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Abs t r ac t .  Nonhomogeneous Poisson process (NHPP) is a commonly used stochas- 
tic model that is utilized to describe the pattern of repeated occurrence of certain 
events or conditions. An inhomogeneous gamma process evolves as a generalization to 
NHPP, where the observed failure epochs correspond to every successive n-th event of 
the underlying Poisson process, n being an unknown parameter to be estimated from 
the data. This article focuses on a special class of inhomogeneous gamma process, 
called modulated power law process (MPLP) that assumes the Weibull form of the 
intensity function. The traditional power law process is a popular stochastic formula- 
tion of certain empirical relationships between the time to failure and the cumulative 
number of failures, often observed in industrial experiments. The MPLP retains this 
underlying physical basis and provides a more flexible modeling environment poten- 
tially leading to a better fit to the failure data at hand. In this paper, we investigate 
inference issues related to MPLP. The maximum likelihood estimators (MLE's) of 
the model parameters are not in closed form and enjoy the curious property that they 
are asymptotically normal with a singular variance-covariance matrix. Consequently, 
the derivation of the large-sample results requires non-standard modifications of the 
usual arguments. We also propose a set of simple closed-form estimators that are 
asymptotically equivalent to the MLE's. Extensive simulation results are carried out 
to supplement the theoretical findings. Finally, we implement our inference results 
to a failure dataset arising from a repairable system. 

Key words and phrases: Asymptotics, maximum likelihood estimation, modulated 
power law process, power law process, recurrent event. 

1. Introduction 

In many scientific investigations, the event of pr imary interest is recurrent in the 
sense that  it can occur repeatedly over t ime for each individual or system under consid- 
eration. A common example is the repeated malfunctioning of an automobile tha t  is put  
back in service once the component  causing the malfunction is replaced or repaired. Sta- 
tistical analysis of da ta  arising from a recurrent event has received considerable at tent ion 
in the past three decades in reliability and software engineering, biomedical, actuarial 
and economic applications. In the reliability and software engineering applications, the 
event of pr imary interest is the failure of a system. As many  complex and expensive 
systems encountered in practice are meant  to be repaired rather  than  replaced on failure, 
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recurrent events arise as a natural consequence. For example, during a software devel- 
opment process, failures (or bugs) are detected, corrected and the testing continues with 
the modified code. The pattern of times between successive failures is of fundamental 
importance in assessing whether the redesign efforts contribute to the improvement of 
the system. In biomedical applications, the failures are the occurrence of a recurrent 
event (e.g. carcinogenic growths in different times and locations, multiple attacks of car- 
diac arrest, repeated failures of a medical device inserted in patients suffering from a 
certain disease) in individuals. 

In this paper, we focus on applications in which events are observed for a single 
system. The premise is natural in engineering applications where only a few prototypes 
of an expensive system are available for testing. Suppose the successive failures of the 
system occur at times 0 < 7'1 < T~ < - . .  < Tn and the system is observed until n 
events occurred (failure truncation scheme). Nonhomogeneous Poisson process (NHPP) 
and renewal process are often used to model recurrent events, and methods based on 
them are well established (e.g. Ascher and Feingold (1984), Cox and Isham (1980), Cox 
and Lewis (1966), Crow (1982)). NHPP assumes that after a repair the system is in 
the same condition as it was just before the failure. This minimal repair model is 
justified in instances where the repair time can be deemed negligible in comparison to 
the time between failures. An NHPP is characterized by an intensity function )~(t) that  
represents the rate of occurrence of events. Denoting by N(t), the underlying counting 
process enumerating the number of failures up to time t, mathematically, 

&(t)= lim P [ N ( t + A t ) - N ( t ) > ~ I ]  
~t--.0 At 

that  can be interpreted as the probability of at least one failure per unit time in an 
infinitesimal time-interval (t, t + At]. If ties (in failure times) occur with probability 

zero, as is the case with Poisson process, A(t) = f~ &(s)ds matches E[N(t)], the mean 
number of failures until time t. Renewal process, on the other hand, implies that  the 
times between successive events are independently and identically distributed i.e. after 
repair the system is in a like-new condition. As is well known, a homogeneous Poisson 
process (HPP), for which A(t) is constant, is also a renewal process in which the times 
between successive events are exponentially distributed. 

In modeling recurrent event data, the major thrust came from certain empirical 
findings of Duane (1964). From the examination of time-between-failure data of several 
industrial systems, he observed that  the empirical cumulative rate of failure typically 
produced a linear relationship with the cumulative operating time when plotted on a 
log-log scale. This phenomenon, subsequently referred to as the Duane learning curve 
property, was given a concrete stochastic basis by Crow (1974), who assumed that  the 
failure process can be modeled by an NHPP with an intensity function of the Weibull 
form 

(1.1) = (9/e)(t/e)z-1, e , 9  > o; t > 0 

where 0 indicates a scale effect and ~ quantifies the growth or decay in the rate of failures. 
Due to the special structure of the intensity function, this model is often referred to as 
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the power law process (PLP) in the statistical literature. Elegant mathematical prop- 
erties and easily implementable diagnostic procedures have attributed to the immense 
popularity of the PLP as a model for recurrent event data (cf. Bain and Engelhardt 
(1980), Rigdon and Basu (1989)). Indeed, the defense industry has adopted the PLP 
model as industry standard and refers to it as the AMSAA (Army Material Systems 
Analysis Activity) model (MIL-HDBK-781 (1997)). 

In many situations, however, neither the NHPP nor renewal process seems to portray 
a realistic depiction of the failure process. The underlying assumption for an NHPP that 
a repair returns the system to the condition as it was just before the failure, is often overly 
pessimistic. On the other hand, the renewal process, for which repair always brings the 
system to a like-new condition, is overly optimistic. In many practical situations, after 
repair, a system is in better condition than it was just before the failure, but may still 
be not in a like-new condition. In this article, we deal with an extension of NHPP called 
an inhomogeneous gamma process that  addresses the above concern. The focus is on a 
specific parametric version called modulated power law process (MPLP) that  extends the 
traditional PLP while retaining the physical meaning underlying it. 

1.1 Modulated power law process 
The iuhomogeneous gamma process (IGP), introduced by Barman (1981), can be 

described as follows. Consider an NHPP with intensity function A(t). Imagine that  
every ~-th event of the process is observed. If the events are thought of as shocks, then 
the assumption entails a failure at the occurrence of every t~-th shock. If, for example, 

---- 4, then every 4th shock would cause a failure. After repair a system would thus 
be better than it was just before the failure, since in order to cause another failure the 
required number of shocks must accumulate to four again. However, after repair a system 
would not necessarily be as good as new. The larger t~ is, the larger the improvement 
will be. Thus, the IGP incorporates a repair-effect in the model yet allowing for a less- 
than-perfect repair. Of course, if ~ = 1, the model reduces to a traditional NHPP. If 
T1 < " "  < T,~ are the times of the first n events observed for an IGP, then their joint 
density is given by 

(1.2) f ( t l , . . . , tn )=L=~J~( t i ){A( t i ) -A( t~- l )}~- l]e-A( t~) /{F(~)}~;  

where A(t) -- f~ A(x)dx and to = 0. The function A(t) can be interpreted as the expected 
number of shocks before time t. Expression (1.2) defines a valid density function even 
for non-integer, positive values of n. In this case, however, extra care should be taken to 
explain the effect of ~, since the shock model interpretation does not carry over anymore. 

An alternative approach to define the IGP is as follows. Suppose that  the random 
variables Y~ = A(T~) -A(T~_I)  for i -- 1 , . . .  ,n  are independently and identically dis- 
tributed as Gamma(K, 1). It then follows that (1.2) is the joint density of T1, . . . ,Tn .  
Here and in the sequel, a Gamma((~l, c~2) refers to the gamma distribution with shape 
parameter c~1 and scale parameter a2, conforming to the pdf 

1 
g(x) - a71r (a l )x~ l -1e -x / "~ ,  x > 0, o~1,ol2 > 0. 



706 NIBEDITA BANDYOPADHYAY AND ANANDA SEN 

Some distr ibut ional  propert ies of the IG P  are imminent.  For example, A(Tj) = 

~-]~=I[A(Ti)-  A(Ti-1)] follows a Gamma( jr%l) for  every j = 1 , . . . , n .  Also, Ui = 
A(ri) /A(Tn) ,  i -- 1 , . . . , n -  1, are each dis t r ibuted as be t a  with parameters  ni and 
n ( n - i )  independent ly  of Tn. If n is an integer, the sequence of Ui's can further  be viewed 
as the lag-n order statist ics from a random sample of size nn - 1 from Uniform(O, 1). If 
the  intensity function is of the form 

(1.3) A(t) = pexp{ul  zl (t) + . . .  + UpZp(t) }, 

where zl, z 2 , . . . ,  Zp are (possibly) t ime-dependent  covariates, then  I G P  is called a modu- 
lated gamma process. This form of A(t) expresses a possible dependence  of the occurrence 
of events on the vector  z(.) of explana tory  variables. The  modulated gamma process is 
an extension to the modulated Poisson process int roduced by Cox (1972). 

