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A b s t r a c t .  The weak convergence of the empirical process and partial sum process 
of the residuals from a stationary ARCH-M model is studied. It  is obtained for 
any v ~  consistent estimate of the ARCH-M parameters. We find that  the limiting 
Gaussian processes are no longer distribution free and hence residuals cannot be 
treated as i.i.d. In fact the limiting Gaussian process for the empirical process is 
a standard Brownian bridge plus an additional term, while the one for partial sum 
process is a standard Brownian motion plus an additional term. In the special case 
of a standard ARCH process, that is an ARCH process with no drift, the additional 
term disappears. We also study a sub-sampling technique which yields the limiting 
Gaussian processes for the empirical process and partial sum process as a standard 
Brownian bridge and a standard Brownian motion respectively. 

Key words and phrases: Weak convergence, residuals, ARCH, drift, empirical dis- 
tribution. 

I. Introduction 

In  nonlinear t ime  series, and in par t i cu la r  econometr ic  and  discrete  t ime financial 
modeling,  Engle ' s  (1982) A R C H  model  plays  a fundamenta l  role; see Campbel l  et al. 
(1997), Gour ieroux (1997) or the volume Rossi (1996) which contains  several papers  by 
Nelson. The  s implest  of these is of the  form 

(1.1) X t : a t r  

where {et, t >__ 1} is a sequence of iid r a n d o m  variables (r .v. 's)  wi th  mean  zero and  
finite variance. T h r o u g h o u t  this pape r  we make  the addi t ional  a s sumpt ion  t ha t  the  
var iance t e rm E(6 2) = 1 so tha t  a 2 is the  condit ional  variance of X t  given bVt_l, where 
,Tt = a ( X s  : s G t) is the  s igma field genera ted  by the d a t a  up  to t ime t, t ha t  is 
{ X s :  s G t}. The  condit ional  variance t e r m  a 2 is Ft adapted .  For an A R C H ( l )  model  
the  condit ional  var iance is of the  form 

~ = ao + alX2t_l, ao > O, al  > O, 

so tha t  it is a known form pa ramet r i c  funct ion of the most  recent  observation.  O the r  
forms of ~r 2 are also used to  cap tu re  various proper t ies ,  such as non symmet r i c  condit ional  
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variances, or higher order lag dependencies as functions of X t - l , X t - 2 , . . .  , X t - p .  For 
example an ARCH(p) model has 

P 

a 2 = ao + E a j X 2 j  ' ao > 0, a j  > 0, j = 1 , . . . , p .  
j = l  

Often an assumption that the innovations et are N(0, a 2) is also made. More generally 
et are iid with distribution function F which is assumed throughout this paper. 

To address some weaknesses of ARCH models, Engle et al. (1982) introduced the 
ARCH-M model which extends the ARCH model to allow the conditional variance to 
affect the mean. The ARCH model (1.1) then becomes 

(1.2) X t  --~ It -~- r ~- crtet,  

where It and 5 are additional parameters with the deterministic function m usually chosen 
as re(x)  = x, v ~ or exp(x). In this paper we consider only the case with 5 = 0, that is 
an ARCH-M model with non-zero mean or drift parameter It. The ARCH-M(1) is given 
by (1.3) and (1.4) below. 

Horvs et al. (2001) investigate the empirical process of the squared residuals 
arising from fitting an ARCH type model with mean It = 0. They obtained a distribution 
free limiting process for a specially transformed empirical process. 

This article proposes to fill in the gap by establishing the limiting process of the 
residuals from fitting and ARCH-M model. The limiting Gaussian process is not distri- 
bution free and depends on the distribution of the innovations. This does not create a 
drawback for applications since quite powerful nonparametric methods for the density 
estimation are readily available. Gourieroux (1997) discusses estimation of parameters 
for GARCH models with a non-zero unknown mean or drift parameter It. Koul (2002) 
presents some ideas on the estimation of the parameters in the ARCH type modelling. 

In this paper we consider a special case of ARCH-M model (1.2) with 5 = 0. First 
we study the ARCH-M(1) process 

(1.3) X t  = It -Jr O'ts 

where 

(1.4) at 2 = a 0  Jr- o Q ( X t - 1  -- I t)2,  o~ 0 > 0, o~ 1 > 0. 

Later we show how to extend our results to the ARCH-M(p). 
Consider the ARCH-M(1) process (1.3) with observed data Xt ,  t = 0 , . . . ,  n. Con- 

sider any v ~ consistent estimators of the parameters (see for example Gourieroux (1997)) 
and the residuals (2.2) obtained from this fit. From these residuals one constructs the 
empirical distribution function (EDF)/~n and the partial sum Sn defined below by (2.3) 
and (2.4), respectively. We study the asymptotic properties of/~n and Sn. In particular 
we study the empirical process 

(1 .5)  E n ( x  ) : v / - n ( f n ( x )  - F ( x ) ) ,  - ( x )  < x < 

and the partial sum process 

1 
(1.6) Bn(u)  = --~,~[~], 0 < u < 1, 

x/n 
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where Ix] denotes the integer part of x. The results are given in Section 2. 
An assumption that  the ARCH-M process is stationary and ergodic is made through- 

out this paper. See for example An et al. (1997) for relevant conditions on the ARCH 
parameters. Section 2 defines the ARCH-M(1) residuals EDF process and partial sum 
process and states the main theorems. Extension of ARCH-M(1) to ARCH-M(p) will be 
discussed in the end of Section 2. Section 3 gives the proofs. 

2. ARCH-M residuals and results 

In this section we first consider the EDF process and partial sum process for ARCH- 
M(1) residuals. At the end of the section the changes required for the residual processes 
from an ARCH-M(p) process are given. 

