

sup






m∑

j=1

λjuj − I (2)(u1, . . . , um) : u1, . . . , um ∈ R






= sup
u1,...,um∈R

sup






m∑

j=1

λjuj − J (l) : l ∈ (L�1
)∗
, l(fj )=uj for each 1≤j≤m






= sup
u1,...,um∈R

sup




l




m∑

j=1

λjfj



−J (l) : l∈(L�1
)∗
, l(fj )=uj for each 1≤j≤m






=sup




l




m∑

j=1

λjfj



 − J (l) : l ∈ (L�1
)∗





= ln



E



exp




m∑

j=1

λjfj (X)











 .

��
We will need the following lemma :

Lemma 5.1 (i) For each k ≥ 0 and each function f ∈ L�1 ,

sup{|l(f )| : l ∈ (L�1
)∗
, J (l) ≤ k} ≤ (k + 1 + 21/2)N�1(f ).

(ii) For each function f ∈ L�1 ,
(

ln(2)

ln(8e2)

)
N�1(f ) ≤ sup{|l(f )| : l ∈ (L�1

)∗
, J (l) ≤ 1}.

Proof First, we prove (i). Letλ := N�1(f ) (so thatE[eλ
−1|f (X)|−1−λ−1|f (X)|]≤1).

By Eq.15, for each l ∈ L�1 ,

l(λ−1f ) ≤ J (l)+ ln(E[eλ
−1f (X)]) ≤ J (l)+ E[eλ

−1f (X) − 1],

l(−λ−1f ) ≤ J (l)+ ln(E[e−λ−1f (X)]) ≤ J (l)+ E[e−λ−1f (X) − 1].

So, for J with J (l) ≤ k,

|l(f )| ≤ λJ (l)+ λE[eλ
−1|f (X)| − 1]

≤ λk + E[|f (X)|] + λE[eλ
−1|f (X)| − 1 − λ−1|f (X)|]

≤ λ(k + 1)+ E[|f (X)|].
We also have that

(λ−1E[|f (X)|])2 ≤ E[λ−2|f (X)|2] ≤ 2E[eλ
−1|f (X)| − 1 − λ−1|f (X)|] ≤ 2.

From these estimations (i) follows.
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As to (ii). Define

‖f ‖K : = sup{|E[f (X)γ (X)]| : E[γ (X)] = 1, E[�2(γ (X))] ≤ 1}.

First, we prove that for each function f with E[f (X)] = 0 and each nonneg-
ative function γ , with E[γ (X)] = 1,

|E[f (X)γ (X)]| ≤ (1 + E[�2(γ (X))])‖f ‖K (44)

Eq.44 is obviously true if E[�2(γ (X))] ≤ 1. If E[�2(γ (X))] > 1, take t =
(E[�2(γ (X))])−1. By convexity E[�2(tγ (X)+ 1 − t)] ≤ tE[�2(γ (X))] = 1.
So, |E[f (X)(tγ (X)+1−t)]|≤‖f ‖K and |E[f (X)γ (X)]|≤E[�2(γ (X))]‖f (X)‖K.
Hence, Eq.44 holds.

Next, we prove that for each function f with E[f (X)] = 0,

N�1(f ) ≤ ln(2e)

ln(2)
‖f ‖K. (45)

Given a function f with ‖f ‖K ≤ 1 and E[f (X)] = 0, we get from Eq.44 with
γ (x) = ef (X)I (f (X) ≥ 0)(E[ef (X)I (f (X) ≥ 0)])−1 that

E[f (X)ef (X)I (f (X) ≥ 0)(E[ef (X)I (f (X) ≥ 0)])−1]

≤ 1 + E[�2(γ (X))]

= 1 + E[ef (X)I (f (X) ≥ 0)(E[ef (X)I (f (X) ≥ 0)])−1

× ln
(
ef (X)(E[ef (X)I (f (X) ≥ 0)])−1

)
]

= 1 +E[f (X)I (f (X) ≥0)ef (X)(E[ef (X)I (f (X) ≥ 0)])−1]

− ln(E[ef (X)I (f (X) ≥ 0)]).

So, E[ef (X)I (f (X) ≥ 0)] ≤ e. Similarly, we get that E[e−f (X)I (f (X)≤ 0)] ≤ e.
Hence, E[e|f (X)|] ≤ 2e. Finally, we have that

E[eln(2)(ln(2e))−1|f (X)| − 1 − ln(2)(ln(2e))−1|f (X)|]
≤ E[eln(2)(ln(2e))−1|f (X)| − 1]

≤ (
E[e|f (X)|]

)ln(2)(ln(2e))−1

− 1 ≤ 1.