Recall tha t  the premise is tha t  of observing repeated  failures of a single system. 
In order to make inferences about  the system, a fully paramet r ic  character izat ion of 
the underlying model is warranted.  Under  the IGP framework, we choose to work with 
power-law form of (1.1) tha t  has received substantial  a t t en t ion  in reliability engineer- 
ing li terature.  The  resulting model was te rmed modulated power law process (MPLP)  
by Lakey and Rigdon (1992) as the power-law formulat ion conforms to the modula ted  
s t ruc ture  of (1.3) with p = /3/0 z, Ul = f i -  1 and zl(t) = logt.  In this model fi is 
a measure of the system improvement  or deter iorat ion over the  course of the system's  
life and n is a measure of the improvement  affected by a repair.  In our formulat ion 
will be t rea ted  as a positive real number.  Since h(Ti)  = (T/ /0)  z has a Gamma(hi, 1) 
distribution,  E{~( log  Ti - log 0)} ~ log n + log i for modera te ly  large values of i. Thus,  
like PLP, even for this model log(i/Ti) is approximately  linear to log(T/), retaining the  
physical connect ion to  Duane 's  learning curve property.  Three  special cases of M P L P  
meri t  special mention.  When  n = 1, there  is a failure at each shock and M P L P  reduces 
to PLP.  When  /3 = 1, the times between failures are independent ly  and identically 
dis t r ibuted gamma random variables, so the process becomes a gamma renewal process. 
Finally, when both  n = 1 and/3  -- 1, the process reduces to  HPP.  

The  article is organized as follows. In Section 2, we s tudy  the  large-sample prop- 
erties of the max imum likelihood est imators  of the parameters  0, ~ and n. The  earlier 
studies related to the inference issues of the  M P L P  model (e.g. Black and Rigdon (1996)) 
did not  repor t  the asympto t ic  dis t r ibut ion of the maximum likelihood est imators  which 
involve non-s tandard  manipula t ion  due to  the  fact tha t  the  Hessian mat r ix  converges in 
probabil i ty  to a singular matrix.  In Section 3, we propose simple non-i terat ive est imators  
which are asymptot ica l ly  equivalent to the maximum likelihood estimators.  Statist ical  
inference on the  rate  of occurrence of failure (ROCOF)  of the underlying process is also 
carried out. In Section 4, we report  the results of some simulat ion studies and fit the  
M P L P  model to a real -data  problem. Some concluding remarks are given in Section 5. 

2. Maximum likelihood estimation 

Let 0 < T1 < ". .  < Tn be the times of occurrence of the first n events from an 
MPLP.  Then  the log-likelihood function is 

log L(O,/3, ~) -- - ( T n / 0 )  ~ 4- n log/3 - n log P(n)  - n/3n log 
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n n 

+ (/3 - I) E logTi + (t~ - 1) E log(Tf - Tf_l). 
i=1 i=1 

Writing tt = (0,/3, ~)' the score vector In(#)  = (lln(tt), 12n(tt),/3~(tt))' is obtained as 

(2.1) 

0 log L 
/ln(~s -~ O0 = (/3/o)(rn/O)J3 -- (rt/3t~,)/O, 

12n ( # )  0 log L n - ~  (Tn/O) ~ log(Tn/O) + n//3 - nn  log 0 + E log Ti 
i=1 

i n T ~ l o g T i _ T i ~ _ l l o g T i _ l  

i=1 

0 log L 
/ 3 n ( ~ )  = 0"""~ - -  rt~)(t~) --  n/31og0 + E log(T/~ - T/~_I) ,  

i=1 

where r = r ' ( . ) / r ( . )  is the di-gamma function. The components of the second- 
derivative matrix A~(tt) = (a~j(#)) = - 0  2 log L/OttOtt ' :  

(2.2) 

0 2 log L 
a l l ( ] . t )  _~ 0 0 2  

0 2 log L 
a 1 2 ( t t )  - -  0 0 0 / 3  

0 2 log L 
a ~ 2 ( t t )  =- 0 0 0 / 3  

0 2 log L 
a13 ( i t )  ~- 0 0 0 t ~  

a 2 2 ( t ~ )  - 

a 2 a ( t t )  - 0 /30 ,~  

0 2 log L 
a33 (/_t) =_ Ot~2 

- -  - ( / 3 / 0 2 ) { ( 9  + 1 ) ( T n / O ) Z  - n ~ } ,  

- -  - ( / 3 / O ) ( T n / O )  ~ l o g ( T ~ / O )  - ( 1 / O ) ( T n / O )  ~ + ( n g ) / O ,  

- -  - -  ( / 3 / O ) ( T ~ / O )  ~ l o g ( T ~ / O )  - ( 1 / O ) ( T n / O )  ~ + ( n ~ ) / O ,  

- -  - ( ~ / 3 ) 1 o ,  

0 2 log L n 
aft2 - (Tn/O)fl{l~ 2 + f i t  

- ( ~ -  1 )  
T~(log r , )  2 T~_ 1 (log Ti- 1) 2 

i:2 r 0 -  r0_l 
@ (T~ logTi - T~_ 1 logr i_ l )  2 

+ (~ 1) 2_., 

i = 1  Z / ~  - T 0 - 1  ' 

- n r  

A A 
Here ~'(.) is the tri-gamma function. Throughout this article, 0, /3 and ~ will be 

taken to mean a consistent sequence of roots of the likelihood equations ln(tt) = 0, which 
we will call the maximum likelihood estimates (MLE's). Later, we shall establish the 
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existence of such a sequence. An inspection of (2.1) reveals that lln(tt) = 0 translates 
into the relation 

(2 .3 )  ~ _ Tn 
(nN)l/~ ' 

upon substituting which, both 12n (it) and 13n (it) can be expressed as functions of ~ and 
only. /~ and ~ are thus obtained by^a standard two-variable Newton-Raphson algorithm, 
before applying (2.3) to calculate 0. 

2.1 Large-sample  in ference  of  the M L E ' s  
In this section the asymptotic properties of the MLE's are presented. We shall 

make use of the standard symbols %(.) and Op(.)  for convergence and boundedness 
in probability. In our subsequent discussion all limits will be taken as n --* cc unless 
otherwise mentioned. Prom now on we denote the true parameter point in the interior 
of the parameter space as #0 = (00, ~0, n0)' and leave # as the argument of the various 
functions. We define the random variables 

(2.4) 

n  ln=n lJ2{ 0 1o o} 
- -  n 0}, 

U3n n -1/2  ;~=l[log{(Ti/Oo)~~ - ( r i - 1 / O o ) ~ ~  - ~)(~0)]" 

The following result plays a pivotal role in establishing the large-sample property 
for the MLE's. 

LEMMA 2.1. Un = ( U l m U 2 n ,  U3n)' converges in d is t r ibu t ion  to a mul t i var ia te  
n o r m a l  r a n d o m  variable wi th  m e a n  vec tor  zero and covariance m a t r i x  Eo  where 

Y]O = 

/'gO 0 0 ] 

O0 ~o 1 . 
1 ~'(~o) 

To prepare the groundwork for proving Lemma 2.1 we define the random variables 
Xi as follows 

(T /Oo) 
X i  = , i = 1, . . . , n; 

it~o 

n 

Xn = n-1 ~ Xi. 
i=1 

The next lemma provides some necessary results concerning the random variables Xi 
which will be used in proving Lemma 2.1. Proof of this lemma is sketched in the Ap- 
pendix. 
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LEMMA 2.2. (a) n U 2 ( X n  - 1) ~ N(0, t~O 1) in dis tr ibut ion as n --~ co. 
(b) n l / 2 ( X n  - -Xn) ~ N(O, ~o 1) in dis tr ibution as n ---* oo. 
(C) U3n and n l / 2 ( X n  - - X ~ )  are uncorrelated. 
(d) ?2 -1/2 E i ~ l  l ~  = n l / 2 (  x n  - --Xn) Jr Op(1). 

