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Abstract .  Consider the random Dirichlet partition of the interval into n frag- 
ments with parameter 0 > 0. Explicit results on the statistical structure of its 
size-biased permutation are recalled, leading to (unordered) Ewens and (ordered) 
Donnelly-Tavar~-Griffiths sampling formulae from finite Dirichlet partitions. We use 
these preliminary statistical results on frequencies distribution to address the follow- 
ing sampling problem: what are the intervals between new sampled categories when 
sampling is from Dirichlet populations? The results obtained are in accordance with 
the ones found in sampling theory from random proportions with GEM(3,) distribu- 
tion. These can be obtained from Dirichlet model when considering the Kingman 
limit n T co, 0 & 0 while nO = ~ > O. 
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1. Introduction 

The joint distribution of unordered (or ordered) frequencies of a sample from random 
proportions with Griffiths-Engen-McCloskey, or GEM(~ / ) ,  distribution is the Donnelly- 
Tavar6-Griffiths formula (or the Ewens sampling formulae). The G E M ( ~ / )  distribution 
will be defined later (see also Kingman (1993), Chapter 9, for example). 

We first reconsider the same sampling problems and formulae when sampling is from 
random proportions with Dirichlet Dn(O) distribution, hence with a finite number n of 
fragments in the partition. The usual Ewens and Donnelly-Tavar6-Griffiths sampling 
formulae can be found when passing to the Kingman limit n T oc, 0 ~ 0, nO = ~ />  O. 
These preliminary results which are recalled are used to study the intervals between 
consecutive categories and number of distinct categories when sampling is from Dn(O). 
The results obtained are in accordance with particular cases of those of Yamato-Sibuya- 
Nomachi when sampling is from G E M ( " / ) ,  while passing to the Kingman limit. 

The organization of this manuscript is the following. Consider the random Dirichlet 
partition of the interval into n fragments with parameter 0 > 0. Elementary properties 
of its D~(O) distribution are first recalled in Section 2. Explicit results on the law of 
its size-biased permutation are also recalled there. These are useful when considering 
the Donnelly-Tavar~-Griffiths sampling formula from Dirichlet partitions in subsequent 
Subsection 3.3, as given in Theorem 3.3. A size-biased permutation of the fragments 
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sizes is the one obtained in a size-biased sampling process without replacement from a 
Dirichlet partition. The main points which we recall are the following: in Lemma 2.1, 
its residual allocation model structure is recalled. In Lemma 2.2, the order in which 
the consecutive fragments are visited is considered. In Theorem 2.1, we recall the joint 
law of the size-biased permutation fragments sizes explicitly. Using this, it is recalled 
in Corollary 2.1 that  consecutive fragments in the size-biased permuted partition are 
arranged in stochastic descending order. 

Section 3 recalls the (unordered) Ewens and (ordered) Donnelly-Tavar~-Griffiths 
sampling formulae when sampling is from finite Dirichlet partitions. In more details, 
Subsection 3.1 is devoted to the first Ewens sampling formula when sampling is from 
Dirichlet partition Dn(O). Here the order in which sequentially sampled species arise is 
irrelevant. Subsection 3.2 concerns the second Ewens sampling formula under the same 
hypothesis (as a problem of random partitioning of the integers) and Subsection 3.3 
deals with the finite Dirichlet version of the Donnelly-Tavar~-Griffiths sampling formula. 
Here, the order of appearance of sampled species is taken into account. Main results are 
displayed in Theorems 3.1, 3.2 and 3.3 for each of the problems alluded to. As corollaries 
to these theorems, the usual well-known sampling formulae can be deduced in each case 
when sampling is from GEM distribution which is the limiting version of the size-biased 
permutation of Dirichlet partitions in the sense of Kingman. 

The main body of our new sampling results is in Section 4. We use the previous 
statistical results on frequencies distribution to address the following sampling problem: 
what are the intervals between new sampled categories until exhaustion of the list, when 
sampling is from Dirichlet populations? One intuitively expects these intervals to be 
increasing while approaching complete exhaustion. Our main results on the statistical 
structure of these intervals are summarized in Theorems 4.1, 4.2 and 4.3, considering 
both cases of a fixed and then unlimited sample size. 

The results obtained are in accordance with the Yamato-Sibuya-Nomachi ones when 
sampling is from random proportions with GEM(v) distribution. These can naturally 
be obtained from Dirichlet model when considering the Kingman limit. Results in this 
direction are displayed in Corollaries 4.1, 4.2 and 4.3 to Theorems 4.1, 4.2 and 4.3, 
respectively. 

2. Size-biased permutation of the Dirichlet distribution 

2.1 Dirichlet partition of the interval 
Consider the following random partition into n fragments of the unit interval. Let 

0 > 0 be some parameter and assume that the random fragments' sizes Sn := ($1 , . . . ,  Sn) 
(with ~-~=1 S m =  1) is distributed according to the (exchangeable) Dirichlet D,~(O) 
density function on the simplex, that is to say 

r(n0)r(0) n fl  0 - i  (2.1) / s l  ..... Sn(81 , . . . ,Sn)  - 8~--1)" 
m=l 

Alternatively, the law of Sn := ($1, �9 �9 S~) is characterized by its joint moment function 

( 2 . 2 )  E = 
=1 -~- Era----1 qm') F(0)  

We shall put Sn d Dn(O) if S~ is Dirichlet distributed with parameter 0. 
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If this is so, Sm d Sn, m = 1 , . . . ,  n, independently of m and the individual frag- 
ments sizes are all identically distributed. Their common density on the interval (0, 1) 
is a beta(0, (n - 1)0) density. 

When 8 -- 1, the partition model equations (2.1), (2.2) corresponds to the standard 
uniform partition model of the interval. 

In the random division of the interval as in equation (2.1), although all fragments 
are identically distributed with sizes of order n-1,  the smallest fragment's size grows like 
n -(~176 while the one of the largest is of order I log(n log ~ n). The smaller O is, the 
larger (smaller) the largest (smallest) fragments' size is: hence, the smaller O is, the more 
the values of the Sms are, with high probability, disparate. Smaller the parameter, the 
size of the largest fragment S(1) tends to dominate the other ones. On the contrary, large 
values of O correspond to situations in which the range of fragments' sizes is lower: the 
fragments' sizes look more homogeneous and distribution equation (2.1) concentrates on 
its centre. For large O, the diversity of the partition is small. 

Although Sn has a degenerate weak limit when n T oc, O l 0 while nO = V > 0, this 
situation is worth being considered (as first noted by Kingman (1975)). Indeed, many 
interesting statistical features emerge. 

2.2 Size-biased permutation of Dirichlet partitions 
The results on size-biased permutation of Dirichlet distributions presented in this 

section are not new. When O = 1, they can be found in Huillet (2003); they were gener- 
alized to all O > 0 in Barrera et al. (2005), to solve a problem consisting in computing 
the search-cost distribution arising from heaps processes. Part  of them are reproduced 
here for the sake of completeness and to make the presentation self-contained. They will 
prove useful in the sequel. 

