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Abstract. In this paper we consider the problem of testing for a parameter change
based on the cusum test proposed by Lee et al. (2003, Scandinavian Journal of
Statistics, 30, 781-796). The cusum test statistic is constructed via employing the
estimator minimizing density-based divergence measures. It is shown that under
regularity conditions, the test statistic has the limiting distribution of the sup of
standard Brownian bridge. Simulation results demonstrate that the cusum test is
robust when outliers exist.
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1. Introduction

The problem of testing for parameter changes in statistical models has a long history.
It originally started in the quality control context and then has been extended to various
areas such as economics, finance, medicine, and seismic signal analysis. Since the paper of
Page (1955), there have been published a vast amount of articles. For a general review
of the change point problem, see Csorgé and Horvdth (1997) and the papers therein.
In iid samples, the parametric approach based on the likelihood was taken by many
authors (cf. Chan and Gupta (2000)). However, the parametric approach is not proper
when no assumptions are imposed on the underlying distribution of observations. For
instance, no parametric approaches are directly applicable to the test for changes in the
autocorrelations of stationary time series. To overcome such a problem, Lee et al. (2003)
devised a cusum test in the same spirit of Inclén and Tiao (1994). The idea of the cusum
test is the same as the one for the mean and variance change, but it includes a large
number of other cases, such as the autoregressive coeflicient in the random coefficient
autoregressive models and the ARCH parameters. The cusum test has merit that it
can test the existence of change points and, at the same time, allocate their locations.
Furthermore, one can employ any estimators in construction of the cusum test as long
as they satisfy certain regularity conditions. For instance, when there is a concern about
outliers, a robust estimator can be utilized.

Recently, Basu et al. (1998) (BHHJ in the sequel) introduced a new estimation
procedure minimizing a density-based divergence measures, called density power diver-
gences. Compared to other density-based methods, such as Beran (1977), Tamura and
Boos (1986) and Simpson (1987), which use the Hellinger distance, and Basu and Lindsey
(1994) and Cao et al. (1995), the new method has an advantage of requiring no smooth-
ing methods. In this case, one can avoid the drawbacks and difficulties, like the selection
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of bandwidth, that necessarily follow from the kernel smoothing method. In their pa-
per, BHHJ demonstrated that some of the estimators possess strong robust properties
with little loss in asymptotic efficiency relative to maximum likelihood estimator (MLE).
Therefore, their estimator can be viewed as a good alternative to the MLE in terms of
both efficiency and robustness. Seemingly, this result can be reflected in designing a
robust cusum test.

In fact, Lee and Park (2001) considered a robust cusum test for the variance change
in linear processes based on a trimming method, and demonstrated that it is necessary
to use a robust method to prevent outliers from damaging the test procedure. Motivated
by the viewpoint that the same phenomenon is anticipated to occur in other situations,
we here consider a robust cusum test for a general parameter case. More precisely, we
concentrate on the cusum test for parameter changes based on the BHHJ estimator.
Despite the estimation method of BHHJ was restricted to iid samples, one can naturally
extend the result to correlated observations. Thus in our set-up, we assume that the ob-
servations are correlated and satisfy a strong mixing condition in the sense of Rosenblatt.
The organization of this paper is as follows. In Section 2, we explain how to construct
the cusum test using the BHHJ estimator, and show that the test statistic converges
weakly to the sup of a standard Brown bridge under mild conditions. In Section 3, we
perform a simulation study and compare the two tests based on the BHHJ estimator
and the MLE, respectively. In Section 4, we provide the proofs.

2. Main result

Consider a parametric family of models {Fy}, indexed by the unknown parameter
6 € © C R™, possessing densities { fg} with respect to Lebesgue measure, and let G be
the class of all distributions having densities with respect to Lebesgue measure. Aimed
at estimating the unknown parameter §, BHHJ introduced a family of density power
divergences d,, a > 0;

JU(2) — 1+ Dg(2) () + g™ (2)}dz, a>0

dalg, f) = { [ 9(2)(log g(2) — log f(2))dz, *=0

where g and f are density functions, and defined the minimum density power divergence
functional T, (-) by the requirement that for every G in G,

da(g)fTa(G)) = lgggda(gvfa)7

where g is the density of G. Notice that if G belongs to {Fp}, To(G) := 6, = 0 for
some @ € O. In this case, given random sample X1, ..., X,, with unknown density g, the
minimum density power divergence estimator based on is defined by

(2.1) Oon = arg min H, »(9),
where H, »(0) = n™' Y, V,(6; X;) and

[HT(2)dz— (1+ L) fg(z), a>0

Va(bi2) = { — log fy(x), a=0.
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BHHJ showed that the estimator has robust features against outliers but still pos-
sesses the efficiency that the MLE has when the true density belongs to the parametric
family {Fg}. Our objective here is to test the constancy of the unknown parameter
# through the cusum test, based on the minimum density power divergence estimator,
introduced by Lee et al. (2003). For this task, we set up the null and alternative hy-
potheses:

Hy : 8, does not change over Xq,...,X,. vs.
Hi : not Hy,

where n denotes the sample size.

When the random sample is iid with distribution G, BHHJ showed that under
Hy and the conditions with r = 3 below, éa,n is weakly consistent for 8, = T,(G)
and \/ﬁ(éan — 0,) is asymptotically normal with mean zero vector. However, in order
to achieve the asymptotic distribution of the cusum test statistic, we need the strong
consistency of the estimator. Towards this end, we assume that the following conditions
hold under the null hypothesis.

Al. The distribution Fy and G have common support, so that the set X on which
the densities are greater than zero is independent of .