PROOF OF LEMMA 2.1. Noting that the random variables Y/ = (Ti/Oo) ~~ - 
(Ti_l/Oo) ~~ for i = 1 , . . . , n  are independently and identically distributed as 
Gamma(~o, 1), U2n and U3n c a n  be re-expressed as 

U2n :?21/2 ( l~-~yi-I~O)i=l 

V3n :hi~2 {lfil~176 " n  i = 1  

U, ! Then by an application of bivariate central limit theorem, ( 2 n ,  U3n) are asymptotically 
normal with zero mean vector and covariance matrix 

( 2 . 5 )  [1 ~ A0/] 
Also we can express Uln in terms of X~ as 

(2.6) 
n 

U l n  = n - 1 / 2  Elog(Xn/Xi)  + n-1/2(nlogn- l o g n ! -  n). 
i = 1  

Using Stirling's formula, the non-random term on the right of (2.6) is Op(1). That Uln is 
independent of U2n, follows from the properties of MPLP. Lemma 2.2 entails that  Uln 
converges in distribution to N(0, t%a), and is independent of U3n. In conjunction with 
(2.5), the result then follows. [] 

We now turn to the asymptotics of the MLE's that is the main goal of this section. 
Define, the scaled second derivative matrix of log-likelihood obtained from An as 

(2.7) Cn(~) = ( C ~ ( ~ ) )  = n - 1  

an(tt) al2(tt)/logn a13(It) 
al2( t t ) / log n a22(tt)/(log n) 2 a23 ( i t ) / log n 

al3(tt) a23(lt)/logn a33(/t) 

Evidently, the nonuniform scalings used here are quite unlike those involved in the treat- 
ment of ML asymptotics in a standard situation. The scalings have important bearings 
on the convergence results as will be transparent later in this section. 
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Denoting C n ( ~ t o )  ---- C n = (ci j ) i , j=l ,2,  3 and referring to (2.2), (2.7) and the repre- 
sentation (2.4), we obtain 

f102no flo(flo + 1) U2n 
C l l -  002 q- 02 n 1 / 2 '  

no U2n no log no + log 1 + ~oni/2 ci2 Oo Oon i/2 Oo log n 

OoniU/~logn {l~ no + l~ (l  + nUo--~l/2 ) } , 
flo 

C13 

-X-~O, U2n 2 (. . , I". U2n ~ ] / U2n 
c~ 9~ n02~,i~ 9a logn / t no~i~)~, t~ l i  ~ + no) -~  + - -  + ~2hYiC-LZ~- log no + log 1 + - - -  

1 ( U 2 n ) {  ( U2n ) }  2 
+ ~ o l o ~  ~ +t% log n o + l o g  1 +  

(2.8) ~o - 1 
n(flo log n) 2 

, l / . n O  - -  ~ / i i--1 / lo  
+ - n 2  n ~  flG--GG-~flo 2 g - 1  

( f l 0 1 0 g )  [ i=2 t ( T  ~ -T;_I) t T?_~ 
1 1 {  ( U2n)}  

c23 -- -~o - ~ ~; log no + log 1 + 

1 (U 1 

l ~ / ~i--1 lo 1 i  
. - - ~ 2 _ . / T ~ o - ~  gT-No - 1  , 

i=2 \ i -- i - 1  i - 1  

C33 C#(n0) .  

In deriving the probability limit of Cn as well as other derivations throughout the 
article, the following convergence result involving Ti's is used. To avoid any significant 
digression from the main goal, we relegate its proof to the Appendix. 

) LEMMA 2.3. (a) n -1t2 ~-,n ( T~21 log - 1 = op(1). A--~i----2 ~T~0 T~O 
x ~ i  - - ' i - - 1  

o (b) n-1 
E,=2 c (~o_ff__o)~ t ~ 7  Op(1). 

s 

Note from the expression in (2.8) that Cn involves Un = (Uin, U2n, U3n)'  a s  well as 
the quantities appearing in Lemma 2.3. Using Lemma 2.3 and the fact that Un -- Op(1), 
it follows that Cn converges in probability to E, where 

F(902no)/0o~ -no/0o 9o1O0 
~ =  / -no/0o no/go2 - i / go  

L Zo/Oo -1/,3o r 
Note that 5] is a singular matrix with rank 2. This clearly makes the premise quite 

distinct from the classical ML asymptotics, and warrants nonstandard modification of 
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the Taylor-series argument that is used in practice�9 Some such modifications have been 
adopted by Bhattacharyya and Ghosh (1991) and Sen and Fries (1997) in the context 
of some discrete reliability growth models. These methods either do not directly apply 
in our context or involve unnecessarily complex manipulations�9 Instead, we proceed by 
reducing the problem to two-dimensions and appealing to the distributional properties 
of the MPLP. 

Let us define the centered and scaled MLE's as Win = nl/2(logn)-l(On -0o) ,  
W2n  = n l / 2 ( ~ n  - /3o), W3n  = n l / 2 ( ~ n  - ~ ;0 ) � 9  W e  partition the parameters as /z' = 

(0, r = (0,/3, a) and W~ = (Wln, W*') = (Win, W2n, W3n). Substituting 0"from (2.3) 
* l* tot ~V into (2.1), the score functions 12n(IZ) and 13~(#) reduces to l*(ct) = (ll~(Ct), 2n~ H ,  

where 
n 

l~n(Ct ) = -ng logTn  + n//3 + E logTi 
i = 1  

(2.9) + ( ~ - 1 ) ~ _T~ log Ti Z T~-__~ 1 log Ti-_l 

TO -- Ti~-I ' 

l~n(Ot ) --n~)(g) + n logn  -- n/31ogTn + n logn  + ~:-~ log(Tf - Tf_l). 
i = 1  

The problem now is two dimensional. Differentiating the functions ln(a  ) given in 
(2.9) we obtain the elements of the matrix A* (a)  = (a*j (a)) = -Ol*(ct)/Oct: 

a h ( a )  = (n/ /3  2) - (~ - 1) 
TO(logr )  

r0- T0_I 

, 10, 
T :  log Ti T0_I 

a*l~(a) = a:~ (,~) = n log Tn - 
log Ti-1 

i=1 TO - Ti~-I 
a~2( ,~ )  = n r  - ( n / K ) .  

Assume for the time being that l*(ct) = 0 has a solution G~ = (/3n,~n)'. The 
appropriate neighborhood of ct0 = (/3o, ~0)' in which the solution exists is specified in 
Lemma 2.4. Expanding l*(~n) around a0 we obtain 

(2.11) l*(a0) = A * ( ~ n ) ( ~ n  - Olo), 

where ~ is on the line segment joining &n and c~0. Defining Z* = n-U21*(ao) and 
Cn(. ) = n - lA*( . ) ,  we have from (2�9 

(2.12) Z* = C~(~n) Wn. 

The asymptotic normality of (/3n, ~n)' rest on convergence results for Z n and C*, which 
we demonstrate next. 

LEMMA 2.4. (a) Z n converges in distribution to a bivariate normal random vari- 
able with mean vector zero and covariance matrix ~E* where 

] r ~ * =  ~~176 o 
0 r  1/~o 
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(b) C*(ao)  converges in probability to ]E*. 
(c) Define a sequence of neighborhoods of So by 

Mn(oto) = {o~:/3 = / 3  0 + TI n-5, t~ = ~o + T2n -5, IIT[[ <- h}, 

where5 a n d h  are fixed numbers withO < 5 < 1/2, 0 < h < oo. Then, [ C ~ ( a ) -  
C~(a0)] --, 0 in probability uniformly in a ~ Mn(aO). 

(a) Observe that  using (2.4) we can reexpress l{n(ao) and PROOF OF LEMMA 2.4. 
l ~ . ( ~ o )  as 

i 
l~n(O~O) = -  nl/2Uln ( l o g - -  1 , 

~ O - 0  q- /3---V-- i=2 ~k r0o  -- T0Ol T0~ 

* ( U2n ) +nl/2u3n" 12n(ao) = - n l o g  1 + nl/2---- ~ 

An application of Lemma 2.3 yields 

Zln -(/~0//30)Vln + Op(1), 

z~,, = -(u~n/,~o) + u3n + o~(1). 

Using Lemma 2.1 it follows that Z* is asymptotically normal with zero mean vector and 
covariance matrix E*. 

(b) Using (2.4) again, it is possible to express the elements of C*(a0)  as 

~ o  ~ o  - 1 

C~l(Ol~0)- /32 n/3o 2 

U-in 1 
c 7 2 ( ~ o )  - n l /2 /3~  + nTo 

1 
c ; ~ ( a o )  = r  - - -  

t~o 

( } - - +  n~~ i=2 (TO ~176 2 lOgT0Ol] - 1  

n/30 ,_-2 TO ~ - 0:1 log T0:---; - 1 

which implies that Cn(cto ) converges to the non-singular matrix E* in probability. 
(c) The proof rests on showing the uniform convergence of relevant functions. De- 

tails of the proof are sketched in the Appendix. [] 

In the development thus far, we have assumed the availability of a consistent se- 
quence of roots of the likelihood equations. Theorem 2.1 given below demonstrates the 
existence of such a sequence and establishes its asymptotic normality. 

