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Abstract .  Portmanteau test statistics are useful for checking the adequacy of 
many time series models. Here we generalize the omnibus procedure proposed by 
Duchesne and Roy (2004, Journal of Multivariate Analysis, 89, 148-180) for mul- 
tivariate stationary autoregressive models with exogenous variables (VARX) to the 
case of cointegrated (or partially nonstationary) VARX models. We show that for 
cointegrated VARX time series, the test statistic obtained by comparing the spectral 
density of the errors under the null hypothesis of non-correlation with a kernel-based 
spectral density estimator, is asymptotically standard normal. The parameters of 
the model can be estimated by conditional maximum likelihood or by asymptotically 
equivalent estimation procedures. The procedure relies on a truncation point or a 
smoothing parameter. We state conditions under which the asymptotic distribution 
of the test statistic is unaffected by a data-dependent method. The finite sample 
properties of the test statistics are studied via a small simulation study. 

Key words and phrases: Vector autoregressive process, cointegration, exogenous 
variables, kernel spectrum estimator, diagnostic test, portmanteau test. 

1. Introduction 

Many real life situations can be described by vector autoregressive models with 
exogenous variables (VARX). These models represent a generalization of the popular 
vector autoregressive models (VAR) in the sense that  explanatory variables (or exogenous 
variables) can be included, which is a desirable property in many practical situations; 
see for econometric applications Judge et al. (1985) and Lfitkepohl (1993), among oth- 
ers. Statistical properties of VARX models are described in Hannan and Deistler (1988), 
among others. Many economic and financial time series exhibit characteristics that  are 
believed to be nonstationary. An important nonstationary model of considerable practi- 
cal importance occurs when the determinant of the autoregressive operator admits unit 
roots, while all other roots are outside the unit circle. With multivariate VARX models 
with unit roots, a classical approach consists to differentiate each component in order to 
obtain stationarity. However, differencing the series tends to introduce complications, 
as for example rank deficiency in coefficient matrices and noninvertibility problems (see, 
e.g., Lfitkepohl (1982) and Ahn and Reinsel (1990)). Therefore, it appears important to 
be able to directly describe and model the nonstationarity, since this approach gives an 
increased understanding of the nature of the nonstationarities (see, e.g., Granger (1981), 
Engle and Granger (1987)). Furthermore, direct modelling of the unit roots provides 

575 



576 PIERRE DUCHESNE 

more accurate long-term forecasts (Yap and Reinsel (1995)). 
Diagnostic checking of VARX models (stationary or partially nonstationary) ap- 

pears to be a critical step. Test procedures based on the residual autocovariances and/or  
autocorrelations have been found useful for diagnosing the adequacy of time series mod- 
els. In stationary VARMA models, Hosking (1980) proposed a test procedure based 
on the residual autocovariances. In that  approach, VARMA models are fitted and the 
test statistic relies on the residual autocovariance matrices of the residual time series. 
Duchesne and Roy (2004) proposed test statistics, using a spectral approach, for check- 
ing the adequacy of VARX models using kernel-based spectral density estimators of the 
residual time series. Their test statistic is based on a distance measure between a non- 
parametric kernel-based spectral density estimator and the spectral density under the 
null hypothesis of non-correlation. It can be expressed as a weighted sum of a function 
of the residual autocovariance matrices at all lags j ,  1 < j < n - 1, n being the sample 
size. The kernel-based test statistic depends on a kernel function k(.) and a trunca- 
tion point or a smoothing parameter, noted Pn. When the truncated uniform kernel is 
adopted, the resulting test statistic corresponds to a generalized Hosking's (1980) test. 
However, many kernels k(.) exhibit better  power than the uniform weighting offered by 
the truncated uniform kernel. 

The main contribution of this paper is to establish the asymptotic distribution of 
the kernel-based test statistic in the case of a cointegrated VARX model. Using the 
error correction representation, the parameters of the VARX model can be estimated by 
the conditional maximum likelihood method, or with other methods which are asymp- 
totically equivalent. Such estimation procedures have been studied in Ahn and Reinsel 
(1990) for VAR models, and we discuss how to adapt them when exogenous variables 
are included in the  model. We will show that the kernel-based test statistic introduced 
in Duchesne and Roy (2004) admits a standard normal distribution under the null hy- 
pothesis of adequacy. 

The method of proof differs considerably from the one developed in Duchesne and 
Roy (2004). In partially nonstationary models, we exploit the error correction form of the 
cointegrated VARX model; such a process can be written as the sum of a nonstationary 
process with stationary increments and of a stationary process. The decomposition 
has been studied in Ahn and Reinsel (1990) in VAR models. See also Yap and Reinsel 
(1995) and Pham et al. (2003) in VARMA models. To handle properly the nonstationary 
component represents one of the technical achievements of the paper. 

In practice, the choice of the smoothing parameter in the kernel-based test statis- 
tic needs to be determined. In the stationary VARX model, Duchesne and Roy (2004) 
considered in their empirical s tudy the cross-validation procedure. However, their asymp- 
totic analysis establishing the asymptotic distribution of their test statistic assumed a 
non-stochastic Pn. Here, we would like to study the asymptotic distribution of the test 
statistic when Pn is determined by the observed data. Consequently, a second objective 
of the present paper is to state precise conditions under which the asymptotic distribu- 
tion of the kernel-based test statistic is not affected by a data-dependent method. The 
method of proof is valid for the cointegrated VARX model and it can be easily adapted 
for the stationary case. Under the stated conditions, the test statistic admits a stan- 
dard normal distribution under the null hypothesis of adequacy, when the smoothing 
parameter has been determined with the data available. 

The paper is organized as follows. In Section 2, some preliminaries are introduced, 
where the cointegrated VARX model is presented and the sample residual autocovariance 
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matrices are defined. In Section 3, we give the hypotheses of interest for model adequacy. 
The est imation of the cointegrated VARX model is considered and we present the test  
procedure for diagnostic checking. The asymptot ic  distr ibution of our po r tman teau  
procedure is derived under  the null hypothesis of non correlation in the error term. In 
Section 4, we discuss data-driven methods  for the bandwidth.  We give precise conditions 
under which the asymptot ic  distr ibution of our kernel-based test  statistic,  based on a 
data-driven smoothing parameter ,  is still s tandard  normal under  the null hypothesis.  
Some simulation results are reported in Section 5. The proofs of our results are contained 
in the Appendix. 

2. Preliminaries 

Let Y = { Y t  : t E 7/} and X = { X t  : t E 7/} be two mult ivariate processes, where 
Yt  -- (Yt (1) , . . . ,  Yt(d))' and X t  = (Xt (1 ) , . . .  , X t ( m ) ) ' .  We assume tha t  X is of mean 
0. We suppose tha t  these processes can be represented by a mult ivariate linear dynamic  
model with second-order s ta t ionary  exogenous variables VARX(p,s),  defined by: 

(2.1) A ( B )  Y t  = V ( B ) X t  + at,  

where A(B)  = Id P - -  ~-~-i=1 Ai Bi, Ap ~ 0, Id  being the d • d ident i ty matrix,  V ( B )  = 
~-]~=o V~B~, V8 r 0, B denoting the usual backward shift operator,  a = {at ,  t E 7/} 
is a white noise, tha t  is at = ( a t ( l ) , . . . ,  at(d))' ,  t E 7/, are identically and independent  
distr ibuted (iid) random vectors with mean zero and regular covariance mat r ix  lea -- 
(aa,ij)i,j=l ..... d. The process X is supposed strictly exogenous, tha t  is X and a are 
assumed independent.  

Part ial  nonsta t ionar i ty  of the process Y is assumed, as characterized by the exis- 
tence of do < d unit  roots in the VAR operator  A(B) .  More precisely, de t{A(B)}  = 0 
admits  do < d unit  roots, where de t{A} stands for the determinant  of the square matr ix  
A. However, it is supposed tha t  the remaining roots are outside the unit  circle. The 
rank of A(1) is r, tha t  is rank{A(1)} = r, r -- d - do > 0. Now let P = (P1,  P2) ,  
with P1 a full rank d x do matr ix  such tha t  A(1)P1 = 0, P2  being a d • r mat r ix  such 
tha t  P is nonsingular. Part i t ioning p - 1  _- Q into Q = (Q~], Q~)', and not ing tha t  
P1 Q1 + P2 Q2 = Id, it is possible to show, using the arguments  of P h a m  et al. (2003) 
tha t  Y t = P l Z lt -Jr P 2 Z 2t , where { Z lt = Q1 Y t } is nons ta t ionary  with { Z lt - Z l , t _ l }  
stationary, while { Z2t = Q2 Y t }  is stationary. 