Assume some observer is sampling the unit interval as follows: drop points at ran- 
dom onto this randomly broken interval and record the corresponding numbers of visited 
fragments. We shall consider the problem of determining the order in which the various 
fragments are discovered in such a sampling process. To avoid revisiting the same frag- 
ment many times, once it has been discovered, we need to remove it from the population 
as soon as it has been met in the sampling process. But  to do that, the law of its size 
is needed. Once this is done, after renormalizing the remaining fragments' sizes, we are 
left with a population of n - 1 fragments, the sampling of which will necessarily supply 
a so far undiscovered fragment. The distribution of its size can itself be computed and 
so forth, renormalizing again, until the whole available fragments population has been 
visited. In this way, not only the visiting order of the different fragments can be un- 
derstood but  also their sizes. The purpose of this section is to describe the statistical 
structure of the size-biased permutation of the fragments' sizes as those obtained while 
avoiding the ones previously encountered in a sampling process from Dirichlet partition. 

�9 The R A M  structure of size-biased permutation. Let S n :=  ( S I , . . . ,  Sn)  be the 
random partition of the interval [0, 1] considered here. Let L1 be the length of the first 
randomly chosen fragment M1 := M, so with L1 := SM1 and P(M1 = m l  I ~n) = Sin1. 

One may check that L1 d beta(1 + O, (n - 1)8). A standard problem is to iterate the 
size-biased picking procedure, by avoiding the fragments already encountered: by doing 
so, a size-biased permutation (SBP) of the fragments is obtained. It turns out that  
SBP(Sn) has a residual allocation model (RAM) structure. 



6 0 0  T H I E R R Y  H U I L L E T  

In the first step of this size-biased picking procedure indeed, Sn =: S (~ --~ 
S( 1 ) (L1,SI,..�9149149149 which may be written as Sn --~ (L1, ( 1 -  L1) n- lJ ,  

with S(1) 1 := (5'~1),�9 ~(1) ~(1) S (1)) a new random partition of the unit 
�9 " ' ~ M 1 - - 1 '  ~ M 1 + 1 '  " " " ' 

interval into n - 1 random fragments�9 

Given L1 d beta(1 + 0, (n - 1)0), the conditional joint distribution of the remaining 

components of Sn is the same as that of (1 - ~,l)On_ l r  ~dl)  where the (n - 1) -vec tor  8(1_) 1 a 
Dn-l(0) has the distribution of a Dirichlet random partition into n -  1 fragments (see 

Kingman (1993), Chapter 9). Furthermore, S(1_)1 is independent of 1 - L1. Pick next at 

random an interval in S(~_)I and call V2 its length, now with distribution beta(1 + 0, ( n -  
2)0), and iterate until all fragments have been exhausted. 

With V1 := L1, the length of the second fragment by avoiding the first reads L2 -- 
(1 - V1)V2. Iterating, the final SBP of Sn is Ln := ( L I , . . . , L n )  and we shall put 
Ln = SBP(S , ) .  From this construction, we easily get 

LEMMA 2�9149 Let E~ = SBP( S~). I f  (V1, . . . ,  Vn-1) is an independent sample with 

distribution Vk a beta(1 + 0, (n - k)O), k = 1 , . . . ,  n - 1, then, 

k--1 

(2�9 Lk = H ( 1  -- Vi)Vk, k = 1 , . . . , n -  1 
i----1 

n - - 1  n - - 1  

(2�9 L n = I - E L k =  H ( 1 - V i )  
k = l  k = l  

is the R A M  representation of the size-biased permutation Ln of Sn. 

Note that Vi := 1 - V~ a be ta( (n- i )O,  1 +0)  and that V~ should be set to 1. These 
are well-known construction and properties; see Kingman ((1993), Chapter 9, Section 6) 
and Donnelly (1986, 1991). 

This RAM representation allows to compute the joint distribution of the size- 
biased permutation L~ of Sn. We shall say in the sequel that,  if Ln = SBP(S~), then 

Ln a SBDn(O) assuming that Sn d Dn(O). Before addressing this problem, we shall 
first consider the order in which fragments are visited�9 

�9 The visiting order of the fragments in the SBP process. For any permutation 
{ml, mn} of {1, , n}, with M~ M'  k = 1,. n, the first k distinct fragments �9 . �9 . �9149 , �9149149 ~, �9149 

numbers which have been visited in the SBP sampling process, we have 

k - - 1  

, Sm~ Smk,  P ( M ~ = m ~ , � 9 1 4 9  i=IH 1 _  E~=lSm ' (2.5) 

so that 

(2.6) 

As a result, 

(2�9 

~k  
P ( M ~ = m }  I S~,Ms = ml,.�9149 1 ~- mk-1) = l _ E / k i  1 Sml�9 

P(M~ = m I S~) = Sm 
k - 1  

S r n ~  

E H 1 -- ~-~'.~:, Sin, (mlg!...y~mk_i)9~ i=l  
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is the conditional (given Sn) probability that  the k-th visited fragment is fragment 
number m from Dn(O). 

LEMMA 2.2. Given M~ -- m l , . . . ,  Mk_ 1 = ink--l, Ms is uniformly distributed 
on the set m E { 1 , . . . , n } \ { m l  # . . .  # m k - 1 } .  The joint  probability distribution of 
M~, M' �9 " ,  k, k = 1 , . . . ,  n, is Bose-Einstein distribution 

1 
(2.8) Po(M;  = m l , .  .. , Ms = ink) - -  k - 1  ' 

1-Ii=o (n - i) 

with ml  # . . .  # m k  c {1 , . . . ,  n}. 

PROOF. Although this result is immediate by symmetry, we shall supply a short 
Sm~ = Sm~r 

proof of it. From equation (2.6), the function Sn ---* 1-z_~t=lV'k-~ Sr~z ~--~r~r ...... k--l~ S.~ 

is homogeneous with degree 0. Applying (ii) of Theorem 1 p. 471 of Huillet and Martinez 
(2003), with {T1, . . . ,  Tn} iid gamma(0) distributed random variables, we get 

Po(Ms = m k  I MI = m l , . . . ,  M~_ 1 = i n k - l )  = E Ly~m#{m ~ ..... -~k-~} Sm 

1 
= E_EL---kTz n - k + 1  

The Bose-Einstein distribution of M~,... ,/1//s results from Bayes formula. [] 

�9 The joint  distribution of the size-biased permutation�9 The SBP of Sn is/bn with 

L,~ d S B D n  (0) and Sn d Dn (0). First, we have 

(2.9) ( 5 1 , � 9 1 4 9 1 4 9  Ln) = (SM~,. . . ,  SM~), 

and consequently 

n-- 1 Smk Smn" 
(2.10) P(L1 = S i n 1 , . . . , L n  = Sm~ I Sn) = H 1 -  Y~=I Sm~ 

k=l 

Consider now the joint moment  function of the random size-biased permutat ion Ln = 
(L1, . . . ,  Ln). In Barrera et al. (2005), using the RAM representation of L~, the following 
result was proven. 