Hence, if ‖f ‖K ≤ 1, then N�1(f ) ≤ ln(2e)
ln(2) and Eq.45 follows.

Using that |E[f (X)]| ≤ ‖f ‖K and Eq.45,

N�1(f (X)) ≤ N�1(f − E[f (X)])+N�1(E[f (X)])

≤ ln(2e)

ln(2)
‖f − E[f (X)]‖K + |E[f (X)]|

≤
(

1 + 2
ln(2e)

ln(2)

)
‖f (X)‖K =

(
ln(8e2)

ln(2)

)
‖f (X)‖K.

Hence, (ii) follows. ��
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By the previous lemma, given a class of functions {f (·, t) : t ∈ T } in L�1 and
l ∈ (L�1

)∗
with J (l) < ∞, then t ∈ (T , d�1) �→ l(f (·, t)) ∈ R is a Lipschitz

function, where d�1(s, t) = N�1(f (·, s)−f (·, t)). We also have that if z ∈ l∞(T )
satisfies sups,t ∈ T Is,t (z(s), z(t)) < ∞, then t ∈ (T , d�1) �→ z(t) ∈ R is a Lips-
chitz function. Observe that if sups,t ∈ T Is,t (z(s), z(t)) < c, then for each s, t ∈ T ,
there exists l ∈ (L�1

)∗
with J (l) < c, l(f (·, s)) = z(s) and l(f (·, t)) = z(t).

So, by Lemma 5.1 (i)

|z(s)− z(t)| = |l(f (·, s)− f (·, t))| ≤ (c + 1 + 21/2)d�1(s, t).

Proof of Lemma 2.3 First, we prove (i). Let

I (1)(z) = sup{It1,...,tm(z(t1), . . . , z(tm)) : t1, . . . , tm ∈ T ,m ≥ 1}.

and let

I (2)(z) = inf{J (l) : l ∈ (L�1
)∗
, l(f (·, t)) = z(t) for each t ∈ T }.

By Lemma 2.2, for each z ∈ l∞(T ), we have that I (1)(z) ≤ I (2)(z). To prove the
reverse inequality, we may assume that I (1)(z) < ∞. Since for each
r1, . . . , rm, s1, . . . , sp ∈ T and each u1, . . . , um, v1, . . . , vp ∈ R,

Ir1,...,rm(u1, . . . , um) ≤ Ir1,...,rm,s1,...,sp (u1, . . . , um, v1, . . . , vp),

we can find a sequence {sn} of T such that

lim
n→∞ Is1,...,sm(z(s1), . . . , z(sm)) = I (1)(z)

and {f (·, sn)}∞n=1 is a dense set of {f (·, t) : t ∈ T } with respect to the normN�1 .
Take ln ∈ (L�1

)∗
such that ln(f (·, sj )) = z(sj ) for each 1 ≤ j ≤ n and

J (ln) ≤ Is1,...,sn (z(s1), . . . , z(sn))+ n−1.

Let k : = supn≥1 J (ln) < ∞. By Lemma 5.1, {ln} is a bounded set of
(L�1

)∗
. By

the Alouglu theorem, {ln} is compact in the σ(
(L�1

)∗
,L�1) topology. Hence, there

exists a subnet {lnα } of {ln} which converges in the weak∗ topology. Let l be the limit
of this subnet. We have that for each j ≥ 1, l(f (·, sj )) = z(sj ). Since the functions
t ∈ (T , d�1) �→ l(f (·, t)) ∈ R and t ∈ (T , d�1) �→ z(t) ∈ R are continuous,
we get that l(f (·, t)) = z(t) for each t ∈ T . Hence, I (2)(z) ≤ J (l) ≤ I (1)(z).

To prove (ii), we show that each sequence {zn} in l∞(T ), such that I (zn)≤k, has
a converging subnet. Take ln ∈ (L�1

)∗
such that J (ln) ≤ k+ 1 and ln(f (·, t)) =

zn(t) for each t ∈ T . Since supn≥1 J (ln) < ∞, there exists a subnet lnα and
l ∈ (L�1

)∗
such that lnα → l in the weak∗ topology. Hence, for each t ∈ T ,

lnα (f (·, t)) → l(f (·, t)). Since {ln} and l are uniformly Lipschitz functions from
(T , d�1) into R, supt∈T |lnα (f (·, t))− l(f (·, t))| → 0.