THEOREM 2.1. (a) With probability tending to 1 as n ~ oc, there exists a sequence 
of roots Ot n C Mn(C~o) of the likelihood equations. Furthermore, such ~n's  correspond to 
local maxima of the likelihood function. 

(b) W n  is asymptotically (singular) normal with mean vector zero and covariance 
matrix ]El, where 

o~1(~o) Oo1~o o ] 
r~l = Oo/~o 3~/~o o J . 

0 0 ~ o / { ~ o r  - 1} 
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PROOF. (a) The existence proof follows along lines very similar to a corresponding 
proof given in Sen and Bhattacharyya (1993) and we omit the details here. 

(b) Premultiplying both sides of (2.12) by E *-1 we have 

$ $ - - 1  $ $ 

,~_],--1 Zn  ~- ~ [Cn(~n ) _ C.(OLo ) -~- C.(c~0)] Wn 

= W* + Op(1). 

For ~n C Mn(c~o), the last equality follows from Lemma 2.4 and the f ac t tha t  C*(c~o) 
converges to E* in probability. This implies W* is asymptotically normal with zero 

mean and covariance matrix E *-1. Furthermore, note that 

/3o(logO - log Oo) = (logn)(1 -/3o//3) + log{1 + U2n/(nl/2go) } 

- ( / 3 0 / / 3 ) ( l o g  s - log no) + (log n o ) ( 1  - - / 3 o / / 3 ) .  

Using the asymptotic normality of both U2n and W*,  it follows that 

nU2(logn)- l ( logO - log 00) =/3o2W2n + Op(1). 

and the result follows. [] 

Remarks. 1. The asymptotic result of Theorem 2.1 provides some curious insights 
into the behavior of the MLE's of the MPLP parameters. Apart from the singularity 
and nonuniform scalings of t h e M L E ' ~  also note that Theorem 2.1 entails that ~ is 
asymptotically independent of 0 and /3. The asymptotic result for the MLE's of the 
usual PLP is also recoverable from Theorem 2.1 by simply substituting no = 1 in the 
2 • 2 top left submatrix of ]El. This is also the part of the matrix that makes it singular. 

2. Not all submodel results, however, can be derived as special cases of Theorem 2.1. 
For instance, for the gamma renewal process with/3o -- 1, the asymptotic result of the 
corresponding MLE's are quite different. Specifically, denoting by 0", n* the MLE's for 
0, n in the gamma renewal process, it follows from standard results concerning gamma 
distribution, that the vector (x/~(0* - 0o), v/-rT(n * - no))' converges in distribution to a 
bivariate normal with mean 0 and variance-covariance matrix 

[ -Oo ] 
= ( n o a h ' ( n o )  - 1 )  - 1  i -Oo 

Evidently, the inclusion of the unknown growth parameter/3 in the MPLP model has 
crucial impact on the rate of convergence as well as the dependence structure. 

3. An interesting observation regarding the large-sample behavior possibly lies at 
the root of the pathology we observe here. The joint asymptotics of the thiee parameter 
model rests on the crucial Taylor-expansion step, that can be expressed (after suitable 
scaling) as 

(2.13) 

I n_1/211n(ttO ) ) 
n-1/2(log n)-ll2n(#O) n-1/213n(ltO) 

- l o g  n 

= 0 

0 

log n 

0 
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where ~* is an intermediate random point between ~ and it0. While Wn = Op(1), 
Cn( ' )  converges to a nonstochastic singular matr ix  uniformly in a neighborhood around 
it0. In spite of the presence of the multiplier mat r ix  of growing constants on the right of 
(2.13) it can be shown tha t  the left hand side converges to a (singular) normal, thereby 
making it a Op(1) term. This is in stark contrast  to classical i.i.d, asymptotics.  

2.2 Inference for rate of occurrence of failure (ROCOF) 
Often people are interested in the inference concerning the intensity function of a 

point process. There has been considerable work relating to the est imation of intensity 
function of a PLP.  For PLP, or for tha t  mat ter ,  for any NHPP, the intensity function 
matches the rate of occurrence of failure (ROCOF) defined as the instantaneous rate of 
change of the mean function. As we show next, this is not the case for an IGP. 

Let N(t) and H(t) denote the counting process and the mean function of an IGP. 
Then it follows from the properties of IGP tha t  No(x) =- N(A-~(x) ) ,  A(x) = t, is 
the counting process associated with a gamma renewal process where A(xi) - A(xi-1) 
follows a Gamma(n, 1) distribution. Moreover, if we define Ho(x) = E[No(x)] then 
Ho(x) = H(A -1 (x)). From standard theory of renewal processes (see Cox (1967), p. 48- 
53) we have 

x 1-,~ O(exp(-ax) ) 
(2.14) H(A-~(x) )  = ~ + ~ + 

1 - - N  ~-~ + ~ + O(e-Xx -~-1) 

if n is integer; 

if n is non-integer, 

where 'a'  is a constant  with 0 < a ~ 2. Infact 'a '  evolves as a bound for the real part  of 
the non-zero roots of (1 + s) ~ = 1. Subst i tut ing t = A- l ( x )  in (2.14) we thus have, 

A(t) 1-,~ 
H( t )  = --7- + ~ + O(exp(-aA(t))) if n is integer; 

A(O -7-  + ~ + O(e-h(t)(A(t)) -'~-') if n is non-integer. 

Since in IGP the probabili ty of simultaneous failures is zero, the R O C O F  for an IGP is 

d f ~ + O()~(t)exp(-aA(t))) if n is integer; 

/ /g 

(2.15) h(t) = H(t) = :~(t) 
-7- + O()~(t)e-h(t)(A(t)) -~-1) if n is non-integer. 

Unlike NHPP, the ROCOF of IGP is not equal to the "complete" intensity function. 
Defining Ft = {N(s) : 0 < s < t} as the history of the process up to t ime t, the complete 
intensity function of IGP is 

p(t, Ft) = lim 1 [Pr{a failure in the interval It, t + At) I Ft}] 
At--+0 ~ 7  

= lim 1 [Pr{a failure in G a m m a  renewal process in the interval 
At---~0 

[A(t), A(t + At)) I Ft}] 

= lim 1 [Pr{a failure in G a m m a  renewal process in 
At--+0 " ~  

[A(t), A(t) + A(t)At) [ F,}] 
= Z(A(t)  - A(Tg(t_)))&(t), 
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where TN(t-) is the time of the last event prior to t and Z(.) is the hazard function of 
Gamma(a, 1). It is thus seen that the complete intensity function of IGP is a product of 
A(t), which depends on the age t of the system and another factor which depends on the 
(transformed) time from the last event. This is in contrast to Cox's modulated renewal 
process (Cox (1972)) and the model of Lawless and Thiagarajah (1996), which instead 
use complete intensities of the form Z(t - TN(t-)))~(t). 

In this section we study the current ROCOF of an IGP. The current ROCOF refers to 
the achieved value of the intensity function at the current time, usually the termination 
point of the developmental testing phase. For IGP, this quantity can be thought of 
as an initial estimate of the rate of occurence of failure (ROCOF) at the subsequent 
operational testing phase in which the system failures are assumed to be governed by 
a Gamma Renewal Process (at least initially). An objective evaluation of the current 
ROCOF is extremely crucial to reliability engineers in deciding the extent of effectiveness 
of a developmental program in achieving a planned reliability goal. 

From (2.15), the intensity hn at the n-th failure of MPLP can be expressed as 

{ ~(Tn/O)~-I + Op(-~(Tn/O) ~-1 exp(-a(Tn/O)Z)) if t~ is integer; 
hn = h(Tn) = o,~ 

~(Tn/O)~-lO,~ + OP(-~(Tn/O) -(~'~+1) exp(-(Tn/O)~)) if a is non-integer. 

The above quantity is random since Tn, the time of the n-th failure is random. An 
estimate ttn of hn can be obtained by replacing the parameters by their MLEs in the 
leading term of hn, i.e. 

hn  --  ~ ( T n / O ) ~ - I  -- n~  
~ T~" 

THEOREM 2.2. The quantity na/2(hn/hn - 1) converges to a normal distribution 
with mean zero and variance 2/~0. 