THEOREM 2.1. The joint  moment  funct ion of the S B P  L n 
SBDn(O) reads 

[ ] I (2.11) E l~I L qk = E E 
k=l {ml#...7~mn} Lk=l 1 - E k = l  Sraz 

n-1 { r(1 + (n - k + 1)0) 

= H L r(1 + 0)r( (n  - k)O) 
k=l 

sq~+ 1] 

X 

d 
= ( L 1 , . . . , L n )  

r ( 1  + 0 + q k ) r ( ( n  - k)O + qk+l -4-... -4- qn) ] 
r(1 + ~--E-+-i~:(-qi T--- ~- q~ J " 
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�9 One-dimensional marginals. From Theorem 2.1, we get the one-dimensional law 
of the Lks, k = 1 , . . . , n .  Furthermore, one may check that  the LkS are arranged in 
stochastically decreasing order (denoted by _).  More precisely (see Barrera et al. (2005)) 

COROLLARY 2.1. (i) The law of Lk, for k = 1 , . . . ,  n, is characterized by 

(2.12) 
k - 1  

E[Lqk] -- H E[Vq]E[Vq] 
i = l  

k-1  r ( ( n  - i )0  + q ) r ( ( n  - i + 1)0 + 1) 

---- H F((n / ~ ) F - - - ~ - - - - i - ~ l ~ l - T q )  
i----1 

F(1 + 0 + q)F(1 + (n - k + 1)0) 
x 

r(1 + 0)r(1 + (n - k + 1)0 + q)" 

(ii) Let B(~-k+l)o,1 d beta((n - k + 1)0, 1). Then, 

(2.13) Lk d B(n-k+l)o,1 �9 Lk-1, k = 2 , . . . ,  n, 

where pairs B(n-k+l)o,1 and Lk-1 are mutually independent for k = 2 , . . . ,  n. 
Off) L1 ~- . . .  ~- Lk ~_ . . .  ~- Ln. 

The Kingman limit 
Consider the limit n T c~, 0 I 0 while nO = V > 0. Such an asymptotic was first 

considered by Kingman (1975); we shall "star" the results (as in d )  when referring to 

such an asymptotic. As noted by Kingman, 8n d Dn(O) itself has no non-degenerate 
limit. 

d , When k = o(n), recalling Vk d beta(1 + 0, (n - k)0), we have Vk .--~ V~ d beta(l ,  V) 

and the SBDn (0) distribution converges weakly from equations (2.3), (2.4) to a Griffiths- 
Engen-McCloskey or GEM('~) distribution. 

Namely, (L1 , . . . ,Ln )  d ( L ~ , . . . , L ~ , . . . )  =: L* where 

k - 1  

(2.14). L k V i V~, k >_ 1. 
i ~ 1  

Here (Vk* ,k > 1) are lid with common law VI* d beta(1, V ) and V~ := 1 -  VI* d 
beta(7, 1). Note that L~ _ .. .  >- L~ _ . . . ,  and that  L* is invariant under size-biased 
permutation. In the Kingman limit, (S(m), m = 1 , . . . ,  n) converges in law to a Poisson- 

Dirichlet distribution (L~k),k _> 1) d pD(V ) with L~I ) > . . .  > L*(k) > """  The 

size-biased permutation of ( ( k ) ,  k > 1) is (Lk, k > 1) d G E M ( 7 )  (see Kingman (1993), 
Chapter 9). 

The model (2.14) generates a random countable partition of the unit interval, with 
many fundamental invariance properties (for a review of these results and applications 
to Computer Science, Combinatorial Structures, Physics, Biology . . . ,  see Tavar~ and 
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Ewens (1997) and the references therein for example; this model and related ones are 
also fundamental in Probability Theory; see Pi tman (1996, 1999, 2002) and Pi tman and 
Yor (1997). 

3. Dirichlet partitions: sampling formulae for unordered and ordered sequences 

Ewens' sampling formula (ESF) gives the distribution of alleles (different types of 
genes) in a sample with size k from the Poisson-Dirichlet process PD(v) .  Alternatively, it 
can be described in terms of sequential sampling of animals from a countable collection of 
distinguishable species drawn from G E M ( v  ) . It provides the probability of the partition 
of a sample of k selectively equivalent genes into a number of alleles as population size 
becomes indefinitely large. Depending on whether the order of appearance of sequentially 
sampled species matters or not, we are led to the first ESF for unordered sequences or to 
the Donnelly-Tavar~-Griffiths (DTG) sampling formula for ordered sequences. A third 
way to describe the sample is to record the number of species in the k-sample with 
exactly i representatives, i = 0 , . . . , k .  When doing this while assuming the species 
have random frequencies following GEM(~/) distribution, we are led to a second Ewens 
Sampling Formula. We recall here the exact expressions of both first, second Ewens 
and DTG sampling formulae, when sampling is from finite Dirichlet random partitions. 
These sampling formulae give both ESF and DTG formulae from GEM("/)  when passing 
to the Kingman limit (see Sibuya and Yamato (1995) for further results). Most of the 
results (and their proofs) presented therein can be found in Huillet (2005). 

3.1 The first Ewens sampling formula for Dirichlet partitions 
We first consider a sampling formula from Dirichlet partitions for which the or- 

der in which the consecutive fragments are being discovered in the sampling process is 
irrelevant. 

Let Sn be the above Dirichlet random partition with parameter 0 > 0. Let k > 1 
and (U1, . . . ,  Uk) be k iid uniform random throws on [0, 1]. Let then ( M 1 , . . . ,  Mk) be the 
(conditionally iid) corresponding fragments numbers (or animals' species), with common 
conditional and unconditional distributions 

(3.1) P ( M  = m I S n )  -= Sin,  m e { 1 , . . . ,  n} 
1 

(3.2) P o ( M  = m) := E [ P ( M  = m I Sn)] = E S m  = - .  
n 

k Let ~n,k(m) -= ~ l = l  I (MI  : m) count the random number of occurrences of frag- 
ment m in the k-sample and Pn,k := ~-~n=l I(Bn,k(m) > 0) count the number of dis- 
tinct fragments which have been visited in the k-sampling process. We let (O)k := 
0(0 + 1)(0 + k - 1). In Huillet (2005) we obtained 

THEOREM 3.1. 

(3.3) 

(i) We have 

PO(Bn,k(1) = k l , . . . ,  Bn,k(p) = kp; Pn,k ---- P) 

= p - -  l - I  ( o ) k .  1-Iq=l kq! (nO)k q=l 
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(ii) With 

Bk,p(Xl, x2 , . . . )  := 
k! k 

E YIki-1 i!a'ai! i=IH xa' 
ai>O:E~-- '= 1 ia,=k; 

E , \ I  o, =p 

the Bell polynomials, 

(3.4) Po(P~,k = P) = 
n~ 1 

(n - p)! (nO)k Bk,p( (O)l, (0)2,. . .) .  

(iii) We have 

(3.5) Po(Bn,k(1) = k l , . . .  ,Bn,k(p) = kp I Pn,k = p) 

_ k! 1 YIP (O)kq 

p! Bk,,((O)li (O)2,...) 

Note in particular that if p = k = 2, with kl -- k2 -- 1, equation (3.3) gives 

Po(Bn,2(1) = 1, Bn,2(2) = 1; Pn 2 = 2) -- (n -- 1)0 
' n O +  1 

This is the probability that the first 2 random throws will visit any 2 distinct fragments. 
The complementary probability that  it does not is thus 1 - (n-l)0 _ 0+1 nO+l -- nO+l" 

Remark. (the law of succession) We would like to briefly recall a related question 
raised in Donnelly (1986) and Ewens (1996), concerning the law of succession. 