Part (iii) follows from (i) and Lemma 2.2. ��
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Proof of Lemma 2.4 Fix k > 1. Since K : = {z ∈ l∞(T ) : I (z) ≤ k} is a
compact set of l∞(T ),K is totally bounded. Hence, (T , e) is a totally bounded set,
where e(s, t) = supz∈K |z(s)− z(t)|. We have that

e(s, t) = sup{|z(s)− z(t)| : I (z) ≤ k} ≥ sup{|v − u| : Is,t (u, v) < k}
= sup{|l(f (·, s)− f (·, t))| : l ∈ (L�1

)∗
, J (l) < k}

≥
(

ln(2)

ln(8e2)

)
N�1(f (·, s)− f (·, t)),

by Lemma 5.1. So, the claim follows. ��
Proof of Theorem 2.1 We apply Theorem 2.8 in Arcones, (2003a). Let d(s, t) =
|t − s|. By conditions (ii) and (iii), given ε > 0 and t ∈ T , there exists a δ > 0
such that

E[ sup
s∈T ,|s−t |≤δ

|f (X, s)− f (X, t)|] ≤ ε. (46)

This implies that {f (X, t) : t ∈ T } is a totally bounded set of L1, i.e. condi-
tion (a.1) in Theorem 2.8 in Arcones, (2003a) holds. Conditions (i) and (ii) imply
that there exists a λ > 0 such that E[exp(λF (X))] < ∞, where F(x) : =
supt ∈ T |f (x, t)|, i.e. condition (a.2) in Theorem 2.8 holds. Conditions (i) and (ii)
and the compactness of T imply that given λ > 0, there exists a η > 0, such that

E[exp(λ sup
d(s,t)≤η

|f (X, s)− f (X, t)|)] < ∞.

i.e. condition (a.3) in Theorem 2.8 in Arcones, (2003a) holds. Since T is a compact
set of R

d and Eq.46 holds, given ε > 0, there exists t1, . . . , tm ∈ T and δ > 0
such that for each 1 ≤ j ≤ m,

E[ sup
t ∈ T ,|t−tj |≤δ

|f (X, t)− f (X, tj )|] ≤ ε

and T ⊂ ∪mj=1{t ∈ R
d : |t − tj | ≤ δ}. Hence, by the Blum–DeHardt theorem

(see for example Theorem 7.1.5 in Dudley, 1999, condition (a.4) in Theorem 2.8
in Arcones, (2003a) holds. ��

In the proof of Theorem 3.1, we will use the following lemma:

Lemma 5.2 Let� be a convex set of Rd , letK be a compact convex set contained in
�, let t0 ∈ K and let g : � → R be a convex function. If g(t0) < inf t ∈ ∂K g(t),
where t0 ∈ K , then inf t ∈ ∂K g(t) ≤ inf t � ∈K g(t).

Proof Take t �∈K . LetCt := {u∈ R : t0+u(t−t0)∈�} and let rt :Ct → R defined
by rt (u) = g(t0 + u(t − t0)), u ∈ Ct . Let a = sup{u ∈ R : t0 + u(t − t0) ∈ K}.
SinceK is a compact set, t0 ∈ Ko and t � ∈ K , 0<a<1 and t0 +a(t−t0)∈∂K . By
convexity of the function rt , a−1(rt (a)− rt (0)) ≤ (1 − a)−1(rt (1)− rt (a)). Using
that 0 < inf t ∈ ∂K g(t)− g(t0) ≤ rt (a)− rt (0), we get that 0 < rt(1)− rt (a) =
g(t)− g(t0 + a(t − t0)). Hence, infs ∈ ∂K g(s) < g(t). ��
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Proof of Theorem 3.1. First, we prove that

lim
m→∞ lim sup

n→∞
n−1 ln

(
P{θ̂n �∈ Km}

)
= −∞. (47)

By Lemma 5.2,

P{θ̂n �∈ Km} ≤ P{Gn(θ) ≥ inf
t∈∂Km

Gn(t)}.

By Corollary 3.5 in Arcones (2003b), for each compact set T ⊂ �, {Gn(t) : t ∈ T }
satisfies the LPD. In particular, we may take T = {θ} ∪ ∂Km. Since the set {z ∈
l∞(T ) : z(t) ≥ inf t ∈ ∂Km z(t)} is a closed set of l∞(T ), we have that

lim sup
n→∞

n−1 ln

(
P{Gn(θ) ≥ inf

t∈∂Km
Gn(t)}

)

≤ − inf{J (l) : (L�1)∗, and l(g(·, θ)) ≥ inf
t∈∂Km

l(g(·, t))}.