Let u = {u t ,  t E 7/}, where ut  = ( u t ( 1 ) , . . . ,  ut(d)) ' ,  be an arbi t rary  second order 
s ta t ionary process whose mean is 0. The autocovariance at lag j will be denoted by 

r.(j) = E ( u t u ' t _ j ) ,  j ~ 7]. 

If we write r . ( j )  �9 d = [Fu,pq(2)]p,q=l, and if 

o o  

Ir.,pq(j)l < ~ ,  
j=O 

p , q =  l , . . . , d ,  

the spectral density f ( w )  of u is defined by 

(2 .2 )  = r rh e -i h 
u k  / 

h : - -  cx~ 
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When the existence of the fourth order moments will be required, we will suppose 
that  the process u is fourth order stationary and the fourth order moments and cumulants 
will be denoted respectively by 

#4(P, q, r, s) = E(ut(p)ut(q)ut(r)ut(s)) 
and 

~pqrs (i, j ,  k, l) = cum(ui (p), uj (q), uk (r), uz (8)), 

where p, q, r, s = 1 , . . . ,  d and i , j ,  k, l, t E 77. Imposing the existence of the fourth order 
moments is equivalent to the existence of the fourth order cumulants. If the process u 
is Gaussian, it is well known that the fourth order cumulants vanish. 

Given U l , . . . ,  Un a realization of length n of the process u, the sample autocovari- 
ance at lag j ,  0 < IJ] <- n - 1, is defined by 

utut_y,  j = 0 , 1 , . . ,  n - l ,  
(2.3) Cu(j)  = f Cu( -3 ) ,  j = - 1 , . . . , - n  + 1. 

The classical nonparametric kernel-based estimator of the spectral density f (w)  of u is 
given by 

n--1 
1 

(2.4) fn(02): ~-~ ~ k ( j /pn )Cu( j ) e  -i"~j, 
j = - - n + l  

where k(.) is a kernel or a lag window. The parameter Pn is a truncation point when 
the kernel is of compact support, or a smoothing parameter when the kernel support 
is unbounded. We suppose that  pn --~ cc and pn/n  ~ O. Examples of p ,  satisfying 
these criteria are Pn c< n a, with a E (0, 1), and Pn c( log(n) .  Using the rectangular 
or truncated uniform kernel kTR(Z) = I[IZl <_ 1], where I (A)  is the indicator function 
of the set A, we retrieve the familiar truncated periodogram (Priestley (1981), Section 
6.2.3). Here, we will also use kernel-based estimators of the form (2.4) with the usual 
assumptions on the kernel that  are summarized as follows. 

ASSUMPTION 2.1. The kernel k : • ~ [-1, 1] is a symmetric function, continuous 
at 0, having at most a finite number of discontinuity points and such that k(0) = 1, 
f ~  k2(z)dz < co. 

Examples of kernels or lag windows frequently used in time series analysis are studied 
in Priestley ((1981), Section 6.2.3), among others. 

Once a cointegrated VARX model is estimated, the residual time series &t, t = 
1 , . . . ,  n, can be computed. The residual autocovariance at lag j is obtained from (2.3) 
with ut replaced by gt and it is noted Ca (j), j = - n + l , . . . ,  n - 1 .  Similarly, the residual 
spectral density estimator fn(w)  is obtained from (2.4) where C a ( j )  is substi tuted for 
C~( j ) ,  that is 

n--1 
1 

(2.5) f n(~d) = -~  ~ k ( j /pn )Ca( j )e  -ia~j. 
j=-nT1 

The estimation of the cointegrated VARX model, the hypotheses of interest for diagnos- 
ing the model, the kernel-based test statistic and its asymptotic distribution are discussed 
in the following section. 
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3. Estimation of the model and the test statistic for adequacy 

The hypothesis of interest states that  the error process a is a white noise against 
the alternative of serial correlation of arbitrary form. More formally, it can be written 
a s  

H0 : ra ( j )  = 0, Vj # 0, against 

H1 : r a ( j )  # 0, for at least one j 76 0. 

The hypotheses can be written in terms of the spectral density f ( w )  of a. For example, 
H0 can be expressed as if(w) ---- f0(w), w e [-Tr, Tr], where f0(cv) = Fa(0)/(2~r) -- 
Xa/(27r), oJ �9 [-~r, 7r]. 

We now discuss estimation of the cointegrated VARX model. The model (2.1) can 
be written as: 

(3.1) A*(B) W t  = C Y t _ I  + V ( B ) X t  + at, 

p - 1  * P A where W t  -- (1 - B)  Y t ,  C = -A(1) ,  A*(B) = Id  -- ~-~j=l A~BJ,  A j  = - Y~k=j+l k 
P and A(1) = Id -- ~-]j=l A j .  Equation (3.1) represents the error correction form of the 

model (2.1) (see, e.g., Granger and Weiss (1983), Engle and Granger (1987), Ahn and 
Reinsel (1990)). As noted by Yap and Reinsel (1995), a model form as the one given by 
(3.1) is particularly convenient, since the nonstationarity of the VAR operator A(B) is 
concentrated in the behavior of the matrix C. 

Let O ---- ( C , A ~ , . . . , A B _ I ,  Y0, V 1 , . . . , V s )  be a d x ( d p + m ( s  + 1)) matrix 
of parameters and H t  ( ' ' W '  ' , X t _ s )  be a (dp + m(s  + = Y t - 1 ,  W t - 1 ,  �9 �9 �9 , t - p + l ,  X t ,  �9 ' �9 t t 

1)) x 1 vector. The model (3.1) can be written in the compact form W t  = O H t  + at 
and the least squares (LS) estimator 0 of O is given by 

o _-(x w,,,,,) (z,,,,,',)-' 
The LS estimator of the error covariance matrix }-']a is given by Ea = Ca(0), where 
&, t = 1 , . . . ,  n denote the LS residuals. It can be shown, using an approach similar to 
Ahn and Reinsel (1990), and using results of Phillips and Durlauf (1986) and Sims et al. 

(1990), that  the convergence rates of C, /k*, i = 1 , . . .  , p -  1, Vi, i = 0 , . . . ,  s are such 
that  

(3.2) 

( C -  C)P1 = Op(n-1), 
fk* - A* -- Op(n-1/2) ,  

V i -  V~ = Op(n-1/2) ,  

( C " -  C ) P 2  -- Op(n-1/2) ,  

i = 1 , . . . , p -  1, 

i = 0 , . . . , s .  

The matrices P1 and P2 are defined in Section 2. The mathematical developments that  
follow are valid for any estimator of O that  verifies (3.2). For this reason, it is hypoth- 
esized that  our estimation method satisfies the following assumption for the estimator @. 

ASSUMPTION 3.1. The estimator O of O in the VARX model satisfies (3.2). 

Remark 1. Often, there are linear constraints on the parameters, for example pa- 
rameter values that  are fixed to zero. Let 0 = vec(O) -- R3', for a known matrix R. 
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Then, the model (3.1) can be written as W t  = (H '  t | I )R ' y  + at and the LS estimator 
-~ can be derived easily. In this situation, the LS estimator of O is given by O -- R~.  

Explicit imposition of unit roots may lead to considerable improvement on prediction 
performance. Consequently, to incorporate the do unit roots in the estimation of the 
partially nonstationary VARX model may be highly desirable. Estimation of the error 
correction model (3.1) with the reduced rank structure C -- A B  imposed, where A and 
B are full-rank matrices of dimension d • r and r x d, has been investigated in Ahn and 
Reinsel (1990) and Yap and Reinsel (1995) in VAR and VARMA models. For a unique 
parameterization, the matrix B can be normalized such that B = ( I t ,  B0), where B0 
is an r • do matrix of parameters. This leads to the reduced rank model 

(3.3) A*(B) W t  = A B  Y t - 1  + V ( B ) X t  + at. 