(i) Let the "Mk+l is new" denote the event that  Mk+l is none of the previously 
visited fragments. One can prove (see nuillet (2005)) 

(3.6) Po(Mk+l  is new I Bn,k(1) = k l , . . .  ,Bn,k(p) = kp; Pn,k = P) 
(n - p)O 

n O + k  ' 

which is independent of cell occupancies k l , . . . , k p  but depends on the number p of 
distinct fragments already visited by the k-sample. 

(ii) Similarly, let the event "Mk+l C species seen kr times" denote the fact that  
the (k + 1)-th sample is one from the previously encountered fragment already visited 
kr times. We easily get 

(3.7) Po(Mk+I E species seen k~ times I B~,k(1) = k l , . . . ,  •n,k(P) = kp; Pn,k = P) 
0 +  k~ 

n O + k '  

which is independent of occupancy numbers kq, q C { 1 , . . . ,  p} \ {r} and also of the number 
p of distinct observations. 



SAMPLE FROM DIRICHLET PARTITION 605 

Remark. 
have the transition probabilities 

Po(Pn ,k+l  = P + I I Pn,k = P) -- (n -- p)O 
n O + k  

Po(Pn,k+l = P I Pn k = P) = ~P=I(0  + kr) 
' n O + k  

Next, 

(number of distinct observations) From equations (3.6) and (3.7), we also 

p O + k  
nO+k"  

Po(Pn,k+l = P ) -  ( n - p +  l ) O _  . p O + k  r, ~r) 
nOT-k- 1-'o(Pn,k = p - 1) + n--~---~.lr-ol, r n , k  = p). 

Using equation (3.4), we obtain the following triangular recurrence for Bell polynomials 
Bk,p((O)l ,  ( 0 ) 2 , . . . ) ,  

B k + l , p ( ( e ) l ,  ( 0 ) 2 , . . . )  = OBk,p-l((e)l,  (0)2, . . . )  + (pO + k)Bk,p((O),, (0)2, . . . ) .  

These should be considered with boundary conditions 

Bk,o((O)~, (0)2,. . .)  = Bo,,,((O)~, (0)2,. . .)  = O, 

except for Bo,o((O)l, (0 )2 , . . . ) :=  1. 

This leads in particular to Bk,l((O)l, (0)2,. . .)  = (0)k, k > 1 and to 

Po(Pn k = 1) -- n(O)k 
' (nO)k" 

The Kingman limit 
Consider the situation where n T oc, 0 ~ 0 while nO = ~/> 0 in equations (3.3), (3.4) 

of Theorem 3.1. Proceeding in this way, we recover the first Ewens sampling formula 
(1972): 

COROLLARY 3.1. (i) In the Kingman limit, 

Po(13n,k(1) = k l , . . . ,  Bn,k(p) = kp; P~,k = P) 

converges to 

( 3 . s )  

(3.9) 

and 

(3.10) 

(ii) 

k! -yP 
P . y ( B k ( 1 )  = k ~ , . . . ,  Bk(p)  = kp; Pk = p)  = p! ('r)k P " 

I ' Iq=l kq 

With Sk,p the absolute value of the first kind Stirling numbers, we get 

~/P S k,p 
P ; ( P k = p ) -  (~/)k ' p =  l , . . . , k  

Pv(Bk(1) = k l , . . . ,Ba (p )  = kp I Pk = p) - 
k! 1 

P p! sk,p 1-Iq=l kq 

Remark. (the law of succession) In the Kingman limit, the probabilities displayed 
in examples (3.6) and (3.7) converge respectively to 

(3.11) ~' and kr 
~ + k  ~/+k"  
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3.2 The second Ewens formula for Dirichlet populations 
Let now .An,k(i), i E {0 , . . . ,  k} count the number of fragments in the k-sample with 

i representatives, that  is 

n 

(3.12) A~,k(i)  = #  {m E {1, . . .  , n } :  Bn,k(m) = i} = E I ( ~ n , k ( m )  = i). 
m = l  

k k Then ~-~i=o.An,k(i) = n, ~ i= l .An ,k ( i )  = p is the number of fragments visited by the 
k �9 k-sample and .An,k(O) the number of unvisited ones. Note that  ~ i=1  W4n,k(~) = k is the 

sample size. 
The vector (J tn,k(1) , . , . ,  An,k(k))  is called the fragments vector count or the species 

vector count in biology, see Ewens (1990). In this case, see Huillet (2005), we have 

THEOREM 3.2. (i) For any ai >_ 0, i 1 , . . . , k  satisfying k = ~'~-i=liai = k and 
k ~-~i=l ai = p, we have 

(3.13) Po(An,k(1)  = a l , .  . . , .An,k(k) = ak; P~,k = P) 
k �9 

= n____~, v k! 1 1-[ (0) ~, ' 
( n - p ) !  k I-Ii=1 i!alai ! (nS)k i=1 

(ii) With Bk,p(X~, x2, . . . ) ,  the Bell polynomials, we have 

n! F(n0) Bk,p((0)l , (0)2, . . . ) .  
(3.14) Pe(Pn,k  -= p) - (n --- p)! F(nO + k) 

(iii) We have 

( 3 . 1 5 )  Po(An,k(1)  = a l , .  .. ,An ,k (k )  -~ ak I Pn,k = p )  

B k , p ( ( O ) l ,  (O)2 , .  . . )  ill.= i !a 'a i !  " 

The Kingman limit 
Consider the limit n 1" oc, 0 I 0 while nO = y > 0. We recover the celebrated Ewens 

Sampling Formula (1972). 

COROLLARY 3.2. (i) In the Kingman limit, the probability displayed in (3.13) con- 
verges to 

(3.16) P~(Ak(1) = e l , . . .  ,Ak(k) = ak;Pk = p )  = kT~P 
I-L=I ia~ai ! 

(ii) With Sk,p the absolute value of the first kind Stirling numbers, 

(3.17) 

and 

(3.18) 

P.y(Pk = P) - 7PSk,p ' p =  1 , . . . , k  

P~(Ak(1) = a l , . . . , . A k ( p )  = ak I Pk = P) = 
k! 
k 

sk,p IIi=l ia~ai ! 
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3.3 Donnelly- Tavard-Griffiths sampling formula for the Dirichlet partition 
We now consider sampling formulae from Dirichlet partitions for which the order in 

which the consecutive fragments are being discovered in the sampling process matters. 
Consider a k-sample and let ml ~ m2 ~ . "  ~ mp denote the ordered number of 

the first, second, . . . ,  the p-th distinct animals sampled from Sn when only P,~,k = P 
distinct fragments were visited. Let Cn,k(q), q = 1, . . .  ,p be the number of animals of 
the q-th species to appear. Using Theorem 2.1, we can prove (see Huillet (2005)) 

THEOREM 3.3. For any Cq >_ 1, q = 1 , . . . , p  s a t i s f y i n g  ~-~P cq = k and any p = 