Using that if J (l) < ∞, then l(g(·, t)), t ∈ �, is a continuous function, Eq.19
and Lemma 2.2, we have that

inf{J (l) : l ∈ (L�1
)∗
, l(g(·, θ)) ≥ inf

t∈∂Km
l(g(·, t))} (48)

= inf{J (l) : l ∈ (L�1
)∗
, l(g(·, θ)) ≥ l(g(·, t)) for some t ∈ ∂Km}

= inf
t∈∂Km

inf{J (l) : l ∈ (L�1
)∗
, l(g(·, θ)) ≥ l(g(·, t))}

= inf
t∈∂Km

inf{J (l) : l ∈ (L�1
)∗
, l(g(·, θ)) = l(g(·, t))}

= inf
t∈∂Km

(
− inf
λ∈R

ln (E[exp(λ(g(X, t)− g(X, θ)))])

)

= − sup
t∈∂Km

inf
λ∈R

ln (E[exp(λ(g(X, t)− g(X, θ)))]) .

Hence, by condition (iv), Eq.47 holds.
Next, we prove that if J (l) < ∞, where l ∈ (L�1

)∗
, then the convex func-

tion l(g(·, t)), t ∈ �, has a minimum on �. By (iv) and Eq.48, for m large
enough, l(g(·, θ)) < inf t ∈ ∂Km l(g(·, t)). Hence, Lemma 5.2 implies that l(g(·, θ))
< inf t � ∈Km l(g(·, t)). Therefore, the function l(g(·, t)), t ∈ �, has a minimum
on �.

To prove that for each open set U ,

lim inf
n→∞ n−1 ln P{θ̂n ∈ U} ≥ −I (U) (49)

it suffices to prove that for each t ∈ R
d and each ε > 0,

lim inf
n→∞ n−1 ln(P{θ̂n ∈ B(t, ε)}) ≥ −I (t). (50)

If I (t) = ∞, Eq.50 is obviously satisfied. Assume that I (t) < ∞. By Lemma
5.2,

P{θ̂n ∈ B(t, ε)} ≥ P{Gn(t) < inf
t1∈� : |t1−t |=ε

Gn(t1)}.
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Since the set {z ∈ l∞(T ) : z(t) < inf t1 ∈� : |t1−θ |=ε z(t1)}, where T = {t} ∪ {t1 ∈
� : |t1 − t | = ε}, is an open set of l∞(T ),

lim inf
n→∞ n−1 ln P{θ̂n ∈ B(t, ε)} (51)

≥ − inf{J (l) : l ∈ (L�1
)∗
, l(g(·, t)) < inf

t1∈� : |t1−t |=ε
l(g(·, t1))}.

Using that if J (l) < ∞, and l(h(·, t)) = 0, then the function l(g(·, t)), t ∈ �,
has a minimum at t , and condition (vi), we get that

inf{J (l) : l ∈ (L�1
)∗
, l(h(·, t)) = 0, l(g(·, t)) = inf

t1 : |t1−t |=ε
l(g(·, t1))}

= inf
t1∈� : |t1−t |=ε

inf{J (l) : l ∈ (L�1
)∗
, l(h(·, t)) = 0, l(g(·, t)) = l(g(·, t1))}

= inf
t1∈� : |t1−t |=ε

inf{J (l) : l ∈ (L�1
)∗
, l(h(·, t)) = l(h(·, t1)) = 0} > I (t).

So,

I (t) = inf{J (l) : l ∈(L�1
)∗
l(h(·, t))= 0,l(g(·, t))< inf

t1 :|t1−t |<ε
l(g(·, t1))} (52)

≥ inf{J (l) : l ∈ (L�1
)∗
, l(g(·, t)) < inf

t1∈� : |t1−t |=ε
l(g(·, t1))}.

Eqs.51 and 52 imply Eq.50.
We claim that for each closed set F ,

lim sup
n→∞

n−1 ln P{θ̂n ∈ F } ≤ −I (F ). (53)

We may assume that I (F ) < ∞. The case I (F ) = ∞ is similar. Takem such that

inf{J (l) : l ∈ (L�1
)∗
, l(g(·, θ)) ≥ inf

t∈∂Km
l(g(·, t))} > I (F ). (54)

We have that

P{θ̂n ∈ F } ≤ P{θ̂n ∈ F ∩Km} + P{θ̂n �∈ Km}.
Using that the set {z ∈ l∞(Km) : inf t∈Km∩F z(t) = inf t∈Km z(t)} is a closed set of
l∞(Km), we get that

lim sup
n→∞

n−1 ln
(
P{θ̂n ∈ F ∩Km}

)

≤ lim sup
n→∞

n−1 ln

(
P{ inf
t∈F∩Km

Gn(θ) = inf
t∈Km

Gn(t)}
)

≤ − inf{J (l) : l ∈ (L�1
)∗
, inf
t∈F∩Km

l(g(·, t)) = inf
t∈Km

l(g(·, t))}.