Let 0 = (&o, &l,/2) be an estimator of 0 = (a0, a l ,  #) based on the sample of size n. 
Also suppose that  the estimator is ~ consistent. Such estimators are obtained in Engle 
et al. (1982) and are discussed in the monograph by Gourieroux (1997). The conditional 
variance a 2 = h ( X t - 1 ,  O) of (1.4) is estimated by 

(2.1) ~.2 : h ( X t - l , O )  : {~0 + C ) l ( X t - 1  - ~ ) 2 ,  

where h : R 4 -* R+ is a deterministic function. Thus the residual at time t c {1, 2 , . . . ,  n} 
is 

(2.2) ~t X t  - f~ # - f~ + atet _ v/-~(# - [z) et 4 / h ( X t - l '  O) 
-- ~-'t-'-- -- ~t ~ n h ( X t _ l , ~  ) -~- V h ( X t _ l , 0 - ~  

by (1.3), (1.4) and (2.1). 
The EDF of the residuals is defined as 

n 

(2.3) -Pn(x) = _1 E I ( ~  t <_ x), 
n 

t = l  

and the partial sums of the residuals as 

k 

(2.4) = 0, & = E 
t = l  

--a~<x<~ 

k = 1 , 2 , . . . , n .  

We now introduce some notation that  is necessary in our study of the EDF and 
partial sum processes. Let s = (s0, si, s2) C ]R 3 and define the function gn as 

 n(x, s) = 

Define also 

(2.5) F n ( x ' s ) = l ~ I ( e t ~ - (  t=l 

v/-n(h(x, 0 + n-1 /2s)  - h(x,  0)) 
h(x,  O) 

0 + n-1/ s) 

and 
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(2�9 ~t(s) = et 
i gn(Xt_ l ,  8) 

1+ v~ 

From (2.2), (2.3) and (2.5) we obtain 

(2.7) Fn(x) = ~'n(x, V~(O - 0)) 

and from (2.2), (2.4) and (2.6) we obtain 

k k 

Note that for a given s, 

(2.9)  9n(X, 8) = 80 "[- 81(x - U) 2 - 2 ~  1 (x  - U)82 
OZ0 -~- O~I(X -- ~ )2  

k = l , . . . , n .  

1 als~ - 2 ( x -  #)sis2 1 SlS~ + + -  
v~ ~0 + ~ l ( X -  ~)2 n ~ O + ~ l ( X -  u) 2 

which leads us easily to the following conclusion 
3 

(2.10) sup Ig,~(x, s)[ <_ E C'(O)lls[li~ 
xER i=1 n(i--1)/2 

where IJslloo = max{Isol, lsll, is21} is the sup norm and Ci(O), i = 1,2,3, are finite 
positive constants depending only on 0. As to the function h, it is easy to see that for 

> max(llsll%/~, 411811%/~) 

(2.11) inf Ih(x,O + n-l/2s)l > so -[Is l l~/x /~ > ao/2. 
xER 

It is clear from (2.5), (2.7), (2.10) and (2.11), that 
n 

lea(X) = 1 E I ( e  t <_ (x + O p ( 1 / v ~ ) ) i l  + Op(1/x/~)). 
n t = l  

Hence the EDF Fn of ~ will be consistent for F,  although the uniformity of Op in x will 
be shown later�9 

Define the processes 

= 1  ~ {I  < ( x +  (2.12) 

F((x+ 

and 

s2 ) 
v/nh(Xt_l ,  0 + n-U2s) 

) v/nh(Xt_l ,  0 -+- n-1/2s) 
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1 [~u] 
( 2 . 1 3 )  B n ( u , s )  = - - ~  E ~t(s) ,  0 < u < I. 

t = l  

Note that En(x, 0) and B,~(x, 0) are the usual EDF process and partial sum process of the 
iid sequence {e~, t > 1}, respectively, and hence converge to a standard Brownian bridge 
and a standard Brownian motion, respectively�9 Also straightforward algebra applied to 
(1.5) and (2.7) yields 

(2.14) En(x) = En(x, v/-~(O - 0)) 

i 1 v n  ) } �9 1 -t- - - - ~ g n ( X t - 1 ,  v/-n(O - 0) )  - F(x) . 

Similarly straightforward algebra applied to (1.6) and (2.8) yields 

(2.15) Bn(u) = Bn(u, v~(0 - 0)) - 1 [nu] x/~(____~ _ ~ _  ) . 
n t~l v /h (X t_ l ,0  ) 

PROPOSITION 2.1. Suppose that the process {Xt, t > 0} is stationary and ergodic, 
for example it satisfies the conditions of An et al. (1997). Suppose also that F has 
continuous density f that is positive on the open support o fF ,  and limx-~4-~ IxIf(x) = O. 
Then for any b > 0 

sup sup]En(x,s)  - En(x,O)] ~ 0 
I]s]]cc<_bxC~ 

in probability as n ---* c~. 

PROPOSITION 2.2�9 Suppose that the process {Xt,  t >_ 0} is stationary and ergodic, 
for example it satisfies the conditions of An et at. (1997). Suppose also that F has 
continuous density f ,  and the iid sequence {et, t > 1} has mean zero and variance 1. 
Then for any b > 0 

sup sup [ B n ( u , s ) - B , ( u , O ) l ~ O  
[Is[[ oo _<b O<u< 1 

in probability as n --* oc. 