1 , . . . , n A k ,  

(3.19) Po(Cn,k(1) = Cl, . . .  ,Cn,k(P) = Cp; Pn,k = P) 
(k - 1)! F(1 + ( n - p + 1)0)r(0 + cp) 

p-1 r(1 0)r((n + 1)0 + cp)F(cp) YIq=l ( k  - E q ci)  -~- - p 

P-1 {r(1 + ( n - q +  1)O)F(O+cq) F ( ( n - q ) O + c q + l  + . . . + C p )  } 
x H 1ToT  -u :: " 

q=l 

Remark. (the law of succession) (i) Consider equation (3.19) and, with mr E 
{ m l , . . . ,  rap}, let 

P(Mk+I = m r  I Cn,k(1) : C l , . . .  , C n , k ( p )  : Cp; Pn ,k  : P) 

be the conditional probability that  the (k + 1)-th sample is one from the previously 
encountered species already visited cr times. One can show, see Huillet (2005), that, as 
for the ESF, 

(3.20) Po(Mk+l E species seen cr times I Cn,k(1) = c l , . . .  ,Cn,k(p) = Cp; Pn,k : P) 

0 +Cr 
-- n O + k '  

which is again independent of Cq, q E {1, . . .  ,p}\{r} and also of p. 
(ii) Summing over r = 1, . . .  ,p, the conditional probability that  Mk+l C {any one 

of the species previously seen} is thus P O+c r = pO+k Taking its complement to 1, E r = l  nO+k nOWk" 
we obtain 

(3.21) Pe(Mk+l is new I Cn,k(1) = c l , . . .  ,Cn,k(p) = Cp; Pn,k = P) 

(n - p)e 
n O + k  ' 

which is independent of cell occupancies Cl,. . . ,Cp but depends on the number p of 
distinct fragments already visited by the k-sample. 

The Kingman limit 
Passing to the Kingman limit in Theorem 3.3 gives the celebrated Donnelly-Tavar~- 

Griffiths sampling formula given in Donnelly and Tavar~ (1986), p. 10 (see Huillet (2005) 
for details). 
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COROLLARY 3.3. (i) In  the K i n g m a n  l imit ,  the probabili ty (3.19) converges to 

(3.22) 
, k!~/p 

P~(Ck(1) = c 1 , . . .  ,Ck(p)  = cp;Pk = p )  = (7)k Hq=l (Cq  p -[- ' '"  Jr- Cp) 

(ii) With  sk, p the absolute value of  the f irst  k ind  S t i f l ing  numbers ,  

(3.23) 

and 

(3.24) 

, ~PSk,p 
P ~ ( P k = P ) -  (7)k ' p = l , . . . , k  

P~(Ck(1) = C l , . . . ,  Ok(p) = Cp I Pk = p) : 
k! 

P c Sk,p H q = l  ( q "[- " ' '  "~ Cp)" 

4. Intervals between new sampled species from Dirichlet partition 

In this section, we shall consider the following sampling problem from Dirichlet 
parti t ion. From the knowledge of the order in which new fragments are being discovered, 
what  can be said about  the random number  of samples separat ing the discovery of 
consecutive new fragments until exhaust ion of the list? We shall first consider the case 
of a fixed sample size k and then  the case of an unl imited size. 

Assume there are P~,k = P <_ n A k := k~ distinct species visited by the k-sample 

drawn from S n  d Dn(O), with k _> 2. Let m l  7 s . "  7 ~ mp  be their fragments numbers 
in order of their  appearance. Let :Dn,k(r), r = 1 , . . .  , p -  1 be the sample size between 
the discovery of the r - th  and the (r + 1)-th new fragments. Let X1 -- 1 and Xz = 

l--1 
l--[k=1 I ( M z  7 ~ Mk), 1 = 2 , . . . ,  k. This binary sequence takes the value 1 each t ime a new 
species is visited by the k-sample; otherwise its value is 0. Let dr _ 1, r = 1 , . . .  ,p - 1, 

p--1 r d . .  dp := k - y ~ . r = l d r  _> 1 and-dr  = Y~q=l q, r = 1, . ,P,  d0 := 0. The following two 
events are identical 

and 

"7:)n,k(1) = dl ,  . . . , :Dn,k(p -- 1) = dp-1; Pn,k = P" 

"X1 : 1, X2 . . . . .  Xdl : 0,  X d l + l  = 1, X d l + 2  . . . .  

: X ~  2 = O ,  . . . , X ~ p _ l +  1 : 1, XXv_~+ 2 . . . . .  XX v O".  

Next, from the above law of succession displayed in (3.21), with b l , . . . ,  bl E {0, 1} l, we 
get 

Po(Xz+I  = 1 I X1 = b l , . . . , X 1  = bl) = 

Po(XI+I  --- 0 I X1 = b l , . . . , X l  = bl) -- 

Using this, we obtain 

(n  I -  q=l bq)O 

n O + l  

l + 0 .  ~-~l bq q = l  

n O + l  

p--1 THEOREM 4.1. Let  p < kn. Wi th  dr >_ 1, r = 1 , . . .  ,p - 1, dp := k - }-~r=l dr _> 1 
r 

and -dr = ~-~q=l dq, r = 1 , . . .  ,p, do := O, we get 
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(4.1) 

(4.2) 

(i) 

(ii) 

Po(:Dn,k(1)  = dl ,  . . . , ~Dn,k(p - 1) = dp-1; Pn,k = P) 

Opn! P 
= (n - p ) ! ( n O ) k  l - I (1  -[- re  nt-ar-1)dr-l" 

r=l 

Po(:Dn,k(1)  = d l , . . . , D n , k ( p -  1) = dp-1 [ Pn,k = P) 

Op P 

= Bk,p((0)l,  (0)2 , . . . )  H ( 1  + rO + a ~ - l ) a ~ - l .  

PROOF. (i) We have: 

Po(7:)n,k(1) = d l , . . . ,  l ) n , k ( p -  1) = dp-1; P~,k = P) 

p--1 (n  -- r)O P -&- i  l + rO 

= H  ? r + n 0 " H  H l + n O  
r=0 r=l /=d~-l+l 

p--1 p dl_i1 _ 1 - [ ~ = 0 [ ( n  - r)O] 
- I I  +re)  

- -  r = l  t=a._,+l 

n! 0 p P 
~-~ ~ (?~O)------k H (1 + rO + dr-X)d~-X, 

r=l  

(ii) follows from the expression (3.14) of P o ( P n , k  = P). [] 

R e m a r k .  (Waring distr ibution) Let us recall here some e lementary  facts on Waring 
distr ibutions in the  generalized hypergeometr ic  of type  B3  class. A discrete r andom 
variable W E {0, 1 , . . . }  has Waring dis t r ibut ion W ( b ,  a) with parameters  b > a > 0 if 

P ( W  = x)  = ( b -  a ~ (a)~ We have E ( W )  = a / ( b -  a -  1) if b -  a > 1, = +c~  if not. / (b)x+l " 
Regrouping the events "W > n ' ,  a random variable b W  E { 0 , 1 , . . .  ,n} has bounded  

Waring dis t r ibut ion b W ( n ,  b, a) if P ( b W  - x) = (b - ~J (b--52~+~ ' ~  (a)~ if x �9 {0, 1, . . .  ,n  -- 1}, 

P ( b W - - n ) =  (a)n i f b W = n .  We o b t a i n E ( b W ) =  a ( 1 -  (a+l)~) i f b C a + l  and b-a-1  (b)~ 
E ( b W )  = (b - 1)[~'(b + n) - ~'(b)] if b -- a + 1, where r  := r ' ( b ) / r ( b ) .  