PROOF. First notice that 

hi/2 (~nn -- 1 ) 

Tn (~o (Tn/Oo)ZO-1 exp(_a(Tn/Oo)OO)) nl/2{ ~O(Tn~OO)oOn,6t~O 1} -~- n--~-~OP 

if a is integer; 

: n l / 2 {  t3~176176 --1} 

-~ T~ P k(~~176 ~ n//O~--(/3~176 exp(-(Tn/Oo)~~ 

if t~ is non-integer. 

Using (2.4) and the fact that/30//3 ~ 1 in probability as n ~ c~, we arrive at 

nU2 { /3~176176 1 } - - U 2 n  W2n 
n/~0 ~0 /3~- + Op(1). 

Further, 

(2.16) Tn 0 (~o(Tn/Oo)~o-lexp(-a(Tn/Oo)~O)) nl/2~ P 
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=Op(nU2exp(_anno(l+ U2n ~ 
n'12no.] ) ) ' 

Tn 0 
(2.17) nl/2 ~ p (~o (Tn/Oo)-(P~176 exp(-(Tn/Oo)Z~ 

=Op(n_~o_l/2exp(_nno(l+ U2n ~'~ ) 
nl/2no ,] , ] / "  

A quick reflection reveals tha t  the terms in (2.16) and (2.17) are, infact Op(1). Conse- 
quently, irrespective of the  value of n0, 

nll2 (h~n _ l) _ U2n Iu 
no /3o 4- op(1). 

Fur ther  from Theorem 2.1(b) we have W2n = --/30Uln + Op(1). Hence using Lem m a  2.1 
the result follows. [] 

3. Simple estimators 

The  max imum likelihood est imators  for the parameters  in the M P L P  are not  avail- 
able in closed form. In this section, as an al ternat ive to the MLE's ,  we construct  simple 
est imators  of the parameters  tha t  are easy to compute  and are mot ivated  by moment-  
type  considerations. Noting tha t  (Ti/O) ~ follows Gamma(hi, 1) distr ibution,  we have 

E[/3(logTn - log Ti)] = r  - %D(ni) ~ l o g n  - log/ .  

This  expression is t rue  for large values of n or n. Thus /31og(Tn/Ti )  would correspond 
to  - log(i/n). Taking summat ion  over i we have 

/3 Elog(Tn/Ti) +-+ Elog(i/n) , 1 
n n 

i=1  i=1  

which motivates  an es t imator  for/3 as 

~= n/ E log(Tn/Ti). 
i=1  

There  is yet another  motivat ion to use /7 as an es t imator  of /3 .  Note tha t  /3 is 
the maximum likelihood es t imator  o f /3  under  the non-modula ted  power law process. 
So, the behavior  of ~ as an es t imator  of /3  for MPLP,  in essence, assesses the effect of 
misspecifying n. 

To mot ivate  our  new est imator  of n, we first observe tha t  Vi -- (T 0 - T0_I), i = 

1 , . . . ,  n, are independent ly  and identically dis t r ibuted Gamma(n, O n) random variables. 
If /7 were known, max imum likelihood es t imator  of n would satisfy, 

(3.1) h(~) -- log 17 _ _1 ~ log Vi 
n 

i = l  

1  log(rO = /3 log Tn - log n - - 
n 

i = 1  
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where h(a) = log ~ - kO(t~). Replacing/3 by D in (3.1) an alternative estimator of ~ is 
obtained by 

Substituting/3 and ~ in (2.3), we have a non-maximum likelihood estimator of 0 as 

~= Tn 
(n'~)llD " 

The simple estimators of/3 and 0 are in closed form. Though ~ is not in closed 
form, it can be determined by inverse interpolation in a table of the function h(a). Such 
tables have been published by Masuyama and Kuroiwa (1952) and Chapman (1956). 

We now turn to the large-sample behavior of the simple estimators. Let W l n  : 

n l /2 ( logn) - l (0  " -  00), W2n = nl /2(~ -/30).  W3n : nl/2(~ - No). The next theorem 
estabilishes that  the simple estimators are asymptotically equivalent to the maximum 
likelihood estimators. 

THEOREM 3.1. W n  =(WIn,  W2n, IV ' 3n) is asymptotically (singular) normal with 
mean vector zero and covaiance matrix El .  

PROOF. 

(3.2) 

Further 

Note that  using (2.4), 

~ n  : n ' l~ (D-  /3o) = 

/3oUln 
1 + n-1/2Uln " 

(3.3) nl/2(h(~)_h(#~o)) = nil2{ k CTn~/30 } 
~ o o l ~  - l o g n - l o g ~ o  

-1/2~2-~ log \ 0 o ]  - \  Oo .] - kO(g~ 
i=1 

( 0j 0o j 
i=1 

(Zi_l~f~ * ] 
(~- /3o)  1 _ _ _  ( T O ~  

/3o n ~-/u ~ \ Oo ,I log - , 
i=2 ( T / ' ~  r C Ti- l ~ ~* t T~: i ) 

tVo) - ) 

Applying Taylor's expansion about/3o to log{(Ti/Oo) D~ - (Ti_l/Oo) D~ } in (3.3) and fol- 
lowing some algebraic manipulations, we have 

U2n ~ nl/2 (D -- /30) Uln 
nl/2(h(~) - h(•o)) = n 1/2 log 1 + nTfi-ao ] - U3n + flO n 1/2 

+ n_112 (?~ -/30) 
/30 
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where/3* is an intermediate random point between/3 and/30. Since/3* converges to/30 
in probability, using Lemma 2.3 and the facts that Un = Op(1) and W2n = Op(1), it 
follows, 

nl/2(h(~) - h(~o)) - V2~ U3~ + Op(1), 
t~ o 

which implies 

~'3n = nl /2(E--  t~O) : --{r -- l/t~O}-I ( U2n - U3n) + 

Now, appealing to Lemma 2.1, we have 

N o 
(3.4) ~k~3nj /~0/{/~01/)t(/'~0) - 1} 

d 
as n -~ ~ ,  where ~ refers to convergence in distribution. Also 

(3.5) /30(log0-1og0o) = logn 1 - -ff +log{ l+U2n / (n l /2~o) }  

/3~ (l~ n - l~ ~~ + l~ ~~ (1 - /3-~) " / 3  

Note that U2n, W2n and W3n are bounded in probability. Consequently, we can reexpress 
(3.5) as 

n 1/2 (log n) - I  (log 0 - log 0o) =/302W2n -~- op(1), 

which implies 
WI,, = nU2(logn)-l( 'd  - 0o) = Oo/3o2W2n + op(1). 

The result now follows from (3.4). [] 

Since the simple estimators are asymptotically equivalent to the MLE's, Remarks 
following Theorem 2.1 in Section 2 also apply here. Further, asymptotic results for 
functions of parameters such as the ROCOF h n of Subsection 2.2 will be identical to that 
in Theorem 2.2, if we replace the MLE's in hn by the corresponding simple estimators. 
The attraction of using the simple estimators is clearly the ease of computation. Their 
finite sample performance with their ML counterparts, however, needs to be investigated, 
which we pursue next. 

4. S imulat ion and app l ica t ion 

4.1 Comparative study of estimator performance 
Monte Carlo simulation techniques are employed to study the perf~mances of the 

maximum likelihood estimators (0,/3, ~) and the simple estimators (0,/3, E) developed 
in Sections 2 and 3, respectively. We compare the bias and the mean squared error of 
the estimators for both small and large sample sizes. To obtain confidence limits for 
parameters, we rely on the approximate normality of the estimators in large samples. 
It is, of course, desirable to check the adequacy of such approximations for the small to 
medium sample sizes encountered in practice. 
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We considered the MPLP for various combinations of (00,/30, ~0) values. For each 
case one thousand realizations of the two sets of estimators were obtained with the sample 
sizes n = 10, 25, 50 and 100. The MLEs ~ and a were computed using the two-variable 
Newton-Raphson procedure with the simple estimators/3 and ~ as the initial value for 
the iteration. Table 1 gives the estimated bias and mean squared error of the MLEs as 
well as the simple estimators. 

As is evident from Table 1, all the estimators have a tendency to overestimate for 
small sample sizes over all ranges of (00,/3o, ~0) values considered. Overall the MLEs for 
0 and/3 perform better than the corresponding simple estimators. Both the estimators 
for 0 show a substantial variability. By contrast, the MLE and the simple estimator for 
/3 appear to be quite stable. The simple estimator for ~ performs better than the corre- 
sponding MLE in small sample sizes, whereas for large sample sizes they are comparable. 
The asymptotic distributions of ~ and ~ are inaccurate unless sample size is very large. 
Moreover, with moderate and large values of ~, the Newton-Raphson method for MLEs 
of/3 and tv fails to converge frequently even with samples of size three hundred or four 
hundred. 