Define g : ]R --* I~ 3 and k : IR -~ R 3 to be 

g(x) = ( 1 ,  ( x -  # ) 2 , _ 2 a l ( x _  #)) 
so  + a l ( z  - . )2  , k(x) = 

(0,0,1) 

V/OL0 -t- O q ( X  --  ~t) 2 

It is important to notice that g and k are bounded functions. This fact is used in the 
proof of Propositions 2.3 and 2.4. 
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Using ergodicity of the process {Xt, t _> 0}, we define 

�9 (0) = lim -1 g(Xt_l)  a.s. and ~(0) = lim _1 k(Xt-1)  a.s. 
n'---*(~ n n---+c,o n 

t = l  t = l  

PROPOSITION 2.3. Under the conditions of Proposition 2.1, 

where the op(1) is uniform in x and (a, b) is the inner product of vectors a and b. 

PROPOSITION 2.4. Let 

r  lim -1 ~ 1 
n - ~  n : ~/h(Xt- l ,O) a.s. 

Then, under the conditions of Proposition 2.2, 

- , )  _ - + o . ( 1 ) ,  
s 

n ~/h(Xt-1,  O) 

where the op(1) is uniform in u. 

Combining Propositions 2.1 and 2.3 yields the following theorem. 

THEOREM 2.1. Suppose that the process {Xt, t >_ 0} satisfies the conditions of 
Propositions 2.1 (and hence the conditions of Proposition 2.3). Assume that 0 is a 
v/-n-consistent estimate of 8. Then we have 

s~p Zn(X)-- {En(x,O)-'~ <(~(0)-~- Xx~II(O))f(x), V/-n(O-O)> }t ----+ 0 

in probability as n ---* oo. 

COROLLARY 2.1. Suppose that {En(x,0), v / n ( 0 -  0) : x C •} converges weakly to 
a Gaussian process {E(F(x)) ,  Z : x E JR} on D(-cx~, +cx~) • ~3, where E is a standard 
Brownian bridge. Then under the conditions of Theorem 2.1, En(X) converges weakly to 
the Gaussian process 

E(F(x))  + < ((P(o) + l x  T~(• f ( x ) , Z > .  
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Remark 1. For A R C H  model (1.1), tha t  is (1.3) with known # = 0, the term 

~2(O)f(x) will disappear in the limiting Gaussian process after assuming v ~ ( 0  - 0) = 
(v/~(ot0 - ol0) , v/~(&l - o~1)) T ~ Z = (Zo, Z1) T in distr ibution as n --~ oo. 

Remark 2. Theorem 2.1 (or Corollary 2.1) shows tha t  we cannot  treat residuals 
of a ARCH-M process as if they were the iid innovations {et, t >_ 1}. A prel iminary 
Monte Carlo simulation has shown tha t  the distr ibution of functional statistics such as 
goodness-of-fit tests based on a Kolmogorov-Smirnov does differ from one based on iid 
sample. In fact, the simulation shows tha t  Kolmogorov-Smirnov test  using the usual 
asymptot ic  critical values based on iid samples gives a much smaller nominal size under 
the null hypothesis of an ARCH-M(1)  model. The only exception is the case of A R C H ( l )  
[# = 0 known] with F as s tandard normal,  where this addit ional te rm (�89 Z} 
plays little role in tests based on a Kolmogorov-Smirnov or Cramer  Von Mises statistic 
based on the form in D 'Agost ino  and Stephens (1986). 

We consider a simulation of normal  ARCH-M(1)  models and the Kolmogorov- 
Smirnov statistic. The  size and critical value of near 1.31, in the case # -- 0 known 
is close to the asymptot ic  Kolmogorov-Smirnov size and critical value of 1.358. Table 1 
gives the size,  in the case of # is est imated by the MLE, for various A R C H  effect param- 
eters c~1 and various sample sizes n when the asymptot ic  0.05 critical value of 1.358 is 
used. Table 2 gives the empirical quantile in this case. When  # is est imated the critical 
value is near 1.09 and the size is very far from .05 when the s tandard  critical value is 

used. 

Remark 3. For A R C H ( I )  model, a similar result of Theorem 2.1 (or Corollary 2.1) 
was obtained by Boldin (1998). However, we believe tha t  his conditions on the distri- 
but ion function of iid innovations are stronger than  ours. In particular,  he requires 
tha t  F - l ( u ) f ( F - l ( u ) ) ,  0 < u < 1 to be uniformly continuous which may fail for heavy 
tail distributions. For example, let f (x )  -- exp ( - Ix ] ) / 2 .  Then  it is easy to check tha t  
F -1 (u ) f (F  -1 (u)) is not  uniformly continuous when u is near 0 or 1. Thus  Boldin's  result 

Table 1. Empiricalsize of KS statistic for ARCH(l) with ~ unknown. 

n = 100 n = 500 n = 1000 

al = 0.85 0 . 0 0 4 8  0 . 0 0 4 8  0.0046 

~1 = 0.90 0 .0061  0 . 0 0 5 3  0.0051 

al = 0.95 0 .0060  0 . 0 0 6 4  0.0079 

al = 0.98 0 . 0 0 5 5  0 . 0 0 6 2  0.0091 

Table 2. 95% empirical quantile of KS statistic for ARCH(l) with tt unknown. 

n = 100 n = 500 n = 1000 

al = 0.85 1.062093 1.087335 1.088622 

~1 = 0.90 1.071449 1.098601 1.096711 

al = 0.95 1.079876 1.107994 1.114918 

~1 = 0.98 1.098522 1.112108 1.108957 
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could not be applied while ours is valid for the given f ( x ) .  Our me thod  of proof is differ- 
ent allowing us to avoid conditions such as his uniform continuity of F - * ( u ) f ( F - l ( u ) ) ,  
O < u < l .  