Let l ∈ (L�1
)∗

such that J (l) < ∞ and inf t∈F∩Km l(g(·, t)) = infθ∈Km l(g(·, t)).
If l(g(·, θ)) ≥ inf t∈∂Km l(g(·, t)), then, by Eq.54, J (l) ≥ I (F ).
If l(g(·, θ)) < infθ∈∂Km l(g(·, t)), then, by Lemma 5.2, inf t∈� l(g(·, t)) = inf t∈Km
l(g(·, t)) = inf t∈F∩Km l(g(·, t)). Thus, there exists tl ∈ F ∩ Km be such that
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inf t ∈� l(g(·, t))
= l(g(·, tl)). By Lemma 5.1 (ii) and hypothesis (v), l(g(·, t)), t ∈ �, is differen-
tiable in �o and ∇(l(g(·, t))) = l(h(·, t)). Hence, l(h(·, tl)) = 0,

J (l) ≥ inf
t∈F

inf{J (l) : l ∈ (L�1
)∗
, l(h(·, t)) = 0}.

and Eq.53 holds. ��
Proof of Theorem 3.2 (i) By Eq.33, it suffices to prove that Iθ (t) ≥ K(f (·, t),
f (·, θ)). We have that

Iθ (t) = − inf
λ∈Rd

ln
(
Eθ

[
exp(λ′∇t ln(X, t))

])

≥ − ln
(
Eθ

[
exp(λ′

t,θ∇t ln(X, t))
])

= − ln
(
Eθ

[
exp(ln(f (X, t)/f (X, θ))− ct,θ )

]) = ct,θ

and

K(f (·, t), f (·, θ)) = Et [ln(f (X, t)/f (X, θ))]

= Et
[
λ′
t,θ∇t ln f (X, t)+ ct,θ

]

=
∫
(λ′
t,θ∇t f (x, t)+ ct,θf (x, t)) dµ(x) = ct,θ .

(ii) Let g(x) = ln(f (x, t)/f (x, θ))− λ′
t,θ∇t ln f (x, t). Then,

− ln
(
Eθ

[
exp(λ′

t,θ∇t ln(X, t))
]) = − ln

∫
e−g(x)f (x, t) dµ(x)

and

K(f (·, t), f (·, θ)) =
∫

ln(f (x, t)/f (x, θ))f (x, t) dµ(x)

=
∫
(λ′
t,θ∇t ln f (x, t)+ g(x))f (x, t) dµ(x)

=
∫
g(x)f (x, t) dµ(x).

Hence,

exp

(∫
−g(x)f (x, t) dµ(x)

)
=

∫
exp(−g(x))f (x, t) dµ(x)

which implies that g is a constant Pt a.s. ��
Proof of Theorem 3.3 Let g(x) = ln f (x). We have that λ(t)g′(x)+c(t) = g(x)−
g(x − t), for each x, t ∈ R. Taking derivatives with respect to t and with respect
to x, we get that for each x, t ∈ R,

λ′(t)g′′(x) = g′′(x − t). (55)

If g′′(x) = 0, for each x ∈ R, then g is a linear function, which contradicts the fact
that f is a pdf. So, there exists x0 ∈ R, such that g′′(x0) �= 0. Using Eq.55., we
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get that λ′(t) = g′′(x0 − t)/g′′(x0). So, from Eq.55, we get that g′′(x0 − t)g′′(x) =
g′′(x0)g

′′(x − t), for each x, t ∈ R. Hence, h(x + y) = h(x)h(y), for each
x, y ∈ R, where h(x) = g′′(x + x0)/g

′′(x0). This means that h satisfies the
Cauchy’s exponential equation, h(0) = 1 and it is measurable. So, by Theorem 5
in Aczél and Dhombres (1989), h(x) = eax for some a ∈ R. Hence, g′′(x) = beax

for some a ∈ R and some b �= 0. If a = 0, then g(x) = 2−1bx2 + cx + d,
for some b �= 0 and some c, d ∈ R, and f has a normal pdf. If a �= 0, then
g(x) = a−2beax + cx + d, for some a �= 0, b �= 0 and c, d ∈ R. Since eg(x) is pdf,
b < 0 and ac > 0. Taking α = a−1c, γ = a and θ = −a−1 ln

(−a−1c−1b
)
, we

get that ln f (x) = −αeγ (x−θ) + αγ (x − θ)+ d + αγ θ , where α > 0, γ �= 0 and
θ ∈ R. Hence, f has the form in Eq.36. ��

We will need the following lemma:

Lemma 5.3 LetX be a r.v. defined in a measurable space (S,S). Let h : S×T →
R be a function such that h(·, t) is measurable for each t ∈ T , where T is an index
set. Let t0 ∈ T . Suppose that for each t ∈ T , h(X, t) ∈ L�1 . Then, M(t) =
inf{J (l) : l ∈ (L�1

)∗
, l(h(·, t0)) = l(h(·, t)) = 0}, t ∈ T , defines a lower

semicontinuous function in (T , d�1), where d�1(s, t) = N�1(f (X, s) − f (X, t)).