Let/3 = (/3~, c~')', where/30 = vec(B0) and c~ = vec(A, A~ , . . . ,  Ap_l,  V 0 , . . . ,  Vs). 
Based on the n observations { Y t ,  t = 1 , . . . ,  n}, the Gaussian log-likelihood becomes 

n 1 ~  7-" ~ -1 
/ ( / 3 ,  E a )  = - - ~  l o g d e t  E a  - ~ ~ a t e  a at. 

t = l  

Taking the same approach that Ahn and Reinsel (1988, 1990), Gaussian estimators are 
obtained using the Newton-Raphson algorithm, which is based on an initial consistent 
estimator satisfying Assumption 3.1. Using a first-order Taylor expansion similar to Ahn 
and Reinsel (1990), an asymptotic representation is obtained and we can establish that  
the Gaussian estimator ~ satisfies 

if4 - A ~- O p ( n - 1 / 2 ) ,  B o  - B o  -~ O p ( n - 1 ) ,  

(3.4) / ~  - A* = Op(n-1/2),  i = 1 , . . . , p -  1, 

Teri- Vi  = Op(n-1/2),  i = 0 , . . . ,  s. 

The assumptions on the reduced rank estimator are summarized as follows. 

ASSUMPTION 3.2. The estimator ~ of/3 in the VARX model satisfies (3.4). 

Other estimation methods verify Assumption 3.2, as discussed in Ahn and Reinsel 
((1990), Section 8) in the context of VAR estimation. Let the LS estimators of C be 

- ~ ~ ~ ~ ! ^ - -1  ~ - -1  written as C (C1, (72), where Aalt C1 is d x r, and let Bo,alt (Aalt•a Aalt) " 
~ /  ^ 1. - (AauE-~ C2). It follows that Bo,alt - Bo Op(n -1) and this estimator can be 

shown asymptotically efficient. Let S a l t  : ( I r ,  Bo,alt). A possible two-step estima- 
tor, which delivers asymptotic efficiency, of A, A~, j = 1 , . . .  , p -  1, Vi, i -- 0 , . . . ,  s 

based on this initial B0,azt, is obtained as the usual least squares regression of W t  on 
Balt Y t -1 ,  W t - 1 , . . . ,  Wt-p+l,  X t , . . . ,  X t - s .  Using a cointegrated VAR(1) model, 
Ahn and Reinsel (1990) compared the two-step estimator with the Gaussian estimator 
and they found, from their empirical study, that these methods perform rather compara- 
bly. The two-step procedure represents a particularly convenient method, since efficient 
estimators are obtained using a computationally attractive procedure. Obviously, this is 
highly desirable in practical applications. 
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Let C -- ~l/~ be an estimator of C = A B ,  such that ~l and B satisfy Assump- 
tion 3.2. Note that using the straightforward identity A/~ - A B  = (~4 - A ) ( B  - B) + 
A(.B - B) + (f4 - A)B ,  and since BP1 -- 0 (Ahn and Reinsel (1990), p. 817), it follows 
from Assumption 3.2 that ( C  - C ) P 1  - ~  Op(n -1) and (C' - C)P2 = Op(n-1/2). 

Once a particular VARX model has been adjusted, a sound practice consists to test 
the null hypothesis of non-correlation in the error term {at,  t E 7/}. To this end, we first 
consistently estimate f o  (w): 

- -  c a ( 0 )  
' 

Secondly, we construct a non-parametric spectral density estimator of the residual time 
series, at,  t = 1 , . . . ,  n, based on the reduced rank estimator: 

n--1 
1 

(3.5) ?n(W) = ~ E 
j = - - n + l  

k(j/pn) Ca (j)e -i~j. 

Note that  ~t and Ca(j) are defined similarly as ~t and Ca( j ) ,  where we recall that  
the &t's denote the LS residuals and the &t's correspond to the reduced rank residuals. 
Consider the normalized quadratic distance 

f Q2(fx , f2  ) = 2~ t r [F~l (0){f l (w)  - f2(w)}*F~l(o){f l(w) - f2(w)}]dw, 
7~ 

where for a matrix A, A* denotes the transposed conjugate of A, that  is A* -- AI. The 
proposed test statistic is essentially a standardized version of Q2(fn,  f0) ,  defined by: 

(3.6) Tn = 
n - - 1  I �9 - - 1  n •j=l k2(J/Pn) t r { C a ( j ) C  a (O)Ca(j)CaX(O)} - d2Mn(k) 

{2d2Vn(k) }l/2 

where Mn(k) and Vn(k) are given by: 

n--1 

(3.7) Mn(k) = E ( 1  - j /n)k2(j /pn),  
j = l  

n--2 

(3.8) Vn(k) = E ( 1  - j /n)(1 - (j + 1)/n)k4(j/pn). 
j = l  

~f Pn --+ O0 and pn/n -~ 0, we can show that pnlM~(k) -~ M(k) = f o  k2(z) dz and 
p;1V~(k) -* V(k) = f o  k4(z) dz" Under some additional assumptions on k and/or  p~ 

(Robinson (1994), p. 73), p;1M~(k) = M(k) + O(pnl/2). Consequently, asymptotically 
equivalent test statistics are obtained from (3.6), where Mn(k) (tin (k)) is substi tuted for 
pnM(k) (pnV(k)); see Duchesne and Roy (2004). 

For a stationary VARX model, Duchesne and Roy (2004) have proposed the test 
T,~ for testing serial correlation of arbitrary form. In a multivariate regression model, 
they showed that  if the dependence structure of {at} is such that ~ j  ] l r a ( j ) j i  2 < 

1/2 and ~ i  ~ j  Y~-I [t~pqrs( t '  t -~ i, t + j, t + 1)] < OC, then Tn -~ Op(n/pn ), meaning that the 
test procedure Tn is consistent, since Pn -~ ~ and p~/n is assumed to converge to zero. 
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Computing the asymptotic relative efficiency in the Bahadur sense (AREB) of one kernel 
with respect to another, they found that many currently used kernels in spectral density 
estimation lead to an AREB greater than one with respect to the truncated uniform 
kernel. 

However, there is a growing consensus among statisticians and econometricians that  
many vector time series may contain unit roots. Recent studies (see, e.g., Engle and 
Granger (1987), Ahn and Reinsel (1990), Reinsel and Ahn (1992), Yap and Reinsel 
(1995)) find the presence of unit roots in economic and financial time series. In light 
of this, we justify the asymptotic distribution of the test statistic given by (3.6) for 
cointegrated time series. The asymptotic analysis for the generalization from stationary 
VARX to partially non stationary is nontrivial, because one can no longer exploit the 
stationarity of { Yt}  under the null hypothesis. The asymptotic analysis relies strongly 
on the error correction form of the model, where we decompose Yt  as the sum of a 
nonstationary process with stationary increments and of a stationary process. Different 
arguments are needed to manipulate adequately the nonstationary component; see the 
proofs of Theorems A.1 and A.2 in the Appendix. Furthermore, the different convergence 
rates of the estimators of the parameters in Assumption 3.2 need to be properly taken 
into account in the proof of the result. 

Our main result is stated in the following theorem. The symbol ""~L stands for 
convergence in law. 

THEOREM 3.1. Suppose that Y is a cointegrated VARX(p, s) process as defined by 
(2.1) and that the fourth order moments of {at} exist. Under Assumptions 2.1 and 3.2, 
Pn --~ c~ and pn/n -~ 0, the statistic Tn defined by (3.6) admits an asymptotic normal 
distribution, that is Tn ---*L N(O, 1). 

When {at} is a Gaussian process, the test statistic Tn can be used to test for the 
hypothesis H0 of independent errors. In general, (3.6) can be used to cheek for the 
hypothesis of no serial correlation in the error term. As in the stationary case, we do not 
assume that the innovations are Gaussian and we do not need to assume that the fourth 
order cumulants vanish. The detailed proof is technical and is presented in the Appendix. 
Note that since {at} is stationary, it follows according Theorem 1 of Duchesne and Roy 
(2004) that  

n - 1  2 �9 
(3.9) Tn = n Ej=I k ()/Pn) tr{ C a  1 (0) Ca(j) Ca 1 (0) C~a(j)} - d2Mn(k) 

{2d2Vn(k)}l/2 ---*L N(O, 1). 