In the following, we consider a technique called sub-sampling to deal with the prob- 
lem of distribution dependent  limiting Gaussian process in Corollary 2.1. We construct 
the empirical process E m ( x )  based on the first m (< n) residuals as 

m 

1 E ( I ( ~ t  <_ x ) -  F ( x ) ) ,  ~ m ( ~ )  = v < ( ~ . ~ ( x )  - F ( ~ ) )  - v ~  ~=~ 

and the process/~,~(x, s) as 

( 2 � 9  [~m(X, S) -- V ~  t = l  - -  

- - c o < x <  c o  

s2 ) 
x / n h ( X t _ l ,  0 + n -1 /2s )  j 1  ) �9 i Jr ~gn(Xt_l,8) 

) 
v / n h ( X t _ l ,  0 + n -1 /2s )  

THEOREM 2.2. Assume  that m = re(n) --. co and m = o(n) as n --~ co. 
under the conditions of Theorem 2.1, we have 

sup I/~,~(x) - Em(x ,  O)l --* 0 
xER 

in probability as n --+ co. Hence E,m(X) converges weakly to E ( F ( x ) ) � 9  

Then 

Theorem 2.2 enables us to construct several asymptot ic  test  statistics for statistical 
inference about  the unknown distr ibution F(x) .  A well known statistic will be the 
Kolmogorov-Smirnov goodness-of-test. Theorem 2.2 implies tha t  as n ~ co 

> . (sup >_ _ - ,  
\ x C l r  \ 0 < u < l  

where K5 = 1.3581 for 5 = 0.05 and K5 = 1.6276 for 5 = 0.01. These are the usual 
critical values based on a limit obtained from iid r.v.'s. 

Remark 4. Even though the empirical process/~,~ (x) is based on only part  of resid- 
uals, residuals themselves are constructed from the whole data ,  tha t  is, the est imation 

is based on the whole data. For many discrete t ime financial data,  the sample sizes 
are often in the order of several hundred or several thousand�9 Hence this sub-sampling 
is feasible to implement�9 For example, we can choose m = [n/ log n] and the empirical 
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process Em(x)  can be constructed from any consecutive data block of residuals in size 
m. This sub-sampling can safeguard against some impacts that may come from the ad- 
ditional term in Corollary 2.1 although Monte Carlo simulation has shown that it plays 
little role in statistical inference, at least in a normal ARCH case (cf. Remark 2). 

Combining Propositions 2.2 and 2.4 yields the following theorem. 

THEOREM 2.3. Suppose that the process { X t ,  t >_ 0} obeys the conditions of  Propo- 

sition 2.2 and hence of Proposition 2.4. Assume that 0 is a x/~-consistent  estimate of  
0. Then we have 

sup IBn(x)  {Bn(u, 0 ) -  u r  ~ 0 
O<u<:l 

in probability as n ---* oc. 

COROLLARY 2.2. Suppose that {B~(u, 0), v ~ ( / 5 - # ) :  0 < u _< 1} converges weakly 
to a Gaussian process {B(u),Z2 : 0_< u ~ 1} on D[O, 1] • where B is a standard 
Brownian motion. Then under the conditions of Theorem 2.3, Bn(u)  converges weakly 
to the Gaussian process 

B(u) - ur 

Remark 5. For ARCH model (1.1), that  is (1.3) with known # = 0, the term 
uO(O)Z2 will disappear in the limiting Gaussian process. Hence the limit process of 
B~(u)  is just a standard Brownian motion. 

Remark 6. The ~(0) in Proposition 2.3 and r in Proposition 2.4 are essentially 
the same. The vector version ep(0) is used for the sake of a simple representation in 
Proposition 2.3 and hence the limiting Gaussing process in Corollary 2.1. 

Based on the same sub-sampling technique, we redefine the partial sum process 
 m(u) as 

1 ^ 
Bm(~) = - - ~ S t m u ] ,  0 < u _< 1 

v m  

and the process/~m (u, s) as 

1 [mu] 
(2.17) /~m(U, s) -- V ~  E ~t(s), 0 < u < 1. 

t = l  

THEOREM 2.4. Assume  that m = re(n) ---* e~ and m -- o(n) as n --~ oc. 
under the conditions of Theorem 2.3, we have 

sup o 
O<u<l 

Then 

in probability as n ---+ e<). Hence B,r (u) converges weakly to standard Brownian motion 
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For an ARCH-M(p) process the following changes must be made. With these 
changes, Propositions 2.1 to 2.4 and Theorems 2.1 to 2.4 are valid. In addition, 

gn(Xl , .  . . , Xp, s) = v~(h(Xl '""" '  Xp, 0 -~ n-1 /2s )  - h(Xl , . . . ,  Xp, 0)) 
h ( x l , . . . , x p ,  O) 

is needed to obtain analogue of the proofs which are otherwise identical to the case 
ARCH-M(1). 