One may  check that  if W d W ( b ,  a), then W d geom(beta(a ,  b - a)) where G d 
geom(p) is a geometrically dis t r ibuted random variable with law P ( G  = x) = p~(1 - p ) ,  

x _> 0. Here, p is the  random success probabili ty,  with p d be ta(a ,  b - a), independent  
of G. From this, we get 

r(b) .~1 pX+a-1 
P ( W  = x )  - r(a)r(b- a) - .  (1 - p ) b - a d p  

P(b) P(a  + x)V(b - a + 1) = (;b , (a)~ 
= r ( a ) r ( b  - a )  r ( b  + x + 1) - a~ (b -~+ l"  
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Fur thermore ,  P ( W  > n) -- r(b) r(~)r(b-~) foP~+~-l( 1-p)b-~-ldp = (~)~ Let bG have - ( b ) ~  " 

bounded  geometr ic  d is t r ibut ion such t ha t  P(bG = x) = pX(1 - p ) ,  if x �9 {0, 1 , . . . ,  n -  1}, 
P(bG = n) = p n  i f b G =  n. Using E ( G )  - - p / ( 1 - p )  and E(bG)  = 1-p p - p~+~l-p, the  
claims on E ( W )  and E ( b W )  follow from randomiza t ion  of p. 

Now, we are ready for present ing subsequent  results. As a consequence of T h e o r e m  
4.1, we have 

(4.3) 

THEOREM 4.2. Let 1 <_ r < k~. 
(i) With d l , . . . , d r  >_ 1, dr < k, we have 

Pe(~n ,k (1)  = d ] , . . . ,  :Dn,k(r) = dr) 

( n - 1 ) ~  O r r 

-- ( # = 7 - 1 ) !  (1 + nO)~ H (1 + qO + ~ - 1 ) ~ - 1 .  
q=l  

In particular, i f  r = 1 

(4.4) Pe(T)~,k(1) = dl)  = 0(n - 1)(1 + 0)dl-1 (1 + nO)d1 ' dl �9 { 1 , . . . ,  kn - 1} 

_ ( I + 0 ) d l _ I  i f  d l = k ~ ,  
(1 + nO)~- l '  

and D n , k ( 1 ) -  1 has bounded Waring distribution b W ( k ~ -  1, 1 +nO, 1 +8).  Consequently, 

1+8 [1_ (2+0)k_i] 
(4.5) E0[:D~,k(1)] = 1 + (n - 1)8 - 1 (1 + nO)k~-i " 

(ii) Let 1 < r < kn. With d l , . . . , d r  >_ 1, d r -1  = : d > r - l ,  dr  = d + d r  < k, we 
have 

(4.6) Po(~Dn,k(r) -- dr ] ~ , , k (1 )  = d l , . . .  ,Dn,k(r  -- 1) = d r_ l )  

(1 + rO + d)d~-l ,  
= O(n -- r) -(i-+--nO+d--~d~ i f  dr �9 { 1 , . . . ,  kn - d - 1} 

(1 + 0 + d)dr-1 
= ( l + n O + d ) d ~ - l '  i f  d r = k n - d ,  

- -  r--1 
showing that, given ~ ) n , k ( r  --  1) :---- ~ q = l  ~ ) n , k ( q )  = d, ~ ) n , k ( r )  --  1 h a s  b o u n d e d  Waring 
distribution bW(kn  - d - 1, 1 + nO + d, 1 + rO + d). Note from the preceding remark that 

- -  l + r 0 + d  [ 1 -  ( 2 + r O + d ) k ~ - d - l l  
(4.7) Ee[:Dn,k(r -  1)] = 1 + ( n - -  r ) 0 -  1 (1 + nO §  

r (iii) For r = 1 , . . . ,  kn - 1, the cumulative random variable ~n ,k (r )  := ~ q = l  T)n,k(q) 
has distribution 

(4.8) Po(~n , k ( r )  = d) = (n - 1)!Bd,r((0)l ,  (0)2 , . . . )  
( n - -  r -  1)!(1 + n 0 ) d  ' d = r , . . . , k ~  - 1 

= n! Bd,r((O)l, (8)2 , . . . )  d = kn, 
(n - ~)! (no)d ' 
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where  Bd,~( ( O)l , (8)2 , . . . )  are Bel l  po lynomia ls .  

PROOF. (i) The following two events coincide 

" Z ) n , k ( 1 ) - - d l , . . . , T ) n , k ( r ) = d r "  

and "X1 = 1 , X 2  . . . . .  Xd~ 

1, X~_~+2 . . . . .  X~ = O, X~+I  = 1". 
gives (i). 

In particular,  

P o ( ~ n , k ( 1 )  = d l )  -- 

= 0, Xdl+l : 1, X d l + 2  . . . . .  X~ 2 = 0 , . . .  ,X~r_l+l : 
Proceeding as for the proof  of Theorem 4.3 

02n! (1+0)~1_1  

( n -  2)! (n0)dl+l 
( n -  1)(0)dl - - 0 ( n - - l )  
( l + n 0 ) d l  

( 1 + 8 ) 4 1 - 1  
(1 + nO)d1 ' 

so that ,  with d ---- O, . . . ,  k n  - 1 

(1 + O)d d = O , . . . , k ~  - 2 
Po(Z)n ,k (1 )  - -  1 = d) = O(n - 1)(1 + nO)d+l '  

_ ( l + 0 ) d  if d = k ~ - I  
(1 + nO)d'  

which is a bounded  Waring dis t r ibut ion b W ( k ~  - 1, 1 + nO, 1 + 0). The expected  value 
of Dn,k(1) displayed in (4.5) follows from the preceding remark. 

(ii) If dr C { 1 , . . . ,  k - d - 1}, it follows from the law of :D~,k(1), . . . ,  ~ , k ( r )  tha t  

Po(Z)n ,k ( r )  = dr ]/)n,k(1) = d l , . . .  , T ) n , k ( r  - -  1)  = d r - i )  

(nO)d+l (1 + r e  + d)d~- i  
= O(n -- r)  (nO)d+d~+l 

= O(n - r ) ( 1  + rO + d )d~- i  
( l + n 0 + d ) d ~  ' 

where d := dl + �9 �9 �9 + dr-1.  This condit ional dis tr ibut ion depends  on dl,  �9 �9 �9 dr-1 only 
through their sum. 

From this, one may check that  given : D n , k ( r -  1) = d, T~n,k(r) -- 1 has bounded  
Waring dis t r ibut ion b W ( k n  - d - 1, 1 + n0 + d, 1 + rO + d). The expected  value of 
:D~,k(r -- 1) displayed in (4.7) follows from the preceding remark. 