The cointegrated VARX model does not intervene in this part since Tn is completely 
defined by the innovation series a l , . . . ,  an. The proof of our main theorem is completed 
if we establish that 

n--1 

(3.10) E k2(j/pn)[tr{ C~l(o)va(j)C-~l(O)C~a(j)} 
j = l  

- tr{ C h  I (0)  C a  (j) C:al(0) C~ (j)}] = Op(v/-~-~/n ). 

From (3.10), it is easily seen that Tn - Tn is Op(1) and Theorem 3.1 follows. The proof 
of Theorem 3.1 assumes a non-stochastic Pn. Let the dependence of the test statistic 
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(3.6) on pn be more explicit: T n -  Tn(pn). Conditions under which the asymptotic 
distribution of the test statistic T~(fn) is the same as the one of T~(pn), where pn is a 
data-driven bandwidth, are given in the next section. 

4. Choice of the smoothing parameter in the new test statistic 

The kernel-based spectral density estimator given by (3.5) and the test statistic 
(3.6) rely on a truncation point or a smoothing parameter, depending of the nature of 
the kernel k(.). The choice of Pn may affect the power of the test statistic Tn. However, 
this is a difficult issue to choose an optimal p~ to maximize the power. When k(-) 
corresponds to the truncated uniform kernel, the weighting is uniform. In this situation 
Pn possesses an easy interpretation: it corresponds to a lag order. However, when the 
kernel is of unbounded support, Pn is a smoothing parameter, and it may be more 
difficult to interpret. Therefore, it seems highly desirable to choose Pn via appropriate 
data-dependent methods. These methods will reveal some important information on the 
shape of the true spectral density. Theorem 4.1 gives conditions on the data-driven Pn, 
under which Tn(Pn) -Tn (p~)  = op(1) under the null hypothesis. In particular, it follows 
by the Slutsky's Theorem that  T~(f~) ----*L N ( 0 ,  1). 

ASSUMPTION 4.1. The kernel k : ~ ~ [-1, 1] satisfies a Lipschitz condition: 
I k (Z l ) -  k(z2)l <_ A l l Z l -  z21, zl ,z2 e 11~, A1 �9 (0, oc) and Ik(z)l <_ A21zl -b, Vz �9 l~ 
and for some b > 1/2. 

Assumption 4.1 allows for most commonly used kernels. It rules out, however, 
the truncated uniform kernel. We now state Theorem 4.1, which is an extension of 
Theorem 3.1, allowing for a data-dependent bandwidth fn.  

THEOREM 4.1. Suppose that Y is a cointegrated VARX(p, s) process as defined by 
(2.1) and that the fourth order moments of {at}  exist. Suppose that the data-dependent 
Bin satisfies the relation 

(4.1) Pn 1 = p~pn ), - - -  0 ( _ - 3 / 2 a + 1 x  

P~ 

where a > (2b - 1/2)/(2b - 1). Suppose that Pn is such that pn -~ oc and p~ /n  ~ O. 
Under Assumptions 2.1, 3.2 and 4.1, the statistic T~(pn) defined by (3.6) satisfies 

Tn(pn) -Tn (Pn)  --Op(1). 

In Theorem 4.1, the range of possible fn  is function of a, and a depends on b and the 
kernel k(-). A small a is associated with a large range of possible fn- When the kernel 
admits a compact support, such as the Bartlett  and Parzen kernels, k(z) = 0 if z > c, for a 
certain c. Consequently, any a > 1 is allowed. With the Daniell kernel, we have that  b = 1 
and any a > 3/2 is permitted. In all these situations, to satisfy the relation (4.1) seems 
rather easy. Note that  in a different context, Hong and Shehadeh ((1999), Section 2) 
proved a result similar to Theorem 4.1, when testing for conditional heteroskedasticity 
in univariate stationary time series. Our proof represents an adaptation of their result 
in a multivariate framework, when testing for serial correlation in vector cointegrated 
time series. 
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The cross-validation procedure of Robinson (1991) for determining the bandwidth of 
a kernel spectrum estimator of a time series is an appropriate data-driven procedure. In 
a multiple regression model, Robinson (1991) justified under certain conditions the con- 
sistency of a particular cross-validation method of automatically determining a desirable 
degree of smoothing. Robinson (1991) showed that, asymptotically, such chosen cross- 
validated 15n minimizes a weighted integrated mean squared error of the spectral density 
estimator with suitable weights depending on the true spectral density. Robinson's pro- 
cedure represents a generalization of the method of Beltrao and Bloomfield (1987), which 
is valid for Gaussian time series. Besides establishing the consistency of the procedure 
for non-Gaussian time series, Robinson (1991) also discusses various multivariate gener- 
alizations and he presents practical implementations. A possible procedure is to retain 
for Pn the value of M that minimizes the pseudo-log-likelihood defined by 

n 

E [ l o g  det ? ~ ) ( A j ) +  t r { I (A j )?~) (Aj ) - l } ] ,  
j = l  

A M 
where I(-) represents the periodogram, f( j)( .)  is a leave-two-out type smooth peri- 
odogram and Aj = 2~rj/n, j = 1 , . . . , n  denote the Fourier frequencies. In practice, 
the optimization can be performed using a grid search, for example for the values 
M = 2, 3 , . . . ,  20. Note that M is real-valued. However, the impact of integer-clipping 
of M on spectral density estimators is likely to be negligible. 

The cross-validation procedure delivers a 15n which is asymptotically optimal for the 
estimation of the spectral density, when the criterion is a certain integrated weighted 
mean squared error. Consequently, in an hypothesis testing framework, this choice of Pn 
does not give necessarily the Tn with the best power. This is a theoretically interesting 
issue, but the asymptotic analysis involved seems complicated. Nevertheless, the simu- 
lations of the next section suggest that  the cross-validated/Sn delivers very reasonable 
power in many situations. 

5. Simulation results 

In the previous sections, we have studied kernel-based test statistics, for diagnosing 
cointegrated VARX models. However, from the point of view of the applied statistician, 
it is natural to inquire for their finite sample properties. In particular, it is relevant to 
study the level and power of the kernel-based tests for reasonable time series length, to 
investigate if the properties in the partially nonstationary case are similar to what have 
been observed for stationary series. For a given bivariate data  generating process (DGP) 
described below, we examined frequencies of rejection of the null hypothesis, a) when it 
is in fact true, b) for a fixed alternative, using the kernel-based tests with nominal levels 
1, 5 and 10%. We considered three series length, n = 50, 100 and 200. Five kernels have 
been adopted: truncated uniform (TR), Bartlett (BAR), Daniell (DAN), Parzen (PAR) 
and Bartlett-Priestley (BP). The precise definitions of the kernels are given in Table 1 
of Duchesne and Roy (2004). 

The following DGP was used: 

(5.1) Y t  = A1 Y t - 1  + V o X t  + at, 

where Y t  = (Yt(1),Yt(2))' and {X t}  is a scalar exogenous variable satisfying Xt  = 
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0.8Xt_ l  + bt, {bt} iid N(0, 4) (giving (d, m) = (2, 1)), and 

 1:(ooo l 
0.12 0.70 ] '  V 0 =  4.0 " 

The process { Y t }  can be written in the following error correction form: 

W t  = C Y t - 1  + VoXt  + at, 

with C = (-0.40, 0.12)P(1.00,-2.50) = A B .  Two cases were considered for the error 
term {at}: 

(5.2) at = et, 

(5.3) at = et - •e t -1 ,  

where {et} is lid N2(0, Ee), independent of {bt}, with 

---- \0 .00  0.04 ' 5.4 9.0 " 

The form of this DGP is inspired of the structure of the model studied in the 
simulation example of Ahn and Reinsel ((1990), Section 8). The first case (5.2) allowed 
us to study the level whilst the second one (5.3) was chosen in order to study the power. 

In the level study, 10000 independent realizations were generated from DGP (5.1), 
for each value of n, and the computations were made in the following way. 

(1) The Gaussian white noise {a t} ,  which satisfies (5.2), and {bt} were generated 
independently using the subroutines G05EZF and G05FDF from the NAG library. 