(i) 0 = (c~0, ~1 , . . . ,  C~p, #) is R p+2 valued and {Xt ,  t >_ 0} is stationary and ergodic. 
To be specific, suppose it satisfies the conditions of An et al. (1997) 

(ii) h : R 2p+2 ~-+ N + 

p 

h ( x l , . . .  , x p ,  O) : o~ 0 --~ E ~ - ]/,)2. 
i--1 

(iii) g : N p  H Np+2 

1 1, (X 1 - -  ~t) 2, . ,  (Xp -- it/) 2, - - 2  E Cei(Xi -- ~t) . 
g ( X l , . . . , X p )  = h ( X l , . - - , x p , O )  "" i=1 

(iv) k : RP ~ ll~P+2 

(v) ql is replaced by 

k ( x l , . . . , X p )  = (0 , . . . ,0 ,1 )  
v/h(xl,..., xp, O) 

�9 (0) = lim 1 
- g(Xt-1,..., Xt-p) 

n---*cx~ n 
t=p 

(vi) ep is replaced by 

n 

�9 ( 0 ) =  lim - 1 E k ( X t _ l , . . . , X t _ p  ) 
n ---~ o~ n 

t=p 

(vii) r is replaced by 

r  lim 1 ~ 1 
n--*~ n t=p v / h (  x t - 1 ,  . ,  X t - p , O )  

3. Proofs 

a . s .  

a . s .  

a.s .  

sup max Ign(Xt-l,S)l ~ C(O)b 3, 
Ilsll~ <_b l < t<n  

(3.1) 

LEMMA 3.1. Let b > 1 be any fixed constant. Then for  any sequence {Xt ,  t >_ 0}, 
we have that for  any n >_ 1 

This section contains proofs for Propositions 2.1 to 2.4, and the Theorems 2.1 to 
2.4. Throughout this section it is assumed that  0 is a v~-consistent estimate of 0. The 
following lemma which will be used throughout this section. 
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and for n > max(b2/a 2, 4b2/a~) 

(3.2) inf min h(Xt -1 ,0  + n-1/2s) >_ ao - b / v ~  > ao/2, 
IIsIIoo <_b l < t<n  

1 1 v/2C(O)b 3 
(3�9 sup max < 

IHI~<_b l<t<n v / h ( X t _ l , 0 + n - 1 / 2 s )  v/h(Xt_l ,O) - v~-~n 

where C(O) is a positive constant depending on 0 only�9 

PROOF. (3.1) and (3.2) are followed easily by using (2�9 and (2�9 respectively, 
which in terms imply (3.3) by the definition of gn and straightforward calculation�9 This 
completes the proof  of Lemma 3.1�9 

3.1 Proof of Proposition 2.3 
Applying a first order Taylor approximation with remainder to the  second term of 

(2.14) gives n (( ) 
1 E f ( x )  x +  v/-n(ft- #) 1 

(3.4) ~/-n t=l ~h(X~_::-O) ] l + - -~ gn (X t - l , x / n (O-O) )  - x  

+ R~(x, v~(0  - o)), 

where Rn(x, v ~ ( 0  - 0)) is the remainder term�9 

LEMMA 3.2. Under the conditions of Proposition 2.3, we have 

sup [Rn(x, V~(O - 0))[ = op(1). 
xE~ 

PROOF�9 Let b > 1 be a fixed constant.  Since [ v / l + v - 1 ]  _< Iv[ for ]v] _< 1, by 
(3.1) and (3�9 we have that  for any x E ~ and large n 

sup max x + 1 + g~(X,_~, s) - < O(Ixl  + 1) 
Ilsl[~<_bl<-t<- n v/nh(Xt_li-~ -~ n-1128) - ~  _ v ~  ' 

where D is a constant  depending on 0 and b only. 
Let M > 1 be a constant ,  chosen later to be suitably large. Using the conditions in 

Proposi t ion 2.3 and the bound above, one can obtain a simple bound on the remainder 
Rn of (3�9 as 

(3�9 sup IRn(x, s)l 
4IsII~<b;~ER 

1 
- -  sup sup If(y) -- f(x)] 

~-- ~ []s[[~<b;xC~ [y-xl<_D([x[+l)/x/~ 

~-~ ( v /nh(Xt-x ,  Os2 + n-1/2s) ) ~  V x �9 x + 1 + ~ g n ( X t - l , S )  -- 
t= l  

< D sup (Ix I + 1) sup If(Y) - f (x) [  
]x]>M [y- x[<_D([x]+ l ) / x/~ 

+ D sup (Ix[ + 1) sup If(y) - f (x)] .  
[x]<M [y- x] < D( ]x[+ l ) / x/~ 
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The second last te rm in (3.5) is bounded by (except the constant  D) 

sup 2 1 ~ l f ( x ) +  sup 21~1 sup f (y)  
fzl>M Ixl>M ly-xl<2Olxl/v~ 

< s u p  2lxl f (x  ) + s u p  
IzI>M lyI> M (1-- 2D / v/K) 

= 0(1) + O(1)0(1) = o(1) 

21ylf(y) sup y 
ly-xl<2DIxl/v~ 

for all n sufficiently large, as M ~ ~ .  The  last term in (3.5) is o(1) as n ~ cc on 
Ixl < M by the continuity of f .  

Thus  on the set {v/~ll0 - 011~ < b } , / ~  converges to zero uniformly in x, and hence 
Lemma 3.2 is proved by letting b -~ ec, after taking n ~ ec, in the following inequality 

- ) (sup]Rn(x,s) ,>e)\ l ls l lo~<b;xeR P f s u P l R n ( x , v / - n ( 0  0)) I_>e < P 
\ xER 

+ P(v llO - o11  > b). 

To prove Proposi t ion 2.3, we use the same technique that  is used in proving Lemma 
3.2, tha t  is to work with the  first sum in (3.4) on the set {v/-~ll0 - 011~ <_ b} only. 

It  is easy to verify tha t  Iv/1 + v - 1 - v/21 <_ v ~ for Ivl _< 1/2. Hence, by Lemma 3.1 
and supxc~ Ixlf(x) < oc, the first sum in (3.4) becomes 

l (n 
where the op(1) is uniform in x. Finally Proposi t ion 2.3 can be  proved by (2.9) and the 
definitions of ~(0)  and q~(0). 