(iii) This results from the Ewens sampling formula displayed in Theorem 3.2. 
Su_ppose tha t  (:Dn,k(1),.. .  ,:D~,k(p--_1); P~,k)  has dis t r ibut ion given by (4.1). Let 

r and dr be integers _> 1 such that  r _< dr < k~. Let a l , . . . , a - ~  > 0 be an unordered 

par t i t ion of dr for which E 1  ai  = r and ~-~-1 iai  = dr. Then 

P o  (~) (~) - (An,k(1) = a~, .  ..  , A n , k ( d ~ )  = a-~) 

: E Po(~)n'k(1) : d l , . . .  , ~ ) n , k ( r )  = dr) 
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where summat ion  runs over all distinct ordered part i t ions d l , . . . ,  dr of dr which give rise 
to the unordercd par t i t ion a l , . . . ,  aa~ of dr. From (4.3), we get 

(r) (r) - 
Po(An,k(1) = a l , . . .  ,Mn,k(d~) = aa~) 

a~ 
= n. T _ __dr! 1 H ( O ) ~  

(n-  r)! i>ai! (nO)a  
if dr = k~ 

(n-_l__)~ _ __dr' 1 H(0 )~  ~ if r <  dr < k~ 
( n ~ 7  )I Hd,.1 i!aiai ! (1 + nO)~ i----1 

with 

_ __ar  

~d~_l i!a, afl .= 

Next, for d = r, r + 1 , . . . ,  kn - 1, we have 

=Ba~,r((eh,(O)~,...). 

Po(~n,k(r)  d) E (r) (r) = = Po(An,k(1) = a l , . . .  ,A~,k(d ) = a4) 

d . where summat ion  runs over ai > 0 satisfying ~-~d ai = r and ~-~-1 zai ---- d. [] 

Lastly, we shall turn  to the related question of comput ing the law of l)n(r), the 
sample size separat ing consecutive visits to the r - th  and the (r + 1)-th new species, when 
sampling is from Dn(O) with unlimited sample size. For this problem, we obtain 

THEOREM 4.3. L e t  1 <_ r < n -  1. 

(i) The law of T)n(r) is given by 

(4.9) Po(7)n(r) > d )  = 

• I I ~ F ( l + ( n - q + l ) O )  
q=l t r (1  + 0 ) r ( (n  - q)O) 

P(1 + 0 + kq)r((n - q)O + kq+~ + . . .  + kr) ] 

and the following stochastic domination property holds 

~)n(r) ~ ~)n(r-- 1). 

(ii) With 1 < r < n - 1, the mean value of TPn(r) reads 

(4.10) Eo(~)n(r)) = ~ I  ( n - q + l ) O  
q=l (n q)O-  l '  

= +oc, if not. 

if ( n - r ) e > l  
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PROOF. (i) Given Sn,  w e  have 

P(I)n(r ) > d [ M; -: m l , . . . ,  M~r -: mr, Sn) = Smq 

since, if :Dn(r) > d, at least d sample need to fall in the already visited fragments.  
Averaging over Sn and summing over all realizations m l  r . . .  ~ mr  of M ~ , . . . ,  Mr', we 
get 

Developing with  the help of the mult inomial  ident i ty  and using the joint moment  function 
of L 1 , . . . , L ~ ,  as obtained from (2.11), gives the result. The stochastic dominat ion  

r r--1 
proper ty  :Dn(r) h :D~(r - 1) follows from the fact tha t  (Y~q=l Lq) d >- (~-]q=l Lq) d which 
is maintained when taking the expectation.  

r 
(ii) Concerning the mean value of :Dn(r), recalling 1 - ~q=l  Lq -- 1-Iq=l vq  where 

Vq, q = 1 , . . . ,  r are independent  with l a w  Yq d b e t a ( ( n -  q)O, 1 + 0) we have from (4.11) 

r Eo(:D~(r)) = E Po(:Dn,k(r) > d) = Eo 1 - ~q=X Lq 
d_>0 

(<) n ---: S . 
: E Yq q--1 

(n - -q+l )O The expected value of E o ( ~ )  is finite and equal to %-q)0-i  if and only if (n - q)O > 1. 

We note tha t  when r > n -O -1 is such tha t  (n-r)O < 1, the expected t ime separat ing the 
visit from the r - th  to the (r + 1)-th new fragment becomes infinitely large. In particular,  
for values of 0 such tha t  O < 1/(n - 1), Eo(:Dn(r)) = c~ for each 1 < r < n - 1. On the 
contrary, if O ~ 1, Eo(:Dn(r)) < oo for each 1 ~ r < n - 1. 

Note tha t ,  if (n - r)O > 1, since 0 > 0 

Ee(:D~(r)) - (n - r + 1)O Eo(:D~(r _ 1)) > Ee(:Dn(r - 1)). 
(n r)O --1 

The expected visiting t imes sequence to consecutive new species, when these exist (when 
they  are finite), is an increasing one, as conventional wisdom suggests. These results are 
consistent with the ones of Huillet (2003), obtained in the part icular  case 0 = 1, namely 

(-[ n - q +  l _ n ( n - 1 )  
Eo=l(:Dn(r)) q=illn q- I (n- r)(n- r- l)' 

for e a c h l < r < n - l . [ ]  

k Remark. With  ~q=l  q -- d, the following te rm arising from (4.9) 

( d ) ~ i r ( l + ( n - q + l ) O ) F ( l + O + k q ) r ( ( n - q ) O + k q + l + . . . + k r )  
k l , . . . ,  kr r(1 + e ) r ( ( n  - q)0)r(1 + (n - q + 1)0 + kq + . . .  + k~) 

q = l  
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is the joint probabil i ty Po(l)n(r)  > d; Bn,d(1) = k l , . . . ,  ]3n,d(r) = kr) t ha t  ~)n(r) > d 
and tha t  cell occupancies 13~,d(q) = kq, q = 1 , . . . , r  where ~n,d(q) counts the random 
number  of occurrences of the q-th previously visited fragment in a d-sample from Dn (0). 

The Kingman limit 
Consider the si tuat ion where n T oc, 0 $ 0 while nO = -y > 0. In this case, we recover 

par t  of the results given by Yamato et al. (2001) in a broader (two-parameter) model. 
As a corollary to Theorem 4.1, we have 

COROLLARY 4.1. Letp  < k. Assume dr ~ 1, r -- 1 , . . .  , p - l ,  dp := k-~-~rP__-~ dr _> 
r 1 and-dr = ~-~q=l dq, r = 1 , . . .  ,p, d0 := 0. Then, the weak limits iOk(r) :=  l im. T)n,k(r), 

r = 1 , . . . , p - -  1 exist and 
(i) 

(4.12) 

(ii) 

(4.13) 

P~(7)k(1) = d l , . . . , / ) k ( p - -  1) = dp-1;Pk = P) 

__ ~ P  P 

H(1 + 
r = l  

P~(T)k(1) = d l , . . . ,TPk ( p - -  1) = dp-1 ] Pk = P) 

1 P 
= H(1 +ar_l)d _1. 

8k'p r=l 

PROOF. Immediate.  This is consistent wi th  the result of Yamato et al. (2001), 
Theorem 2, p. 21, put t ing a = 0 in the general two-parameter  P i tman  class where 
sampling takes place. This distr ibution is called D T G I I  by Yamato (1997). [] 

As a corollary to Theorem 4.2, we get 

(4.14) 

COROLLARY 4.2. Let 1 < r < k. 
(i) With d l , . . . , d r  >_ 1, dr < k, 

P~(:Dk(1) = d l , . . . , / ) k ( r )  = dr) 

( " / )d , .+ l  = (1 -[- dq-1)dq_ 1. 