(2) Using the initial values Y0 = 0, Xo -- 0, N = 2 n + l  values X t  and Yt, 
t = 1 , . . . ,  N were obtained. The first n + 1 values were discarded, giving a time series 
of length n, in order to minimize the effect of the initial values. 

(3) For each realization, the true DGP was estimated by the two-step approach, as 
described in Section 3. In a first step, least squares are calculated and in a second step, 
reduced rank estimators are determined. The residuals at ,  t = 1 , . . . ,  n were obtained. 

(4) With  each residual time series, the test statistic Tn was computed for the five 
different kernels TR, BAR, DAN, PAR and BP. For each kernel, the three rates pn = 
[log(n)], Pn = [ 3"5n0'2] and Pn = [3n ~ have been used (see Duchesne and Roy (2004) 
for more details on the different rates). The data-driven procedure of Robinson (1991) 
was also employed. Note that  Robinson's procedure necessitates positive definite kernels. 
It rules out the truncated uniform kernel. 

(5) Finally, for each series of length n, for each kernel k, for each value of Pn and 
for each nominal level, we obtained from the 10000 realizations the empirical frequencies 
of rejection of the null hypothesis of non-correlation. The results in percent are reported 
in Table 1. The standard errors of the empirical levels is 0.099% for the nominal 1%, 
0.218% for 5% and 0.300% for 10%. 

The power analysis was conducted in a similar way, except that  {a t }  satisfies (5.3) 
and that  the number of realizations was set to 1000. 

We now discuss the results from the level study. They are presented in Table 1. In 
general, the normal approximation improves with the time series length, as expected. 
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Table 1. Empirical levels (in percentage) of the test statistic Tn defined by (3.6) for different 
kernels, different truncation values, when the data are generated from (5.1) with an error term 
satisfying (5.2). 

Pn 

n = 5 0  

4 

8 

10 

CV 

----- 0.01 a = 0.05 a ---- 0.10 

BP BAR DAN PAR TR BP BAR DAN PAR TR BP BAR DAN PAR TR 

2.52 2.52 2.59 2.63 2.42 6.66 6.48 6.71 6.71 6.72 

2.57 2.64 2.65 2.59 2.83 6.89 6.85 6.85 6.87 7.00 

2.63 2.66 2.69 2.71 3.01 6.98 6.88 7.07 6.95 7.22 

3.08 3.42 3.04 2.95 NA 7.55 8.20 7.60 7.35 NA 

10.33 10.35 10.47 10.37 10.95 

10.82 10:61 10.90 10.77 11.19 

10.89 10.73 11.09 11.15 11.43 

11.60 12.52 11.85 11.54 NA 

n 

---- 5 100 2.22 2.21 2.15 2.14 2.10 5.97 5.65 5.85 5.87 5.92 

2.14 2.16 2.18 2.16 2.12 5.87 5.84 5.91 5.95 6.50 

12 12.20 2.13 2.19 2.21 2.28 6.02 6.03 6.13 6.16 6.58 

CV 12"75 3.01 2.65 2.88 NA 6.95 7.37 6.93 7.20 NA 

9.68 9.63 9.72 9.68 10.24 

10.22 10.05 10.18 10.11 10.61 

10.44 10.19 10.46 10.69 11.38 

11.11 11.68 11.26 11.75 NA 

n6200= 2.15 2.22 2.19 2.13 1.77 6.23 6.22 6.30 6.19 5.70 

~0 V 2.02 2.02 2.04 1.91 1.86 6.17 6.25 6.26 5.98 6.11 
15 1.86 1.88 1.86 1.78 1.97 5.87 6.06 5.94 5.85 6.41 

2.88 3.29 2.87 3.07 NA 7.43 8.02 7.38 8.35 NA 

10.00 10.00 10.07 10.16 10.10 

10.00 10.01 10.06 10.08 10.40 

10.14 10.02 10.13 10.24 10.67 

11.51 12.41 11.51 12.76 NA 

Some  over re jec t ion  is obse rved  at  t he  1% level, b u t  in general ,  t h e  a p p r o x i m a t i o n  ap-  
p e a r e d  sa t i s fac tory ,  pa r t i cu l a r l y  a t  t he  10% level. E x c e p t  for t he  t r u n c a t e d  un i fo rm  
kernel,  t he  choice of  t he  kernel  h a d  l i t t le i m p a c t  in ou r  exper imen t s ,  since the  var ious  
kernels  and  Pn values  gave c o m p a r a b l e  results .  T h e  t r u n c a t e d  un i fo rm  kernel  s eemed  
s l ight ly  inferior,  specia l ly  w h e n  Pn was larger.  

At  the  5% level, all t h e  tes t  s ta t i s t ics  ba sed  on  n o n - s t o c h a s t i c  pn lead t o  re jec t ion  
r a t e  a r o u n d  6 .5 -7% w h e n  n = 50, be tween  5 .7%-6 .5% w h e n  n = 100 and  n -- 200. 
T h e  c ross -va l ida t ion  lead t o  re jec t ion  ra tes  s l ight ly  h igher  t h a n  those  o b t a i n e d  wi th  non-  
s tochas t i c  Pn. This  add i t iona l  noise in the  re jec t ion  ra tes  represen ts  the  pr ice  to  p a y  t o  
e s t i m a t e  Pn wi th  the  avai lable da ta .  However ,  this  pr ice  does  no t  seem too  high,  at  least  
in ou r  exper iments .  As  r e p o r t e d  in the  power  analysis ,  t h e  power  ga in  t h a t  e m a n a t e s  
f rom the  c ross -va l ida ted  ~5~ c o m p e n s a t e s  largely. A t  the  10% level, t he  re jec t ion  r a t e s  
of  t he  tes t  s ta t i s t ics  ba sed  on  n o n - s t o c h a s t i c  Pn are m u c h  closer t o  t he  nomina l  level for 
all s amp le  sizes, pa r t i c u l a r l y  for n -- 200. For  this  n o m i n a l  level, t he  obse rved  re jec t ion  
ra tes  are w i th in  two s t a n d a r d  er rors  in m o s t  cases, or  ve ry  close of  this. T h e  cross-  
va l ida t ion  exh ib i t ed  slight overre ject ion,  b u t  for all s amp le  sizes t he  empir ica l  levels 
were  reasonable .  

We  now t u r n  to  the  analys is  of  the  power  resul ts ,  wh ich  are  p re sen ted  in Tab le  2. 
We  c o m p u t e d  t he  power  us ing  t he  a s y m p t o t i c  cr i t ical  values a n d  us ing  the  empi r ica l  
cr i t ical  values (given in pa ren theses ) ,  o b t a i n e d  f rom the  10000 rea l iza t ions  of  t he  level 
s tudy.  

I t  is in te res t ing  to  n o t e  t h a t  t he  power  resul ts  ind ica te  t ha t ,  as in the  s t a t i o n a r y  
case, t he  kernel  D A N ,  P A R  and  B P  behave  similarly,  B A R  seemed s l ight ly  super ior ,  and  
the  t r u n c a t e d  un i fo rm  kernel  was  inferior.  As  an  i l lus t ra t ion ,  for n = 200, c~ = 5%, us ing  
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Table  2. Empi r i ca l  powers  (in pe rcen tage )  based  on  t h e  a s y m p t o t i c  and  empi r ica l  (in pa r en -  
theses )  cr i t ical  values  of  t he  t e s t  Tn def ined by (3.6) for d i f ferent  kernels ,  d i f ferent  t r u n c a t i o n  
values  w h e n  t h e  d a t a  are  g e n e r a t e d  f rom (5.1) w i t h  an  e r ror  t e r m  sa t i s fy ing  (5.3). 