3.2 Proof of Proposition 2.1 
The following Lemma will be used repeatedly  for finding upper  bound probabili- 

ties for the increments of the process (2.12). It  appears in Levental  (1989) and it was 
independently obtained by Hitczenko (1990). 

LEMMA 3.3. Let {di,.~'i} be a martingale difference sequence with E(dj I.~j_l) = 
n 2 Then, for all x, y > O, O, Idjl < c, forO < c < 0% E(d~ I ~'j_l) = cry and V~ = ~ = 1  ai . 

(3.6) P > _ z , V ~ < _ y f o r s o m e n  <_2exp - ~ c a r e s i n h  ~yy . 
i = l  

PROOF OF PROPOSITION 2.1. The technique employed in the  proof  resembles the 
approach under taken by Koul (1992) and Kawczak (1998) when dealing with the addi- 
tive s tructure of the per turbat ions  under the indicator function. Since we are considering 
an empirical process with the multiplicative terms under the indicator function, a new 
scheme for the proof  had to be developed. The  changes are explained where the Propo- 
sition 2.1 is proven. 
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The proof is split into two parts. First, we establish that  for each fixed s 

(3.7) sup JE~(x, s) - En(x, 0)l = Op(1). 
xER 

Using this result we then prove that  

(3.8)  s u p  s u p  ]En(X,  s)  - E n ( x ,  0)l = Op(1). 
II~ll~<bxeR 

On IR define the pseudo-metric  p(x, y) := IF(x) - f(y)l(1/2) for all x, y �9 N. Since the 
limiting process is a Gaussian process it is natural  to introduce the pseudo-metr ic  p and 
s tudy  the p-equicontinuity of the paths. The  choice of the metric is dicta ted by the form 
of the covariance function of limiting process of En(x, s). The square root ensures tha t  
the variance of the process is less than p2. The  metric p makes N total ly  bounded. Hence 
the closure of the index space becomes a compact  set with the  metric p. Therefore, to 
prove (3.7), it suffices to prove (A) and (B) below 

(A) V x �9 ~, IEn(x,s) - E~(x,0) l  = %(1)  
(B) V e > 0 , 3 5 > 0 s u c h t h a t  

/ 
lim sup 

n-.--*oo \p(x,y)<_5 / 

where c(5) ~ 0 as 5 --~ 0 +. 

PROOF OF (A).  Let  

and define 

and 

82 
Y l , t  :~  

v/nh(Xt_l ,  0 + n-1/2s) 

:= I---~gn(Xt_l , s) Y2,t 
x/n 

D~l](x) := I(et < (x + Yl,t)V/-f + Y2,t) - F((x  + Yl,t)V/1 + Y2,t) 

D~ 21(x) := I(et <_ x) - F(x). 

rD[ll D [21 . ~ /  Then for every s, t t - t , tI, where 9ct = ~r{X0, ([1, s  ", s }, is a martingale 

difference sequence. Thus,  by taking dt = (D~ 1 ] -  D~2])/v/-n, with  c = 1 / v ~  , and using 
Lemma 3.3 we get tha t  Y e > 0 and y > 0 

(3.9) P(IEn(x, s ) - E n ( x ,  0)l > e ) <  2exp { - ~ - - ~ - a r c s i n h  ( 2 - - - ~ ) } + P ( V ~ > y ) .  

where V~ is the variance of the conditionally centered bounded  random variables in 
En(x, s) - En(x, 0). Since s is fixed and supxee Ixlf(x) < ~ ,  by a calculation similar to 

the  proof of Proposi t ion 2.3 (setting v ~ ( 0 -  0) = s; see Subsection 3.1), it can be shown 
tha t  

Vn <_ 1 IF((x + Y , ,dvr f  + Y2,,) F(x)l <_ 
?'t t = l  
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where C > 0 is a constant independent of x. Thus, by taking y = C / v ~ ,  we have that 
P(Vn 2 > y) = O. 

This proves (A). 

PROOF OF (B). The proof relies on the restricted chaining argument as presented 
in Pollard (1984), and a repeated application of the exponential inequality in Lemma 
3.3. 

For a fixed c > 0 define the mesh grid 

= , k = O ,  1 , . . . , k n  = , n > l ,  

where F - l ( u )  = inf{x : F(x) _> u}, 0 _< u < 1 is the usual quantile function. Since we 
assume that f is positive on the open support of F,  F -1 is continuous on (0, 1). Thus, 
for any large M > 0, 

(3.10) l i ra  m a x  [Xk+ 1 --  Xk[ = O. 
n---*oa k:-M<_xk _<Xk+l _<M 

As it is explained in Pollard ((1984), p. 160), the chaining can continue in an ordinary 
way until the "little" links come to start contributing to the cumulative sum of the 
increments. Special care has to be taken regarding those small links. For u > 0, consider 
a pair of points in 6~ that are at least U e / v ~  apart in the p2 metric (that is p~(x, y) >_ 

u ~ / v ~  ). Then, by applying Lemma 3.3 to {Dp I (x) - lj (y), f d ,  we get 

P ( I E n ( x , s ) - E n ( y , s ) l > u ) < _ 2 e x p  - - - - ~ a r c s i n h  ~ + P ( V ~ > v )  

for all u > 0 and v > 0. With the same argument for V~ in the proof of (A), one obtains 
that 

2C 
Vn 2 < 1 iF((x + Yl , t )v / l  + Y2,t) _ F((y  + y l , t )v / l  + Y2,t)l < - ~  + p2(x,y). 

n t=l 

Hence letting v = (~-~ + 1)p2(x, y) and using the fact that arcsinh(x) > x/2  for small 
x > 0, we obtain that  

2 

P(]En(X,S) - En(y,s)l  > u) < 2exp 8(2C + ue)p2(x,y) j .  