The above phenomenon is not surprising at all for our model. Note that Ti follows 
the generalized gamma distribution with pdf 

r(i~) exp - , ti > 0 

where/3 > 0, 0 > 0 and ~ > 0 are parameters. Several authors (e.g. Hager and Bain 
(1970), Parr and Webster (1965), Harter (1967), Stacy and Mihram (1965)) encoun- 
tered problems analogous to that discussed in the previous paragraph with maximum 
likelihood estimation when Ti's, i = 1 , . . . , n ;  are independently and identically dis- 
tributed generalized gamma variables. Prentice (1974) studied the generalized gamma 
distribution in a different but equivalent form, which makes the properties and potential 
difficulties with estimation in the model much more transparent. He then suggested a 
reparameterization that  tends to alleviate some of these problems. In our case, with non 
i.i.d. Ti's, the reparameterization similar to Prentice (1974) does not work well. An al- 
ternative reparameterization similar to that  employed by Lawless (1980) for generalized 
gamma distribution can be used here. This entails considering Yi = log Ti instead of Ti 
and reparameterizeing the model as 

Y i - #  
V /  - -  _ _  , 

O"  

where p = log 0 + log ~//3 and ~r = 1/(/3v~). With this reparameterization the MLEs of 
p and a are very stable. However, ~ suffers from convergence and stability difficulties 
which are similar to those without the reparameterization. Moreover the convergence 
problem is worse for moderate and large values of ~;. For instance, in one case with 
0 = 2.0,/3 = 1.5, ~ = 7.0 and n = 400, without reparameterization the Newton-Raphson 
method fails to converge 18.49% times while with reparametarization it fails 29.98% 
times. 

For practical applications of the asymptotic results, it is important to examine how 
the normal approximation improves with increasing sample sizes. An investigation in 
that  direction is made through the normal scores plots of the estimates for 0, /3 and 
~. Plots for both/~ and/3 indicate a fairly linear pattern. However, the corresponding 
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Fig.  1. N o r m a l  scores  p lo t  for t h e  m a x i m u m  l ikel ihood e s t i m a t e s  of  t h e  p a r a m e t e r s  a n d  the i r  

l o g a r i t h m s .  (e --- 4.0, ~ =- 1.5, ~ --- 2.5, n = 25) 

A 

plots for 0, 0 and ~, ~ show a substantial departure from a straight line pattern. This 
appears to be due to a considerable fluctuation in the estimated values. Also 0 and 
have the slow rate ( v ~ / l o g  n) of convergence. For parameters that  are constrained to be 
positive, the normal approximation is sometimes unsatisfactory because the distribution 
of the estimates can be highly skewed. In these cases one alternative is to use logarithmic 
transformation on the estimates. Logarithmic transformation on the estimates of 0 and 

is found to stabilize their variations substantially, and the agreement with the normal 
scores is also considerably improved. In logarithmic scale the estimates of ~ also perform 
very well. Figures 1 and 2 exhibit these features for the case n = 25. These indicate 
that  when setting large-sample confidence interval for a parameter, say 0, one should 
first construct a confidence interval for log 0 using the asymptotic normality result and 
then exponentiate the limits to construct a confidence interval for 8. 

We further supplemented these findings with joint normality checks of (0,/~). Fig- 
ure 3 demonstrates the bivariate scatter plot of (log0, log~) for a typical parameter 
combination. The elliptical scatter conform to the asymptotic normality with a posi- 
tive correlation. As expected, with an increase in sample size, the ellipticity is more 
prominent, and the contour is narrower, indicating an increase in correlation. Table 2 
demonstrates the simulated empirical correlation of t~, ~ for a few typical parameter 
combinations, which are reasonably close to the asymptotic value of unity even for a 
moderate sample size. Note that a more formal check of bivariate normality based on 
chi-square probability plots requires existence of invertible variance-covariance matrix 
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Fig. 2. Normal scores plot for the simple estimates of the parameters and their logarithms. 
(0 = 4.0, ~ = 1.5, ~ = 2.5, n = 25) 
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Fig. 3. Scatter plot for logarithms of the maximum likelihood estimates of 0 and ]3. (0 = 2.0, 
= 0.75, n = 0.9) 

and hence is not  direct ly  applicable here. 

4.2 An example 
To i l lustrate  inference procedures  associated with  an M P L P  fit, we consider the  

failure t imes of an aircraf t  generator  descr ibed in the  original article by Duane  (1964). 
T h e  data ,  read off the  plots  presented by Duane  (1964), were t abu la t ed  in Table  5 of 
Black and Rigdon (1996)�9 There  were 14 failures occurring a t  the  cumula t ive  hours of 
10, 55, 166, 205, 341, 488, 567, 731, 1308, 2050, 2453, 3115, 4017 and 4596 respectively. 
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T a b l e  2, S i m u l a t e d  c o r r e l a t i o n  of  ~ a n d  ~.  

Sample Size 

(n) 
P a r a m e t e r s  10 25 50  100 

Oo = 2.0, /3o = 0.75, no = 0.9 0.774 0 .842 0.879 0.909 

Oo = 2.0, /30 = 0.75, no = 1.0 0.775 0 .843 0.885 0.893 

Oo = 2.0,/3o = 1.00, no = 1.0 0.823 0 .873 0.912 0.933 

Oo = 4.0, /30 = 1.00, no = 2.5 0.811 0 .855  0.876 0.909 

00 = 4.0,/30 = 1.50, no = 2.5 0.850 0.877 0.894 0.919 

723 

Fig. 4. 

0.2 04 06 Oa 10 

Graphical check for the aircraft generator failure data. 

For a quick graphical  check of goodness of fit, we consider 

Ri,~ = ( tJ tn )  ~, i = 1 , . . . , n -  1. 

Note  tha t  under  M P L P  Ri,~ 's  are be t a  var ia tes  with p a r a m e t e r s  ni and n(n - i). So a 

plot  of the points  (R/,n, c~i), where c~ = i / n  is the expected  value of Ri,n, will serve as 
a diagnostic tool  for model  validation. This  plot,  however, fails to  dist inguish between 
M P L P  and the  power  law process. So if the plot  is reasonably close to a s t ra ight  line with 
uni t  slope and ~ significantly different f rom unity, then  the M P L P  model  can be deemed 
satisfactory.  The  cor responding  plot for this example ,  presented in Fig. 4, does not  show 
any substant ia l  depa r tu re  from linearity. Following the numerical  procedures  descr ibed 
in Sections 2 and 3 we ob ta ined  the m a x i m u m  likelihood es t imates  and simple es t imates  
of the  parameters .  Table  3 exhibits  the es t imates  and associated 95% confidence inter- 
vals. Note  tha t  e i ther  m a x i m u m  likelihood me thod  or the  me thods  of Section 3 yield 
a negat ive lower confidence limit for 0. Approx ima te  interval es t imat ion  for posi t ive 
pa rame te r s  often suffers f rom this difficulty. In order to c i rcumvent  this problem,  we 
recommend  applying the a sympto t i c  app rox ima t ion  in the logar i thmic  scale, and subse- 
quent ly  t ransforming  the  results back to the  original unit  of measurement .  Confidence 
limits obta ined via this route  for all the p a r a m e t e r s  are repor ted  in Table  3. The  profile 
log-likelihood plot  of 0,/3 in Fig. 5 demons t r a t e s  tha t  the likelihood value changes litt le 
for a wide range of 0 values, which ap t ly  explains the uncer ta in ty  in the es t imate  of 
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Table 3. Pa rame te r  es t imates  and  95% confidence intervals from the  aircraft  generator  failure data .  

Confidence Limits  

W i t h o u t  Transformat ion  

Confidence Limits  

W i t h  Log Transformat ion 

Method  Pa rame te r  Es t ima te  Lower Upper  Lower Upper  

Maximum 0 0.218 - 0 . 1 0 7  0.543 0.048 0.969 

Likelihood ~ 0.423 0.322 0.524 0.333 0.537 

Es t ima to r  ~ 4.800 1.361 8.241 2.345 9.829 

0 0.958 -0 .366  2.283 0.241 3.816 

Simple ~3 0.483 0.361 0.605 0.375 0.622 

Es t ima to r  ~ 4.288 1.227 7.348 2.100 8.755 

Table 4. Boo t s t r ap  es t imates  of s t anda rd  error and  percentiles for the  d is t r ibut ion  of the  
MLE's  from the  aircraft  generator  failure data .  