= 0.01 c~ = 0.05 c~ ---- 0.10 
Pn BP BAR DAN PAR TR BP BAR DAN PAR TR BP BAR DAN PAR TR 

n = 5 0  
4 

8 

10 

CV 

n = 100 
5 

9 

12 

CV 

n = 200 
6 

10 

15 

CV 

18.2 18.6 18.4 17.2 11.1 29.1 29.8 30.2 28.3 20.6 37.5 37.8 37.5 37.1 27.0 
(10.2) (10.6) (10.1) (10.2) (5.3) (25.8) (26.1) (26.1) (24.9) (17.5) (36.5) (37.5) (36.8) (36.1) (25.5) 
14.2 15.5 14.5 13.3 9.0 23.9 26.6 23.7 23.7 18.3 32.6 34.4 32.4 31.7 26.0 
(8.2) (9.4) (8.3) (7.7) (3.7) (20.0) (22.0) (19.9) (20.3) (14,8) (30.9) (33.2) (30.6) (29.8) (24.6) 
12.9 14.5 12.9 12.4 8.1 22.9 24.6 23.3 23.4 17.5 29.7 33.0 29.9 29.8 25.1 
(6.8) (8.9) (7.3) (6.9) (3.0) (20.0) (20.9) (20.1) (18.8) (13.0) (28.8) (31.3) (29.0) (28.5) (22.6) 
21.4 22.0 20.9 17.6 NA 33.1 34.5 33.1 30.0 NA 43.1 44.5 42.0 40.7 NA 

(11.0) (11.1) (11.7) (9.8) NA (27.9) (26.7) (26.4) (25.9) NA (38.7) (39.0) (37.6) (37.4) NA 

31.9 33.7 32.1 30.7 14.3 47.7 49.6 48.3 45.2 29.1 56.8 57.7 56.6 55.0 38.3 
(23.0) (24.6) (23.1) (22.4) (8.8) (44.5) (46.7) (45.6) (42.7) (25.6) (57.4) (58.3) (57.3) (55.3) (37.4) 
24.4 27.5 23.7 22.6 12.8 37.2 41.5 37.4 35.7 23.0 46.9 50.7 47.3 45.5 31.6 

(14.1) (18.5) (14.4) (13.4) (7.1) (34.7) (38.7) (34.8) (33.5) (20.4) (46.6) (50.7) (47.1) (45.4) (30.3) 
19.6 24.2 19.5 18.7 11.2 33.4 37.1 33.1 32.2 21.4 42.4 47.7 42.6 41.2 30.3 

(11.6) (14.8) (11.5) (11.0) (6.8) (30.1) (35.1) (30.5) (30.0) (17.7) (41.3) (47.1) (41.0) (39.9) (28.1) 
41.5 42.6 41.1 35.2 NA 56.4 57.2 55.1 51.6 NA 65.3 66.7 65.2 61.9 NA 

(29.0) (28.5) (28.9) (22.0) NA (51.5) (51.8) (50.1) (44.8) NA (63.2) (63.3) (61.3) (58.6) NA 

66.9 70.8 67.6 64.2 35.5 80.2 84.1 80.6 78.4 53.5 87.7 90.0 87.6 86.5 64.8 
(58.0) (61.8) (58.2) (55.5) (27.8) (77.9) (81.0) (78.0) (76.4) (51.1) (87.7) (90.0) (87.6) (86.3) (64.3) 
53.1 60.1 53.8 50.0 25.9 69.7 76.3 69.5 67.7 43.3 78.6 83.4 79.0 76.5 53.7 

(44.6) (51.3) (44.4) (41.4) (17.8) (66.0) (72.6) (66.6) (63.9) (40.4) (78.6) (83.4) (78.9) (76.5) (52.8) 
41.6 51.4 42.0 38.8 20.1 60.6 68.4 61.1 58.7 37.3 70.6 76.3 71.3 68.3 49.5 

(33.5) (43.0) (33.2) (31.3) (13.7) (57.8) (65.2) (58.2) (55.8) (31.5) (70.6) (76.2) (71.0) (68.0) (47.9) 
81.1 83.0 79.6 74.3 NA 89.8 91.0 88.5 88.1 NA 92.9 93.3 92.3 91.9 NA 

(70.6) (69.1) (68.8) (62.0) NA (87.5) (87.8) (86.0) (80.3) NA (91.7) (92.2) (91.1) (90.1) NA 

the empirical critical values, T~(p~; k), k ~ kTR, was at least 50% more powerful than 
Tn(Pn; kTR), for all the pn's under investigation. 

In general, results based on the empirical and asymptotic quantiles are seen rea- 
sonably comparable, except maybe at the nominal level 1%. The rejection rates were 
similar at the 5% level, and even closer at the 10~ level. 

The data-driven procedure for p~ worked very well. Without any information on 
the true alternative, the cross-validation procedure revealed valuable information on the 
true alternative. 

Note that  in unreported results, we included in our experiments Hosking's (1980) 
test. However, as in the stationary case, it seems that  an adjustment is needed for this 
test statistic, to take into account the presence of exogenous variables. See Duchesne and 
Roy (2004), who observed serious overrejection of the null hypothesis in their level study, 
when the critical values are taken from the chi-square distribution. However, based on 
the empirical critical values, the power results of Hosking's (1980) test based on P - Pn 
lags were identical to those of T~(p~; kTR), as expected. 

Overall, from this very limited empirical study, it appeared that  the tests statistics 
behave as satisfactory in the partially non-stationary situation than in the stationary 
case, since with time series length as low as n -- 50, reasonable levels have been observed. 
The flexible weighting, offering the possibility to give more weight to low order of lags and 
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less weight to high order of lags, displayed powerful procedures, since kernels different 
from the truncated uniform had interesting power properties, at least in our experiments. 
Data-driven p~ revealed some valuable information on the true alternative and were 
powerful for hypothesis testing. Test statistics based on such adaptive procedure are 
fully operational in practice, which is another serious advantage in real applications. 

6. Conclusion 

In this paper, we generalized the omnibus procedure proposed by Duchesne and 
Roy (2004) for multivariate stationary autoregressive models with exogenous variables 
(VARX) to the case of cointegrated (or partially nonstationary) VARX models. We 
showed that in the case of a cointegrated VARX time series, the test statistic obtained by 
comparing the spectral density of the errors under the null hypothesis of non-correlation 
with a kernel-based spectral density estimator, is still asymptotically standard normal 
under the null hypothesis. The parameters of the model can be estimated by the con- 
ditionat maximum likelihood method, or by asymptotically equivalent estimation proce- 
dures. We discussed how to adapt the estimation methods of Ahn and Reinsel (1990) 
to VARX models. Since the proposed methodology relies on a kernel function, a trun- 
cation point or a smoothing parameter has to be determined. We stated conditions 
under which the asymptotic distribution of the test statistics is unaffected by a data- 
dependent method. The finite sample properties of the test statistics were studied in a 
small simulation study for non-stochastic smoothing parameter and when it is chosen 
via the cross-validation method. Our main conclusions are that  the new test statistics 
perform well in partially nonstationary VARX models, since they displayed reasonable 
levels. Under the considered alternative, using a flexible non-uniform weighting gave 
better power properties than uniform weighting. The cross-validation procedure offered 
some overrejetion in the level s tudy but  exhibited high power. Overall, for diagnosing 
cointegrated VARX models, the kernel-based test statistics based on Bartlett  or Daniell 
kernels with pn chosen by cross-validation should be appropriate in practice. 
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Appendix 

PROOF O F  THEOREM 3.1. The following notations are adopted. The scalar prod- 
uct of xt, m, E R n is denoted by (xt, m,) = m~x8 and the norm of xt by Ilmtll = 
V/(xt, xt}. The matrix norm of a matrix A = (aij)n• is defined by IIAII~ = t r (AA' )  = 

m E nl Ej=la  . Let knj = k(j/pn), bt = E; l /2at .  The process b = {bt,t  C 7/} has 

mean 0 and variance Id. Let 6nt = &t - a t  and {,~t = Eal/245nt, where {6t, t = 1 , . . . ,  n} 
denote the residuals of the adjusted reduced rank model. Using the error correction form, 
we can write 
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- { 9(B) - v(B)}x .  

where Y t  = P 1 Q I Y t  + P 2 Q 2 Y t  = P i Z l t  + P2Z2t,  that  is Q Y t  -_ (Zrlt, Z2t)l t. 
Recall that  {Z~t} is nonstationary, with stationary increments, while {Zg_t} denotes a 
stationary process. In the whole proof, special at tention has to be paid to {Zl t} ,  since 
the arguments in the stationary case do not extend to the nonstat ionary situation. 