At this point, the only thing left is to connect the points from IR with a point in ~ and 
the chaining will go as in Pollard. 

For each x E JR, define xk(x) C Gn such that it is closest to x in the p-metric amongst 
all points in Gn and the relationship is satisfied: Xk(x) < x. The following needs to be 
proved in order to establish (B): 

(3.11) V e > 0 l imsup P (sup  ] E n ( x  , 8) - E n ( X k ( x )  , S)] > 3e)  = 0. 
n ~ e c  \ x E R  
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PROOF OF (3.11). Notice tha t  by Lemma  3.1, for large n, maxl<t<n IY/,tl -~ 
O(1/v/-~), i = 1, 2. Using the properties of the indicator function and the monotonicity 
on F we get 

(3.12) sup IE~(x, 8) - En(xk(x), ~)1 
xCR 

< max IEn(Xk+l, 8) - -  En(Xk, 8)1 
-- O<k<kn-1 

1 n 

-t- max ~-'~(F((Xk+l + Yl,t) V/1 + Y2,t) 
0<k<k,~--I " ~  t=l  

- F( (xk  + Yl,t) v/1 + Y2,t)). 

Taking s = v ~ ( 0  - 0), we apply Proposition 2.3 to the last par t  of the above inequality 
and obtain 

n 

1 E ( F ( ( x k +  1 + yl,t)V/1 + Y2,t) - F ( (xk  + YI,t)V/1 + Y2,t)) 
V ~  t= l 

n 

_ 1 ~-~(F((Xk+l + YI,t)V/1 + Yu,t) - F(xk+i ) )  
v /n  t= l  

n 

1 ~ ( F ( ( x k  + Y I , t ) V ~ +  Y2 , t ) -  F(xk))  
v/-n t----1 

1 n 

~- - ~  E ( F ( X k + i )  - f ( X k ) )  
t--1 

+ ,(Xk+l) + ,(xk) + ~, 

where ~(Xk+l) and ~(Xk) are the uniform Op(1) terms from Proposit ion 2.3. Thus 

1 n 
max ~ ( F ( ( x k + l  + YI,t)V/1 + Y2,t) - F( (xk  + Yl,t) V/I- + Y2,t)) 

O<k<kn-1 - -~  

< max [f (xk+i)-- f (xk) l l ( (P(O),s) l  
-- O(k(kn--1 

~- 0<k<k~--lmax I X k + l f ( X k + l ) - - X k f ( X k ) l ( ~ ( O ) , 8 )  

I~(Xk+l) + v(/~)l + ~. + max 
O<k<kn--1 

Since f is continuous and limx__,~ Ixl f(x)  -- 0, similar to the proof of Lemma 3.2, by 
(3.10), the first two parts  tend to zero as n ~ c~. This proves 

(3.13) lim P max  F((Xk+l + Yl , t )v 'r l+ Y2,t) 
n---*oc O~k~_kn--1 - ~  

-- F ( (xk  + Y I , t )V / I+  Y2,t)) > 2c~ = 0. 
/ 



762 JANUSZ KAWCZAK ET AL. 

Next, we consider the first part of the RHS of equation (3.12). 

(3.14) P ( m a x  IEn(Xk+l,8) - En(Xk,8)l > ~ 
~O~k<_kn--i 7 

E p (D~l](Xk+l)- D~I] > a'v/~ " 

k-=0 

Yet another application of the Lemma 3.3, together with (3.13), gives us upper bound 
on the probability in equation (3.14) 

~_, P (D~](xk+i)-D~l(xk)) >ev/-~ < exp{-O(v~)}+o(1)~0.  
E 

k=0 

Now the proof of (B) is complete. 

Next, we prove the uniform closeness of the processes expressed by equation (3.8). 

PROOF OF (3.8). The proof relies on repeated application of the result from equa- 
tion (3.7) and the compactness property of the set S(b) := {s :  Ilsll~ _< b}. 

The proof of equation (3.7) needs to be modified to accommodate the multiplicative 
nature of the perturbations under the indicator functions in (2.12). It is easily recognized 
that  when x E [ -M,  M] for M < c~ the proof of equation (3.8) will follow from equa- 
tion (3.7), the compactness of S(b) and the proof of Theorem 3.2.9 in Kawczak (1998). 
Therefore, we should concentrate on the case when x is outside of I - M ,  M]. First, let us 
look at the case when x > M. Notice that  the technique used so far cannot be utilized 
in the direct fashion because of the complication arising from the multiplicity rather 
than  the additivity of the terms under the indicator function. The following provides 
the remedy to the problem. 

Expanding v/1 + x = 1 + �89 - ~xl 2 , . .  yields 

(3.15) ( x  

(3.16) 

- t -v /nh(Xt_l : ;+n_l /2s) ) i ( l+--~ngn(Xt- l ,S) )  

= x 1 + gn(Xt-1, 8) -t- ~r + n - 1 / 2 s )  

Thus it is sufficient to consider the following empirical process 

1 I e t < x  1 +  + 
~n(x, , , ~ )  := x/~ t=l _ v ~  ] v ~ , ]  

-r(x(l+ 

+ Op(n-1). 

for bounded random variables, {l t  and {2t that  are ~-t_l-measurable and independent of 
et. u and ~ constants in R. 