Proof We need to prove that if d�1(tn, t) → 0, then, lim infn→∞M(tn) ≥
M(t). We may assume that c : = lim infn→∞M(tn) < ∞. There exists ln ∈(L�1

)∗
such that J (ln) ≤ M(tn) + n−1 and ln(h(·, t0)) = ln(h(·, tn)) = 0. Since

supn≥ 1 J (ln) < ∞, there exists a subnet lnα and l ∈ (L�1
)∗

such that lnα → l
in the weak∗ topology. This implies that J (l) ≤ c and l(h(·, t0)) = 0. By Lemma
5.1, lnα (h(·, tnα )) → l(h(·, t)). Hence, J (l) ≥ M(t) and the claim follows. ��
Proof of Theorem 3.4 Without loss of generality, we may assume that θ = 0. We
apply Theorem 3.1 to g(x, t) = ln(f (x − t)/f (x)), � = R and Km = [−m,m].
Since Gn(·), is a continuous function and limt→±∞Gn(t) = ∞, there exists a θ̂n
such that Gn(θ̂n) = inf t ∈� Gn(t). Hence, (i) in Theorem 3.1 holds. Condition (ii)
in Theorem 3.1 follows from Eq.32. Using that f ′(·)/f (·) is a decreasing function,
for each t >0 and each x ∈ R,

tf ′(x)/f (x) ≤ − ln(f (x − t)/f (x)) ≤ tf ′(x − t)/f (x − t).

Hence, for each λ ∈ R, E0[exp(λ ln (f (X − t)/f (X)))] < ∞. A similar argu-
ment holds for t < 0. Hence, condition (iii) in Theorem 3.1 follows. Condition
(iv) in Theorem 3.1 follows from (v). Again using that f ′(·)/f (·) is a decreasing
function, for each v > 0, each t ∈ R and each x ∈ R,

0 ≤ −v−1 ln(f (x − t − v)/f (x − t))+ (f ′(x − t)/f (x − t))

≤ −f ′(x − t − v)/f (x − t − v)+ (f ′(x − t)/f (x − t)).

By the monotone convergence theorem,

N�1(−(f ′(X− t− v)/f (X− t− v))+(f ′(X − t)/f (X − t)))→ 0, as v → 0 + .

A similar argument holds if v → 0−. Hence, condition (v) in Theorem 3.1 follows.
By Lemma 5.3, to prove condition (vi) in Theorem 3.1, it suffices to prove that if
t1 �= t2, then

− inf
λ∈R

M(λ, 0) < − inf
λ1,λ2∈R

M(λ1, λ2), (56)
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where

M(λ1, λ2) : = E0[exp(λ1(f
′(X − t1)/f (X − t1))+ λ2(f

′(X − t2)/f (X − t2)))].

Since limx→±∞ f (x) = 0, limx→−∞ f ′(x)/f (x)>0 and limx→∞ f ′(x)/f (x)<0.
Hence

P0{f ′(X − t1)/f (X − t1) < 0} > 0 and P0{f ′(X − t1)/f (X − t1) > 0} > 0.

Hence, by Eq.25, there exists λ∗
1 ∈ R, such that

M(λ∗
1, 0) = − inf

λ∈R

M(λ, 0) (57)

Since − infλ∈RM(λ, 0) ≤ − infλ1,λ2 ∈ RM(λ1, λ2), to prove Eq.56, it suffices to
prove that

−M(λ∗
1, 0) < − inf

λ2∈R

M(λ∗
1, λ2). (58)

The derivative at zero of the function M(λ∗
1, λ2), λ2 ∈ R, is

E0[(f ′(X − t2)/f (X − t2)) exp(λ∗
1f

′(X − t1)/f (X − t1))]

If we show that the previous number is different from zero, then Eq.58 will follow.
Since λ∗

1 satisfies Eq.57,

E0[(f ′(X − t1)/f (X − t1)) exp(λ∗
1f

′(X − t1)/f (X − t1))] = 0.

Since f ′(·)/f (·) is a decreasing function and t1 �= t2,

E0[(f ′(X − t2)/f (X − t2)) exp(λt1f
′(X − t1)/f (X − t1))] �= 0.

Therefore, condition (vi) in Theorem 3.1 follows. ��
Proof of Theorem 3.5 We apply Theorem 3.1 with g(x, t) = −t ′x + ψ(t) and
h(x, t) = −x+∇ψ(t). Condition (i) in Theorem 3.1 is assumed. Condition (ii) fol-
lows from Eq.32. Since θ ∈�o, there exists aλ0>0, such that

∫
eλ0|x|+θ ′xµ(x)<∞.