Parameter 

Percenti les 

Mean S tanda rd  Error  2.5% 50% 97.5% 

0 0.496 0.907 0.005 0.160 2.709 

/3 0.433 0.056 0.341 0.427 0.546 

6.221 2.697 2.941 5.666 13.280 

Fig. 5. 

o -  

~J 
d -  

�9 - - -  "2"...". '-  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
....... : "...5.: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2~.~ 

: , ; ~ : ~  -- ~ . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  eT:~ 

I i i i 

0 1 2 3 4 

theta 

+:  (0,~) 

Contour  plot of the  profile log likelihood for 0 and  ~ for the  aircraft  generator  failure data .  

0. Note from Table 3, that there is strong evidence that ~ parameter is significantly 
different from 1. In conjunction with the plot described earlier, this supports a MPLP 
fit to the dataset. 

For this example, we further carried out the estimation procedure using parametric 
bootstrap. The results shown in Table 4 are based on 1000 bootstrap replications and 
indicate some differences with the one-shot ML estimates provided in Table 3. Some 
key features of the analysis, however, are reconfirmed by the bootstrap calculations. For 
instance, the bootstrap estimate of ~ is substantially larger than 1, reaffirming the de- 
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Fig. 6. Histogram of 1000 parametric bootstrap replications of the maximum likelihood 
estimates of the parameters and their logarithms for the aircraft generator failure data. 

parture from a standard PLP fit. The histograms in Fig. 6 indicate heavily right-skewed 
distributions for the MLE's of both 0 and ~. For each of the parameters, the median 
of the bootstrap distribution is closer than the mean to the estimates in Table 3. As 
shown in Fig. 6, transformation to the log-scale symmetrize the distributions substan- 
tially. The normal-scores plots of Fig. 7 further confirm that the proximity to normality 
of the MLE's is greatly improved by the log transformation. In view of the smallness of 
the dataset, bootstrap offers a reliable method of inference for this example. 

5. Summary and conclusions 

In this article, we investigate a parametric model for analysis of a single repairable 
system. The model generalizes some existing formulation used in practice in the context 
of observing a recurrent event. The parametric specification stems from a physical con- 
nection with certain phenomenon observed in the failure pattern of a variety of complex 
industrial devices. The main thrust of the present article lies in the study of inference 
procedures for the model parameters. The likelihood-based inference presents itself with 
a very interesting case of asymptotics that is quite nonstandard and is in stark contrast 
with what one typically encounters in ML estimation theory. A set of competing estima- 
tors, that are asymptotically equivalent to the MLE's, are developed that are extremely 
attractive from a computational viewpoint. Comparison of the estimators are also drawn 
from extensive finite-sample simulation studies. Hypothesis testing, which has not been 
discussed here, is currently under study. 

Clearly, the model described here is a simple extension of power law process, the 
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Fig. 7. Normal scores plot of 1000 parametric bootstrap replications of the maximum likelihood 
estimates of the parameters and their logarithms for the aircraft generator failure data. 

simple most popular parametric model for a repairable system. Further modifications 
such as assuming ~ to change between failures are certainly worth consideration. In 
the context of IGP, other parametric formulations are also strong contenders to MPLP. 
Some of these alternatives have been discussed in Berman (1981). 

When multiple systems (or individuals) that  are experiencing recurrence of certain 
events are under investigation, a nonparametric approach may be a more appropriate 
alternative to a fully parametric analysis. In the presence of covariates, a semiparametric 
regression model is often used to provide a robust and flexible framework for inference. 
Lawless et al. (2001) provides an excellent review of models and associated methodologies 
in this context. 
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Appendix 

PROOF OF LEMMA 2.2. (a) Noting that  Xn is a linear function of the independent 
gamma random variables Yi = (TjOo) ~~ -(Ti-1/00) ~~ i = 1 , . . . ,  n with shape parameter 
~0 and scale parameter 1, the result follows from an application of the Lindeberg-Feller 
central limit theorem�9 
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(A.1) 

we write 

(b) It  is possible to write X n - X  n as a linear function of Yi's. Using the interchange 
of summat ion  formula 

n i n n 

E E aibj = ~ E biaj, 
i=1 j = i  i=1 j = i  

n n i n n 
- ~ ~ = - 1  y~ - - 1  

=- E E Xi  N O ~o 
i= l  i=l  j = l  i= i  j = i  

- -  - -  y ~  n . 

A l s o ,  n X  n = N0 I E L 1  Yi ~- NO 1 E n l  i E j : i (  n -- i -~ 1) -1  Thus,  we h a v e  

n n 

Kn =-- n - I /2  E ( X i  - Xn)  = n o l n  - I /2  ~-~ giein, 
i=1 i=1 

where e~n = ~ _ ~ { j - 1  _ (n - i + 1 ) - l } .  
Using (A.1) we have 

E(Kn)  = n -1/2 ein  = n -1/2 i - I  1 -- 1 = O. 
i=1 i=1 j = l  i 1 

Also, from the expression of Kn we readily obta in  

1 ~ 2 
Var(Kn)  - -  ~ . d  e in  

nN0 i = l  

n n 

~0 ~n-~ Z E(~)4~4n = No3(d + 6~g + 11~0 + 6)~ -~ Z e~\" 
i=1 i=1 

Sett ing a correspondence of ein with a Riemann sum, we observe tha t  as n --~ 0% 

Var(Kn)  --* No I 1 u dv du 1 
- -  N O 

n 

t~O 4 n - 2  ~ E ( Y i ) 4 e 4 n  

i= l  
4 

"-~ n- l~o3( t~o 3 + 6ao 2 + 11~o + 6) 1 u 

These  facts in conjunct ion with the result t ha t  E(Kn)  = 0, enable us to use the central  
limit theorem to conclude par t  (b) of the lemma. 

(c) Note tha t  

�9 n n 

Cov[U3n, nl/2(Xn -- Xn)l ---- COy n-1/2 y~(1og ~ -- r n-1/~NO I ~ ~ein 
i=1 i=1 

n 

= - ( ~ 0 )  -1 ~ Cov[(~ - No)(log ~ - r 
i=1 

n 

= - ( n ~ 0 )  -1 ~--~ e ~  = 0. 
i=1 
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(d) Let 
Gin ~-- log(Xn/Xi) - (Z n - Xi). 

Since (x - 1)/x < logx <_ x - 1 for x > O, we have 

(A.2) 1 __ 1 7t -1/2 Z ( X n  -- Xi) ~ Tb -1/2 Gin 
i=1 i=1 

<_ n -1/2 Z ( X n  -- Xi) 1 _ 1 . 
i=1 

We use Slutsky's theorem in conjunction with the results in parts (a) and (b) to conclude 
that  the lower bound in expression (A.2) is %(1). The upper bound equals 

n - 1 / 2 Z { ( X n -  1 ) - ( X i -  1)} ~ - 1 
i=1 

{ ( 1 ) } n _ 1 / 2  n ( 1 )  = n l / 2 ( X n - 1 )  n - 1 ~  ~ - 1  - Z ( X i - 1 )  ~ 1 . 
i=1 i=1 

Denote the first and second terms on the right hand side by/31 and B2, respectively. By 
part (a) of the lemma, we have Bt = %(1). Now, by the Cauchy-Schwarz inequality, 

B2 ~ (log/t)_ 1 Z ( X i _  1) 2 ~l~ Z - 1 1  2 . 
i=1 i=1 

Note that 

[ n ] 
E (logn/n) 1) 

i=1 
<~ (logn/n) ~ E(1 /X i  - 1) 2 

i=1 

ino + 2 
= (logn/n) Z ( i n o -  1) ( in0 -  2) 

i=l 
n t~0 ~_ 2 

<~ (logn/n) Z i(~o - 1)(no - 2) ~ O. 
i=1 

Hence using Markov inequality we have n -1 l o g n ~ i ~ = l ( 1 / X i -  1) 2 = %(1). To show 
that (logn) -1 Y~i~l(Xi - 1) 2 = Op(1) we note that 

E ~ ( X i - 1 )  2 - V a r ( X i ) -  - - - - + -  
log n log n i~0 no i=1 i=1 i=1 

~ X Thus, (logn) -1 }--]~i=1( i - 1) 2 is bounded in expectation and hence is Op(1) which 
implies/32 = %(1). [] 

PROOF OF LEMMA 2.3. (a) Since T0 ~ > T0_~ > 0 using the relation (x - 1)/x <_ 
logx _< x -  1 for x > 0 we have 

TO~ - T~~ 1 Tiff ~ TO~176 
T/O o ~ l~ TflO---- ~ _< r ?o l  



NON-STANDARD ASYMPTOTICS 729 

which implies 

n-l/2 ~-~_ ( T 0 ~  n-1/2 ~-~- ( TOOl Ti ~~ ) k ~ i ~  ~ 1 < - - - -  l o g - - - 1  < 0 .  
i=2 -- i = 2 k T i ~ ~ 1 7 6  Ti~-~ - 

Denote  the lower bound by B3. The proof is completed once we establish that  B3 = %(1).  
It is easy to check that  the  random variables 

(Ti-1/Oo) ~~ " 
(A.3) Y~*= (T~/Oo)ZO , i = 2 , . . . , n  

are independently dis t r ibuted as Beta( ino  - n0, no). So 

2 
E ( B ~ )  = _1 E Var(Y/. ) + - E(Y/*) - 1 

n i=2 n Li=2 

1 x 2-, ( i - l )  ( logn) 2 1 
2_, n i=2 i2~-~-s + 1) + - - n  i=2 --~ 0. 