The empirical partial sum processes with an additive term like r have been 7 
treated by Boldin (1982), Koul (1992) and Kawczak (1998), among others. However, by 
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mimicking the proof of (3.7) the conditions required are as stated, thus we do not need 
verify any additional conditions such as higher moments as used by Boldin (1982) and 
Koul (1992). 

It follows that further simplification to the process is possible. Hence, the process 
of interest becomes 

P~lt'~'~ ( X ( 1  P~lt~ 1 ~ { I ( ~ t < x ( l +  - F  A- ) } .  (3.17) ~~n(X'l]) = ~ t=l - v/-n]] v/-n] 

Therefore, the equation (3.8) will be implied by 

(3.18) s u p  sup tFH~(x, ~,) - H,~(x, 0)ll = op(1) .  Ivl<bx>M 
The case of x < - M  can be treated in an analogous manner. Because of multiplicative 
form of the fluctuations we need to devise the partition on x in a suitable way. One 
possibility is to take 

(3.19) Kn,k := {xk :xk=lnF- l ( k - -~nn) , k (M)<k< [ - - ~ ] } ,  

where k(M) = [ g(~M)v'-~] for the given ~ > 0. 
For xk < x < xk+l we have 

llT-/n(X, u) - 7 tn(x ,  o)11 
1 n 

_< 
t=l 

~t ~ Xk+l) -- F(Xk+I) + F(Xk)} 

U~lt 
-~ ~ t = i l  ~ {F(xk_I_I)_F(xk)_F (x (1~- V/-~])-~-F(z)} 

The form of the RHS of the above display allows us to adopt the technique of the proof 
of Theorem 3.2.9 in Kawczak (1998). Hence, most of the details are omitted. Thus, we 
get the equation (3.18) for x outside the region [ -M,  M]. Now, combining it with the 
remaining part for the x 6 I -M,  M] we get 

(3.20) sup  sup IIHn(x, ~) - Hn(x ,  0)11 = Op(1). 
lul<_bxER 

This concludes the proof of Proposition 2.1. 

3.3 Proof of Proposition 2.2 
Using the inequality I1/v/]-+ x - 1 + x/21 < x 2 for Ix I < 1/2, (2.6), (2.13), and the 

local boundedness of gn property (3.1), one obtains 

sup sup IBn(u,s)-Bn(u,O)I 
Ilsll~<bO<u<l 

_< sup sup etg~(Xt-1, s) 
IlsH ~ <-bO<-u<-I t=l 

n 

t=l 
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The second term on the right hand side of the above inequity tends to zero in probability, 
since et has a finite first moment.  As to the first term on the right hand side, by (2.9), 
we obtain 

sup sup 
Ilsll~b O<u<l 

l[nu] s) s 
t = l  

b' 
i~1 max etgi,n(Xt-1) n(i---1)/2 l < k < n  
= t = l  

where gi,n(X), i = 1, 2, 3, are defined by those terms in (2.9) after all s 's are removed. The 
gi,n(x), i = 1, 2, 3, are bounded functions of x and independent of s. Thus Proposition 2.2 
can be proved if we can show that  

max etgi,n(Xt-1) 
l < k < n  t = l  

---+0 

in probability as n --* oo. This can be proved immediately by the fact tha t  {etgi,n(Xt-1), 
S-t} is a martingale difference sequence and by Kolmogorov's maximum inequality with 
the  assumption Ee~ < cx~. 

3.4 Proof of Proposition 2.4 
By (3.3) in Lemma 3.1, we have for any b > 1 

[• 
['~t~ 1 

1 s2 s2 
sup sup - 

[]s[[•<_bO<u<l ?'t t=l v/h( x t - l 'O -~-n-1/28) = v/h(xt- l ,0)  
< v/-2C(O) b4 
- v ~ n  

Hence, to complete the proof of Proposit ion 2.4, we need to verify on the set { v/-~ll0 - 0l[ < 
b} tha t  

(3.21) sup 1 ~  1 
0<~<1 n t=l v/h(Xt-l ,0) ur 

=Op(1). 

To this end, by (3.2), we have for any 0 < 77 < 1 and large n, 

1 [nut~ll 1 sup ur 
0 < u < l  = v/h(Xt_l,0) 

< 0(7]) + sup 
v_<u_<l 

<_ o(v )  + sup 

n t=l v/h(Xt-l ,0) 
ur 

k 
1 1 

~ ~ v/h(Xt_l,0 r 

The last term in the above inequality converges to 0 in probabili ty by the definition of 
convergence almost surely, i.e., as n --~ oo, 

sup 
k>n 

1 k 1 

-i ~1 Vh(X~-l, o) - r 
= op(1). 

This proves (3.21). 
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3.5 Proofs of Theorems 2.1 to 2.4 
The proofs of Theorems 2.1 and 2.3 rely on the same technique that  is used in proving 

Propositions 2.1 to 2.4, that  is one just needs to work on the set {v~ll0 - 811~ ~ b} for 
any fixed b > 0. Thus Theorem 2.1 follows easily from (2.14) and Propositions 2.1 and 
2.3. Similarly, Theorem 2.3 follows from (2.15) and Propositions 2.2 and 2.4. 

To prove Theorems 2.2 and 2.4, we need to slightly modify the proofs of Proposi- 
tions 2.3 and 2.3 respectively. Specifically, there are only m terms in the sum instead 
of n terms. However, because 0 is still assumed to be v/n consistent, an extra factor 
x/~/v/-n appears in the right side of representations in Propositions 2.3 and 2.4. Hence 
as n --~ co, they will converge in a sup norm in probability to 0. Thus Theorems 2.2 and 
2.4 follow easily. The details are omitted. 
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