This implies condition (iii) in Theorem 3.1. We have that

Eθ [exp(λ(g(X, θ)−g(X, t)))]=
∫

exp(λ(−θ ′x+ψ(θ)+t ′x−ψ(t)))eθ ′x−ψ(θ) dµ(x)

=exp (ψ(θ+λ(t−θ))−ψ(θ)−λ(ψ(t)−ψ(θ))) .
Hence, (ii) implies condition (iv) in Theorem 3.1. Condition (v) in Theorem 3.1
holds because for each t ∈ �o, ∇ψ(t) exists. For each t1, t2 ∈ �o with t1 �= t2,
taking λ1 = −λ2 = u(∇ψ(t1)− ∇ψ(t2)), we get that

inf
λ1,λ2∈R

E[exp(λ′
1h(X, t1)+ λ′

2h(X, t2))] ≤ inf
u∈R

exp(u|∇ψ(t1)− ∇ψ(t2)|2) = 0.

Hence, condition (vi) in Theorem 3.1 holds. ��
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Proof of Theorem 3.6 We only prove the case t > θ . The cases t = θ and t < θ is
similar. Let Hn(t) = n−1 ∑n

j=1 h(Xj , t) and let Hn(t−) = n−1 ∑n
j=1 h(Xj , t−).

We have that for each t > θ ,

{Hn(t−) < 0} ⊂ {θ̂ (1)n ≥ t} ⊂ {θ̂n ≥ t} ⊂ {θ̂ (2)n ≥ t} = {Hn(t−) ≤ 0}.
and

{Hn(t+) < 0} = {θ̂ (1)n > t} ⊂ {θ̂n > t} ⊂ {θ̂ (2)n > t} ⊂ {Hn(t+) ≤ 0}.
By hypotheses (ii) and (iii), we have that 0 = E[h(X, θ)] ≤ E[h(X, t−)] ≤
E[h(X, t+)] and if θ < t < s, then

sup{u : P{h(X, t−) < u} = 0} ≤ sup{u : P{h(X, t+) < u} = 0}
≤ sup{u : P{h(X, s) < u} = 0} < 0.

Hence, by Eqs.22 and 24,

lim
n→∞ n

−1 ln
(
P{θ̂n ≥ t}

)
= inf

λ∈R

ln(E[exp(λh(X, t−))]).

and

lim
n→∞ n

−1 ln
(
P{θ̂n > t}

)
= inf

λ∈R

ln(E[exp(λh(X, t+))]).
��

Proof of Theorem 3.7 We apply Theorem 3.6 to h(x, t) = ψ ′(t) − x, t ∈ �o.
Note that Theorem 3.6 holds true if the range of t is restricted to �o. Since µ
is nondegenerate, ψ is a striclty convex function. Hence, h(x, t) = ψ ′(t) − x is
an increasing function on t , for each fixed x. It is easy to see that hypotheses (i)
and (ii) in Theorem 3.6 hold. Let aµ = sup{t ∈ R : µ(−∞, t) = 0} and
bµ = inf{t ∈ R : µ(t,∞) = 0}. Then, for each t ∈ �0, aµ < ψ ′(t) < bµ.
The support of X contains (aµ, bµ). Hence, hypothesis (iii) in Theorem 3.6 hold.
We have that

inf
λ∈R

ln(Eθ [exp(λh(X, t))])

= inf
λ∈R

ln
∫

exp(λ(ψ ′(t)− x)) exp(xθ − ψ(θ)) µ(x)

= inf
λ∈R

(
λψ ′(t)+ ψ(θ − λ)− ψ(θ)

)

= ψ(t)− ψ(θ)− (t − θ)ψ ′(t)
= −K(f (·, t), f (·, θ)),

because of convexity of the function ψ ,

inf
λ∈R

(
λψ ′(t)+ ψ(θ − λ)− ψ(θ)

) − (ψ(t)− ψ(θ)− (t − θ)ψ ′(t))

= inf
λ∈R

(ψ(θ − λ)− ψ(t)− (θ − λ− t)ψ ′(t))

= inf
u∈R

(ψ(u)− ψ(t)− (u− t)ψ ′(t)) = 0.