, ( d l - 1 ) !  dl e { 1 , . . ,  k - l }  (4.15) P.~(/)k(1) = d l )  --- ? (1 + V)dl' ' 

(k - 1)! 
(1 + V)k-1 dl = k, 

showing that T)k(1) -- 1 has bounded Waring distribution bW(k  - 1, 1 + V, 1), with 

(4.16) E.r(Dk(1)) = 1 + 1 1 - "y . 
" / - 1  

In particular, if  r = 1 
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(ii) Let 1 < r < k. With d l , . . . ,  dr >_ 1, -dr-1 =: d > r - 1, -dr = d + dr < k, 

(4.17) P.~(Dk(r)  = d~ I :Dk(1) = d l , . . . ,  Dk(r  -- 1) = d r - l )  

(1 + d ) d . - I  
if 

= "/(1 + ' y  + d)d~' 
(1 + d)k -d -1  

(1 + 7 + d ) k - d - l '  

- -  r - - 1  showing that, given Dk ( r  -- 1) := ~ q = l  7?k(q) = d, 7?k(r) -- 1 has bounded Waring 
distribution b W ( k  - d - 1, 1 + ~/ + d, 1 + d). In particular, 

d r E { 1 , . . . , k - d - 1 }  

if  d ~ = k - d ,  

( (4.18) E ,  :Dk(r) 

= 1 +  

(iii) For r = 1 , . . . , k -  1, the 
bution 

(4.19) P.~(l)k(r)  = d) - 

) E Z ) k ( q )  = d  
q=l 

l + d ( 1  - ( 2 + d ) k - d - 1 )  
- 1 (1 ~- ~ /+  d ) k - d - 1  " 

- -  r cumulative variable T)k(r) := ~-~q=l T)k(q) has distri- 

r 

~/ Sd,r d = r , r + l , . . . , k - 1  
(1 + 7)d '  

- -  r s  
")1 d,r d = k, 

(~)d ' 

where Sd,~ are the absolute values of f irst  kind Stif l ing numbers. 

PROOF. Immediate .  These are again consistent with results of Yamato et al. 
(2001), as from Theorem 3, Proposit ions 3 and 4, put t ing a = 0 in their formula. [] 

Finally, as a corollary to Theorem 4.3, we easily obtain 

COROLLARY 4.3. Let r >_ 1. 
(i) The law of T)(r) := l im.:Dn(r)  is given by 

(4.20) P~(~) ( r )  > d) = 7~d! 1 
r 

Z IIq=l{-r + kq + + kr} < ..... k~_>o:~[ kq=d 

and the following stochastic dominat ion property holds 

D(r )  >- D( r  - 1). 

(ii) With 1 < r, the mean value of D(r )  reads 

(4.21) E~(~ (r ) )  = , if ~ > 1 

= + ~ ,  /f 0 < '~  <_ 1. 
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PROOF. Immediate from Theorem 4.3. [] 

Remark.  With ~-~=1 kq -= d, kq >_ O, the following term arising from (4.20) 

~rd! 1 
r 

IIq=l{  + 4 + + kr} 

is the joint probability P~(T)(r)  > d; Bd(1) = k l , . . . ,  Bd(r) = kr) that  :D(r) > d and that 
cell occupancies are Bd(q) = kq, q = 1 , . . . ,  r, where Bd(q) counts the random number of 
occurrences of the q-th previously visited fragment in a d-sample from GEM(~/) .  

REFERENCES 

Barrera, J., Huillet, T. and Paroissin, C. (2005). Size-biased permutation of Dirichlet partitions and 
search-cost distribution, Probability in the Engineering ~ Informational Sciences, 19(1), 83-97. 

Donnelly, P. (1986). Partition structures, Pblya urns, the Ewens sampling formula and the age of alleles, 
Theoretical Population Biology, 30, 271-288. 

Donnelly, P. (1991). The heaps process, libraries and size-biased permutation, Journal of  Applied 
Probability, 28, 321-335. 

Donnelly, P. and Tavar@, S. (1986). The age of alleles and a coalescent, Advances in Applied Probability, 
18, 1-19. 

Ewens, W. J. (1972). The sampling theory of selectively neutral alleles, Theoretical Population Biology, 
3, 87-112. 

Ewens, W. J. (1990). Population genetics theory--the past and the future, Mathematical and Statistical 
Developments of Evolutionary Theory (ed. S. Lessard), Kluwer, Dordrecht. 

Ewens, W. J. (1996). Some remarks on the law of succession, Athens Conference on Applied Probability 
and Time Series Analysis (1995), Vol. I, Lecture Notes in Statistics, 114, 229-244, Springer, New 
York. 

Huillet, T. (2003). Sampling problems for randomly broken sticks, Journal of Physics A, 36(14), 3947- 
3960. 

Huillet, T. (2005). Sampling formulae arising from random Dirichlet populations, Communications in 
Statistics: Theory and Methods (to appear). 

Huillet, T. and Martinez, S. (2003). Sampling from finite random partitions, Methodology and Comput- 
ing in Applied Probability, 5(4), 467-492. 

Kingman, J. F. C. (1975). Random discrete distributions, Journal of the Royal Statistical Society. 
Series B, 37, 1-22. 

Kingman, J. F: C. (1993). Poisson Processes, Clarendon Press, Oxford. 
Pitman, J. (1996). Random discrete distributions invariant under size-biased permutation, Advances in 

Applied Probability, 28, 525-539. 
Pitman, J. (1999). Coalescents with multiple collisions, Annals of Probability, 2T(4), 1870-1902. 
Pitman, J. (2002). Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformation 

of an interval partition, Combinatorics, Probability and Computing, 11(5), 501-514. 
Pitman, J. and Yor, M. (1997). The two parameter Poisson-Dirichlet distribution derived from a stable 

subordinator, Annals of Probability, 25, 855-900. 
Sibuya, M. and Yamato, H. (1995). Ordered and unordered random partitions of an integer and the 

GEM distribution, Statistics ~ Probability Letters, 25(2), 177-183. 
Tavar@, S. and Ewens, W. J. (1997). Multivariate Ewens distribution, Discrete Multivariate Distribu- 

tions (eds. N. L. Johnson, S. Kotz and N. Balakrishnan), 41,232-246, Wiley, New York. 
Yamato, H. (1997). On the Donnelly-Tavar@-Griffiths formula associated with the coalescent, Commu- 

nications in Statistics: Theory and Methods, 26(3), 589-599. 
Yamato, H., Sibuya, M. and Nomachi, T. (2001). Ordered sample from two-parameter GEM distribu- 

tion, Statistics 8J Probability Letters, 55(1), 19-27. 