The following lemma will be useful: 

L E M M A  A.1. n -1 EtL1 I1~11 ~ = O p ( n - 1 )  �9 

PROOF OF LEMMA A.1. Note that  [[~t[[ 2 ---- tr(~nt~nt) = tr(~al/2~ntlhlnt~al/2 ). 
However, using the inequality t r{(E~=l  A P i)(}-~-i=lA~) '} < 2P-1 ~ = i  p tr{AiA~} and 
Cauchy-Schwarz inequality, it follows that  

[ p - 1  

tr(E-~l/2~nth~tEa 1/2) < A k_~ t r { ( / ~ * -  A~) 'E~I( /~ * - A~)}II wt-r ~ 

I..~ x 

+ t r { P ~ ( C  - C ) ' ~ - ' ] ~ a l ( C  - c)P2}[]z2, t_l][  2 

+ tr{P11((~ - C ) l ~ a l ( c  - C)P1}I[ZI,t_lll  2 

+ E t r { ( ~ i _  , -i v~) ~a (~-~-- Vr162162 ~ , 
i=0 

n 

where ~ is a generic constant. We have that n -~ Er II W~-~l? = OA1), i = 1,... ,p-- 
n n 

i, n -~ Er llZ~#-xl? = oat), ~-~ E~=~ IIXr162 = oat), i = 0,..., ~, since { W~}, 
{Z2t} and {X t }  are stationary processes. Because {Zl t }  is nonstat ionary with sta- 
tionary increments, using Lemma 3.1 of Phillips and Durlauf (1986), it follows that  
n -2  ~'-t~l ][Zl,t-1][ 2 -- Op(1) and by Assumption 3.2 it follows that  n -1 ~-]~t~l ][~nt[I 2 = 
Op(n-1), as announced. 

Let bt = E~l/2~tt. As in Duchesne and Roy (2004), it can be shown that  to 
replace in (3.10) expressions Ca(0) and Ca(0) by Ea has no impact asymptotically. 
Consequently, we decompose 

n - 1  

E k2j [tr{ Ci,(J)Cb(J)} -- tr{ Cb(j)C~b(j)}] 
j=l 

= S n l  -}- 2 S n 2 ,  

where 

n - -1  

Snl "-~ E k2~J tr[{ C~,(j) - Cb(j)}{  C~(j) - Cb(j)}'], 
j = l  

n - -1  

Sn2 = E k2J tr[ Cb(j){  C~(j) - Cb(j) }']. 
j = l  

To show Theorem 3.1, it suffices to establish Theorems A.1 and A.2. 

THEOREM A.1. Snl = Op(n-1). 
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, 1/2. 
THEOREM A.2. Sn2 : Op[pn /n).  

PROOF OF THEOREM A.1. We write C g ( j ) - C b ( j )  = A C I ( j ) + A C 2 ( j ) + A C 3 ( j ) ,  
where A C I ( j )  = n -1 ~'~n ~ b' n , z-~t=j+l.nt t - j ,  A C 2 ( j )  = n - l E t = j + l b t ~ n , t _ j ,  A C a ( j )  = 

n-1  }-~t~j+l (nt(~n,t-j �9 It follows tha t  Snl <_ A(Aln  + A2n + A3n), where 

n - - 1  

Aln = E k jtr{ACl(j)ACi(j)}, 
j=l 
n - - 1  

A2n = E k2nj t r {AC2( j )AC'2 (J ) } '  
j= l  
n--1 

A3~ = E k~J t r{Aca( j )AC~3( j )}"  
j= l  

To s tudy  Az~, l = 1, 2, 3, we introduce the following cross-covariance measures.  

n 

C w b ( j - - i ) = n - 1  E Wt- ib ' t - J  ' 
t=j+l  

CZ2b(J -- 1) : n -1 ~ Z2,t_lbtt_j, 
t=j+l  

n 

C x b ( j - - i ) = n - 1  E X t - ib l t - J  ' 
t=j+l  

i = l , . . . , p - 1 ,  

C z l b ( j - -  1) = n -1 ~ Zl , t_lb ' t_j ,  
t= j+l  

i = O , . . . , s .  

The following lemmas will be useful. 

LEMMA A.2. E [ t r { C w b ( j - i ) C ' w b ( j - i ) }  ] < A l n - l + A 2 p  2(j-i), i = 1, . . .  , p - - l ,  
where I]@j]]E < K p  j, for a constant K > 0 and p �9 (0,1),  @(B)  = (Id -- P 2 Q u B ) .  
{A** (B)} -1 = Y~.j~--o @jBJ. 

LEMMA A.3. E[tr{Cz2b( j  - 1 ) C '  " Zab(2 -- 1)}] < /k in  -1 + /k2/52(j-l), where 

Jl~jllE <-- KfiJ, for a constant R > 0 and /5 E (0,1),  ~ ( B )  = Q2{A**(B)}  -1 = 

E , % o  J B '  . 

LEMMA A.4. t r { C z l b ( j  -- 1 ) C } l b ( j  -- 1)} = Op(1), independently o f j .  

LEMMA A.5. tr{ C x b ( j  -- i ) C ~ b ( j  -- i)} = Op(n-1),  independently of i and j .  

PROOF OF LEMMA A.2. Since ( I d -  B)  = ( I d -  P 2 Q 2 B ) ( I d -  P 1 Q x B )  and 
A ( 1 ) P I  = 0, it follows tha t  A ( B )  Y t  = V ( B ) X t  + at can be wri t ten  as 

W t  = (Id -- P2Q2B){A**(B)}  -1 V ( B ) X t  + (Id -- P 2 Q 2 B ) { A * * ( B ) } - l a t ,  

where A ( B )  = A**(B)(Id  - P l  Q1B), with A**(B) = A*(B) ( Id  - P2Q2 B) + A(1)B.  
See P h a m  et al. ((2003), p. 556). Consequently,  we can write 

Wt = I I ( B ) X t  + ' I ' (B)at ,  
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0(3 
where I I (B)  = ( I d -  P2Q2B){A**(B)} -1 V(B)  = }-~j=o IIjBJ, and I[Ilyll for a 

certain K1 and Pl �9 (0, 1). Similarly, ~ ( B )  = (Id--P2 Q2B){A**(B)} -1 = }-~j=o ~PJ By, 

][~jl[ <- K2p~ for a certain K2 and P2 �9 (0, 1). For i = 1 (other cases are done similarly), 
we have that 

n 

n-1 E Wt-lblt-J = n-1 
t = j + l  

n 

{ I I ( B ) X t - 1 } b ~ t - J  + n -1  E {ff2(B)at-1}b~t-J" 
t---j-t-1 t-=j+l 

In Lemma A.11 of Duchesne and Roy (2004), a bound is derived for a moment similar to 
E[tr{ C wb ( j - i )  C~wb ( j - i )} ] ,  but  when the process admits an autoregressive component 
of order one. Here, we need to invert more general operators. To generalize their 
lemma is cumbersome but straightforward, since II%IIE -< K > 0 and p E (0, 1). 
Consequently, proceeding as in the Lemma A.11 of Duchesne and Roy (2004), this shows 
Lemma A.2. 

PROOF OF LEMMA A.3. Note  t h a t  

(A.1) (Id - -  g l  Q1 B)  Y t  = {A**(B)}  -1  v ( g ) x t  -~- { A * * ( B ) } - l a t  . 

Since Q2P1 = 0, then 

Z2t = Q2 Y t  = Q2{A**(B)} -1 V ( B ) X t  + Q2{A**(B)}-lat  = r I (B)Xt  + ~(B)at ,  

where IIl:Ijl] _< K I ~  for a cer ta in  /~1 and/51 E (0, 1), II~jll <_ K 2 ~  for a cer tain/(2 and 
t52 E (0, 1). At this point, the proof is then the same as the proof of Lemma A.2. 