��
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Proof of Theorem 3.8 First, we prove that

lim
m→∞ lim sup

n→∞
n−1 ln

(
P{θ̂n �∈ Km}

)
= −∞ (59)

Given 1 > ε > 0, we claim that for each m ≥ 1,

{n−1
n∑

j=1

Rm(Xj ) ≤ 1 − ε} ⊂ {θ̂n ∈ Km}. (60)

If n−1 ∑n
j=1 Rm(Xj ) ≤ 1 − ε, then for t ∈ �−Km,

|H(t)| − |Hn(t)| ≤ |Hn(t)−H(t)|

≤ n−1
n∑

j=1

|h(Xj , t)−H(t)|

≤ |H(t)|n−1
n∑

j=1

Rm(Xj )

≤ (1 − ε)|H(t)|.
So, for t ∈ �−Km, |Hn(t)| ≥ ε|H(t)| ≥ ε inf t � ∈Km |H(t)| ≥ inf t � ∈K1 |H(t)| >
0. Therefore, Eq.60 holds. By Eqs.26 and 60,

n−1 ln
(
P{θ̂n � ∈ Km}

)
≤ n−1 ln



P{n−1
n∑

j=1

Rm(Xj ) ≥ 1 − ε}




≤ − sup
λ>0
(λ(1 − ε)− ln (E[exp(λRm(X))])).

Letting m → ∞, using (v), Eq.59 follows.
Next, we prove that for each t ∈ R

d and each ε > 0,

lim inf
n→∞ n−1 ln(P{θ̂n ∈ B(t, ε)}) ≥ −I (t). (61)

We may assume that I (t) < ∞. Take an integer m ≥ 1 such that

lim sup
n→∞

n−1 ln
(
P{θ̂n �∈ Km}

)
< −I (t).

We have that

P{θ̂n ∈ B(t, ε)} ≥ P{ inf
t1∈Km,|t1−t | ≥ ε

|Hn(t1)| > 0} − P{θ̂n �∈ Km}.

Since the set {z ∈ l∞(T ) : inf t1 ∈ T |z(t1)| > 0} is an open set of l∞(T ), where
T = {t1 ∈ Km : |t1 − t | ≥ ε},

lim inf
n→∞ n−1 ln P{ inf

t1∈Km,|t1−t | ≥ ε
|Hn(t1)| > 0}

≥ − inf{J (l) : l ∈ (L�1
)∗
, inf
t1∈Km,|t1−t | ≥ ε

|l(h(·, t1))| > 0}.
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From the previous estimations, to finish the proof of Eq.61, we need to get that

inf{J (l) : l ∈ (L�1
)∗
, inf
t1∈Km,|t1−t | ≥ ε

|l(h(·, t1))| > 0} ≤ I (t). (62)

By condition (vii), I (t) < q, where

q : = inf{J (l) : l ∈ (L�1
)∗
, l(h(·, t))

= l(h(·, t1)) = 0, for some t1 ∈ Km, |t1 − t | ≥ ε}.
Thus, for each τ > 0, there exists l0 ∈ (L�1

)∗
, with l(h(·, t)) = 0, J (l0) <

I (t) + τ and J (l0) < q. Since l0(h(·, t)), t ∈ �, is continuous,
inf t1 ∈Km,|t1−t | ≥ ε |l0(h(·, t1))| > 0 and

inf{J (l) : l ∈ (L�1
)∗
, inf
t1∈Km,|t1−t |≥ε

|l(h(·, t1))| > 0} ≤ J (l0) < I (t)+ τ.

Since τ > 0 is arbitrary, Eq.62 holds.
We claim that for each closed set F , we have that

lim sup
n→∞

n−1 ln P{θ̂n ∈ F } ≤ −I (F ). (63)

Assume that I (F ) < ∞. The case I (F ) = ∞ is similar. Take m ≥ 1 such that

lim sup
n→∞

n−1 ln
(
P{θ̂n �∈ Km}

)
< −I (F ).

We have that

P{θ̂n ∈ F } ≤ P{θ̂n �∈ Km} + P{ inf
t∈F∩Km

|Hn(t)| = 0}.

Since the set {z ∈ l∞(F ∩Km) : inf t∈F∩Km |z(t)| = 0} is a closed set of l∞(F ∩
Km),

lim sup
n→∞

n−1 ln(P{ inf
t∈F∩Km

|Hn(t)| = 0})

≤ − inf{J (l) : l ∈ (L�1
)∗
, inf
t∈F∩Km

|l(h(·, t))| = 0}
= −I (F ∩Km) ≤ −I (F ).

��
Proof of Theorem 4.1. By algebra

−n−1 ln

(
L(θ)

supt∈� L(t)

)
= (θ̂n − θ)′X̄n − ψ(θ̂n)+ ψ(θ).

By Eq.38,

K(f (·, θ̂n), f (·, θ)) = (θ̂n − θ)′∇ψ(θ̂n)− ψ(θ̂n)+ ψ(θ).

Since the mle maximizes likelihood function, ∇ψ(θ̂n) = X̄n. ��
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