Thus  B3 = Op(1). 
(b) Since 0 < T~_~ < T~ ~ from part  (a) of the lemma we have 

(rO~176 

which implies 

n ) 

l~176 --< k ~'7~ 

i = 2  T~~176 l ~ 1 7 6  

--< n-l~--~" kT0~ 1 " i = 2  

By part  (a) of the lemma lower bound  of the  above inequality is Op(1). Denote the 
upper  bound of the inequality by B4. The proof  is completed once we establish that  
B4 = Op(1). Note that  

[1 ]2 1 n n 

E ( B ~ )  = ~-~ E V a r ( Y / * - ' )  + E { E ( Y i  *-1) - 1} 
i:2 i:2 

2 ) = ~ (ino -- no - 1)2(ino - no - 2) + i~o - t% - 1 i=2 i=2 
~ 0 .  

Hence B4 = Op(1). [] 

PROOF OF LEMMA 2.4. (C) The result will follow by an application of Markov 
inequality once we show that  Eao(Ici*j(a) - c * j ( ~ o ) l )  --* 0 uniformly in c~ e Mn(aO) .  
By Taylor series expansion we have 

4 ~ ( o 0  - 4~ ( ,~o )  = (n - ,~o)( '~"(n*)  + 1 / , C  ~) 
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from which we obtain 

E ~ o ( { c ~ 2 ( a )  - c~e(~o) l )  ~< Ix - ~o{(1r + 1 / ~  *e) 

~< 2hn-e{r  + hn -~) + 1/(ao - hn-6)  2} 

Mn(o~o). Since 5 > 0, we have the required uniform convergence f o r  c~ 

~ o ( { ~ ( ~ )  - c ~ ( a o ) { ) .  
From (2.10) and (2.12) note that 

n 

c~z ( ot ) -- log Tn - l E log Ti - 1  Ti~- ~ log Ti 
i~l, i =  1 n i=2 T ~ -  T~_ 1 T~-I 

Then by Taylor series expansion we have 

Thus 

for 

n ~* f~* / 

E~o(ICi2(~)-ci2(~o)l)~<l~-/~ol�88 = E ( T ?  ~-~i~,_l)2 lOg Ti_l ] j . 

Note that log x ~< x - 1 for any real number x > O. Since 0 < Ti-1 < Ti we have 

which implies 

log(Ti~*/Ti~*_.l) < (T~* ~* f~* - T ~ _ I ) / T ~ _  1 

where Yi* is defined in (A.3). Thus, we arrive at the inequality 

1 ~ r{(i - 1)too -/3"//3o} r(i~o) 
E~o(Ic72(~) - c12(~0)1) ~< I/~- ~01~,~ n =2 ~ =  ~) -~ F{i~o- ~*/~0) 

From Abramowitz and Stegun ((1974), p. 257), we have 

z b _  a r ( z  + a) ~ 1 + 
r ( z  + b) 

(a  - b ) ( a  + b -  1) 
2Z 

. . . .  

Thus for a in Mn(ozo), we have 

Ea~176  <~ 2 h n - 5 ( / 3 ~  i=2 ~ - 1  ---+0. 

Similarly using multivariate Taylor series expansion we can show that E ao ([C~l (c~)- 
Cil(c~o)[) ~ 0 uniformly in a e Mn(o:o). [] 



NON-STANDARD ASYMPTOTICS 731 

REFERENCES 

Abramowitz, M. and Stegun, I. A. (1974). Handbook of Mathematical Functions, with Formulas, 
Graphs, and Mathematical Tables, Dover Publications, New York. 

Ascher, H. and Feingold, H. (1984). Repairable Systems Reliability: Modelling, Inference, Misconcep- 
tions and Their Causes, Marcel Dekker, New York. 

Bain, L. J. and Engelhardt, M. (1980). Inferences on the parameters and current system reliability for 
a time truncated weibull process, Technometrics, 22, 421-426. 

Berman, M. (1981). Inhomogeneous and modulated gamma processes, Biometrika, 68, 143 152. 
Bhattacharyya, G. K. and Ghosh, J. K. (1991). Asymptotic properties of estimators in a binomial relia- 

bility growth model and its continuous-time analog, Journal of Statistical Planning and In]erence, 
29, 43-53. 

Black, S. E. and Rigdon, S. E. (1996). Statistical inference for a modulated power law process, Journal 
of Quality Technology, 28, 81-90. 

Chapman, D. G. (1956). Estimating the parameters of a truncated gamma distribution, Annals of 
Mathematical Statistics, 27, 498 506. 

Cox, D. R. (1967). Renewal Theory, Methuen, London. 
Cox, D. R. (1972). The statistical analysis of dependencies in point processes, Stochastic Point Processes 

(ed. P. A. W. Lewis), 55-66, Wiley, New York. 
Cox, D. R. and Isham, V. (1980). Point Process, Chapman and Hall, London. 
Cox, D. R. and Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events, Methuen, London. 
Crow, L. R. (1974). Reliability analysis for complex repairable systems, Reliability and Biomet~T (eds. 

F. Proschan and R. J. Serfiing), 379-410, SIAM, Philadelphia. 
Crow, L. R. (1982). Confidence interval procedures for the weibull process with applications to reliability 

growth, Technometrics, 24, 67-72. 
Duane, J. T. (1964). Learning curve approach to reliability monitoring, IEEE Transactions on Aero- 

space, 2, 563-566. 
Hager, H. W. and Bain, L. J. (1970). Inferential procedures for the generalized gamma distribution, 

Journal of the American Statistical Association, 65, 1601-1609. 
Harter, H. L- (1967). Maximum-likelihood estimation of the parameters of a four-parameter generalized 

gamma population from complete and censored samples, Technometries, 9, 159-165. 
Lakey, M. J. and Rigdon, S. E. (1992). The modulated power law process, Proceedings of the ~5th 

Annual Quality Congress, 559-563, Milwaukee, Wisconsin. 
Lawless, J. F. (1980). Inference in the generalized gamma and log gamma distributions, Technometrics, 

22, 409-419. 
Lawless, J. F. and Thiagarajah, K. (1996). A point-process model incorporating renewals and time 

trends, with application to repairable systems, Technometrics, 38, 131-138. 
Lawless, J. F., Wigg, M. B., Tuli, S., Drake, J. M. and Lamberti-Pasculli, M. (2001). Analysis of repeated 

failures or durations, with application to shunt failures for patients with pediatric hydrocephalus, 
Applied Statistics, 50, 449-465. 

Masuyama, M. and Kuroiwa, Y. (1952). Table for the likelihood solutions of gamma distribution and 
its medical application, Reports of Statistical Application Research ( JUSE), 1, 18--23. 

MIL-HDBK-781 (1997). Handbook for Reliability Test Methods, Plans, and Environments for Engi- 
neering, Development Qualification, and Production, United States Government Printing Office, 
Washington. 

Parr, V. B. and Webster, J. T. (1965). A method for discriminating between failure density functions 
used in reliability predictions, Technometrics, 7, 1-10. 

Prentice, R. L. (1974). A log-gamma model and its maximum likelihood estimation, Biometrika, 61, 
539-544. 

Rigdon, S. E. and Basu, A. P. (1989). The power law process: A model for the reliability of repairable 
systems, Journal of Quality Technology, 20, 251 260. 

Sen, A. and Bhattacharyya, G. K. (1993). A piecewise exponential model for reliability growth and 
associated inferences, Advances in Reliability (ed. A. P. Basu), 331-355, Elsevier, Amsterdam. 



732 NIBEDITA BANDYOPADHYAY AND ANANDA SEN 

Sen, A. and Fries, A. (1997). Est imation in a discrete reliability growth model  under an inverse sampling 
scheme, Annals of the Institute of Statistical Mathematics, 49, 211-229. 

Stacey, E. W. and Mihram, G. A. (1965). Parameter  estimation for a generalized gamma distribution, 
Technometrics, T, 349--358. 