PROOF OF LEMMA A.4. Multiplying (A.1) by Qz, s ince  Q1P1 = Ido, we f ind 

that 
(Ido -- B)Zl t  = QI{A**(B)} -1 V ( B ) X t  + QI{A**(B)}-l  at, 

and consequently {Zl t}  admits stationary increments. It follows that 

(Ido -- B)Zzt = ~I(B)Xt + ~(B)a t  = ut, 

t where {ut} is a stationary process. Consequently, we deduce that Zzt = ~i=1 ui. By a 
direct calculation: 

t r{Czlb( j  1)C' " -  = n -2 - 

t = j + l  s=j+l 
~ _ ~ _ ~ t - - l s - - 1  

EEu' " "  
iz ?'Li2 0 t--j O s--J " 

t = j + l  s = j + l  Q=I  i2=1 

It follows that E[tr{ Cz~b(j -- 1 ) C ~ b (  j -- 1)}] = Bin + B2n, where 

n n t--1 s--1 

Bin = n -2 E E E E E[{II(B)Xil} '{~I(B)Xi2}lE(b' t- jbs-J )' 
t = j + l  s = j + l  iz=l  i2=1 

B2n n -2 E E E[{~(V)ai~ ' = ' = } { ~ ( B ) a i 2 } b t - j b s - j ]  �9 
t = j + l  s = j + l  i l = l  i2=1 
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It is easy to show that  Bin = O(1). Now, we decompose B2n as B2n ---- B21n + 2B22n, 
where 

t--1 ~ ~ t  ~ 

e21n = n -2  E at  t E ( i ~ _ l ~ l ~ z 2 a i 2 _ 1 2 b t _ j b t _ j ) ,  
t = j + l  Q,i2=l 11,/2=0 

t--1 s--1 oo 

= E ( a i l - l l  ~11 ~l~ hi2-12 b't-j b~_j). 
t>s i l=l  i2=l /1,/2=O 

Since {at} is iid and ~-'~0 II~lll < oc, it follows using results on fourth order moments  
(see Hannan (1970)) that  IB21~I < A and [B22nl < A. This shows the Lemma A.4. 

PROOF OF LEMMA A.5. The proof is obtained by developing directly C x b ( J  -- 
i )C~xb(j  -- i) as in the proof of Lemma A.4 and taking the trace. Using the strict 
exogeneity between { X t }  and {bt} ,  it is easily seen that  the mathematical  expectation 
of the resulting expression is O(n-1) ,  showing the result. 

(A.2) 

We now show that  Azn = Op(n-1) ,  l = 1, 2, 3. We begin with Aln .  We can write 

A C I ( j )  = Y ] a l / 2 ( C  - C ) P 1 C z l b ( j  - 1) + Y ] a l / 2 ( C  - C ) P 2 C z 2 b ( j  - 1) 
p--1 

+ E 2Eal/2(A* - / ~ * )  C w b ( j  -- i) 
i=1 

+ ~ E - g l / 2 ( V i  - V ~ ) C x b ( j  - i). 
i=0 

Consequently, 

where 

Aln _< A 
p--1 

- Ai)  E,, (Ai - A~')}Di,~ 

n--1 

+ t r { P ; ( ( 7  - C ) ' X a l ( C  - C )P2}  E k2ny t r [Cz2b( j  -- 1)C~z2b(j -- 1)] 
j = l  

n--1 

+ t r { P ~ ( C  - C)']E~-I (~7 - C ) P l } E k 2 n j t r { C z l b ( J  - 1) CtZlb(3" - 1)} 
j = l  

8 

+ E t r { ( ~ r i _  , -1 v d  r ,o  - vd}E n , 
i=O 

n--1 

Din : E k2j tr{ C w b ( j  -- i)C~wb(J -- i)}, 
j = l  

n--1 

Ein = E k2nj tr{ C X b ( j  -- i) CtXb(J -- i)}, 
j=l 

i = 1 , . . . , p -  1, 

i = 0 , . . . , s .  
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Using Lemmas A.2-A.5 and Assumption 3.2, this shows the announced result for Aln. 
Note that  because of the nonstationarity, the rate of the moment tr{ Cz l  b (J -- 1) C~zlb(2" -- 
1)} in Lemma A.4 appears somewhat larger than the rates of the moments obtained in 
the other lemmas. However, from Assumption 3.2, we have that  ( C -  C)P1 = Op(n-1),  
which allows us to show the announced result for Aln. The proof of A2n is similar. The 
proof of A3n follows by using Lemma A. 1. 

P R O O F  OF T H E O R E M  A.2. We write S2n = A4n + A5,  + A6n, where 

A4n = E k2J t r  Cb( j )  n -1 ~ntb't_j , 
j=l t = j + l  

A5n = E k2~J tr Cb(j) n -1 bt~ln,t_j , 
j = l  t=j-l-1 

{ ( )} n--1 n 

A6n = E k2nj tr Cb(j)  n -1 E ~nt$'~n,t-J " 
j = l  t = j + l  

n-1 2 tr{ C b ( j )A C~ (j)}, we can decompose this expression using formula For A4n = E j = I  knj 
(A.2). Each term is treated separately: using Cauchy-Schwarz inequality for each term, 

i 1 /21 \ I 1 /21  \ Lemmas A.2-A.5, we obtain that globally A4n = Op(p, /n). Similarly, A5n = Op(pn /n) 
t 1 /21 \ and Aan -- op[pn /n). Collecting the results, we obtain Theorem A.2. 

PROOF OF THEOREM 4.1. Let Mn(k) and Vn(k), defined by (3.7) and (3.8), de- 
pend more explicitly on Pn : Mn(k) = Mn(k;pn), Vn(k) - Vn(k;pn). According to 
Lemma A.2 of Hong and Shehadeh (1999), if follows that 

Mn(k;pn) /pn  = Mn(k;pn) /Pn  + Op(pnl/2), 

Vn(k;~n)/pn = Vn(k;pn)/Pn + Op(1). 

The proof of Theorem 4.1 is completed provided the following result is proven: 

n--1 

(A.3) E { k 2 ( j / ~ n )  -- k2(j/pn)} t r{E2 a C a ( j ) E 2 1 C ~ ( j ) }  = Op(pl/2/n). 
j = l  

We decompose the left hand of (A.3) as: 

where 

n--1 

E { k 2 ( j / ~ n )  - k2(j/pn)} tr{ Cg(j)Cb(J)  } = Gin H- G2n, 
j----1 

n--1 
Gin = E { k 2 ( j / p n )  - k2(j/pn)} t r {  Cb( j )  C~,(j)}, 

j = l  

n--1 

G2n = E {k2(j/Pn) - k2(j/Pn)}[tr{ C~,(j) Cb(J) } -- tr{ Cb(j) C~,(j)}]. 
j = l  
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We decompose further Gin as Gin -- Hln ~- H2n -- H3n, where 

l 

HI~ = E { k 2 ( j / p n )  - k2(j/pn)} tr{ Cb(j) C~(j )} ,  
j-=l 
n-1 

H 2 n =  E k 2 ( J / p n ) t r { C b ( j ) C t b ( J ) } '  
j-=l + l 
n-1  

H3n-= E k2(j/p~)tr{Cb(j)C~b(J)}' 
j=l+l 

where l = ~v a] is a t runcat ion  point, a > (2b - 1/2) / (2b-  1) (Ix] denotes the integer 
part  of x). Since [k(z)[ < A[z[ -b and E[tr{Cb(j)C~b(j)}] = O(n-1) ,  it can be shown 

t 1 / 2 /  ~ / 1/2~ 
tha t  H2n = Oplp~ /n). Similarly, Hart = - = opkPn /n). Writing k2(j/~n) k2(j/pn) 
(k(j/~n) - k(j/pn)) 2 + 2k(j/pn)(k(j/~n) - k(j/pn)), we can decompose Hln in two 
additional terms tha t  we s tudy  separately, say Hln  = Hl1~ + H12~. Using the Lipschitz 

1/2 / condition on k(.), it can be shown tha t  Hl1~ = Op[pn /n}. For H12~, the Cauchy- 
/ 1 / 2 /  Schwarz inequality and the result for H l ln  allow us to show tha t  H12n -= Op[Pn /n) and 

it follows tha t  G l n =  Op(p~2/n) .  

For G2~, a reasoning similar to the proof of Lemma A.3 of Hong and Shehadeh 
(1999) allows us to show tha t  

n--1 
n 

,1/2 E k2(j/P~)[tr{ C~(j) Cb( j )  } -- tr{ Cb(j) C;( j )} ]  = Op(1). 
Fn j = l  

1 / 2 /  \ 
Using Theorem 3.1, it follows tha t  G2~ = Optp~ /n). Collecting the results, this yields 
the announced result. 
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