A2. There is an open set ¥ of the parameter space © containing the best fitting
parameter 6, such that for all z € X, and all § € 9, the density fyp(x) has continuous
partial derivatives of order r(> 0) with respect to 6 and

& fo(X)

—— <ji<r.
Bor, o0, |~ O0SI=T

d

A3. The integral [ f;7*(z)dz can be differentiated r-times (r > 0) with respect to
#, and the derivative can be taken under the integral sign.

A4. For each 1 < 4y,...,i, < m, there exist functions Mg ;,..;.(z) with
EMg i, ..5,(X) < oo such that

< Ma’il...i,, (:C)

3"V, {(6; )
561, - 00,

forall § € ¥ and x € X.
A5. There exists a nonsingular matrix J, defined by

. 1 62Va(0a;X)
Ja'_1+aE< 062 )

A6. Under Hy, {X:} is ergodic and strictly stationary.

In BHHJ, the random observations are restricted to iid cases, but in the present pa-
per we assume that the random sample is taken from an ergodic and strictly stationary
process {X:;t = 1,2,...}. As a special case, one can consider the time series contami-
nated by some outliers, namely, X; = (1 — p;) X, + peXc+, where p; are iid r.v.’s with
0 < p. <1, {X,.} is a strong mixing process with the density fp, the contaminating
process { Xc.} is a sequence of iid r.v.’s with EX.; = 0 and EX?, < 0o, and {p:}, {Xo,¢}
and {X..} are all independent. Note that the X; follows an 1.O. (innovation outlier)
model when p; = 0 for all ¢t and X, + follow a heavy-tailed non-Gaussian distribution,
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and an A.O. (additive outlier) model when p, = 1/2 for all £ and X, ; has an appropriate
distribution (cf. Fox (1972) and Denby and Martin (1979)). It also indicates a S.O.
(substitutive outlier) model when p; are Bernoulli r.v.’s (cf. Bustos (1982)). In this case,
if there are no changes in the underlying density of X, ;, the 6, does not change over
X1,..., X,

In what follows, we assume that 8, = T,,(G) exists and is unique, and keep the same
definition for the estimator éa,n as in the iid case. In fact, the estimator is obtained by
solving the estimating equations

0H, »(0)

=0.
00

Uan(6) = (1 +0)7"
Then we have the following result, proof of which is presented in Section 4.

THEOREM 2.1. (Strong consistency) Suppose that Hy holds and conditions A1-A4
and A6 hold for some nonnegative integer r. Then there exists a sequence {64,n}, such
that

~

(2.2) P{byn — ba, asn — oo} = 1.
Also, if Vo(0; x) is differentiable with respect to 6, then we have
(2.3) Upn(Bam) =0

for sufficiently large n.

Next, we derive a functional central limit theorem for éayn. Assume that conditions
A1-A5 hold with 7 = 3. Since (2.3) holds for the minimum density power divergence
estimator {6, ,}, by expanding the vector Uy n(6a,n) in & Taylor series about 84, we

have . .
0= Ua,n(aa,n) = Ua,n(ea) - Ra,n(ea,n - 00)7

where R, n is the m x m matrix whose (7, j)-th component is

P 2 m 83Han e*n
(2.4) R, = -1 {3 Han(0a) | 1 n(0%.n)

- “an an an éa n - 9(1
1+a | 86,00, 2 £ 96,00;00% (Bam ”“)}
for some point 6}, ,, = 0, + (0o n — 0a), u € [0,1]. Therefore, we have

éa,n - ea = ngUa,n(ea) + Aa,nv

where Ay n = J3 1 (Jo — Ra,n)(éa,n — 6,), and consequently

[ns] [ns] [ns]

(25) —J—E(éa,[ns] - ea) = Jc_u_l : _'ﬁUa,[ns] (ga) + %Aa,[ns}

Suppose that there exists a positive definite and symmetric matrix K, such that

(2.6) [n—\/sﬁ]Ua,[ns](ga) = K&/QWm(s)
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in the D™[0, 1] space (cf. Lemma 4.2), where W,, denotes a m-dimensional standard
Brownian motion. Furthermore,

(2.7) max TIIAQ oll = op(1)

(cf. Lemma 4.4). Then, from this, (2.5) and (2.6), we obtain the following result.

THEOREM 2.2. (functional central limit theorem) Assume that conditions A1-A6
hold with r = 3. In addition, suppose that

1. {X:} is strong mizing with mizing order B3(-) of size —v/(y — 2) for v > 2, i.e.,
Sy B(n)1 727 < oo,

2. E|0V4(0a;X)/00;]" <00 fori=1,...,m

3. nKan — K, for some positive definite and symmetric matrizc K., where Ko
is the covariance matriz of Uq n(6a).
Then, under Hy, we have

[ns]

\/—(ga ns - ea) = Jzleé/2Wm(s)'

Remark. The proof of Theorem 2.2 is provided in Section 4. As seen in the proof,
the strong mixing condition is very essential. However, in Theorem 2.1, we did not need
the mixing condition.

Now utilizing Theorem 2.2, we construct the cusum test for testing Hy vs. Hj.

THEOREM 2.3. Define

2 ~
(2.8) 70 .= max k—(ea,k —Oan) Ja K5 Ja(Bak — Bon)-

BN m<k<n 1 ’
Suppose that the conditions of Theorem 2.2 hold. Then, under Hy,

Ton = sup |[W(s)?
0<s<1
where W2, denotes an m-dimensional Brownian bridge. We reject Hy if T, a n U8 large.

Sjnce Jo and K, are unknown, we should replace them by consistent estimators ja
and K. First, note that

Jo = [ o, (2Jua, (2 12z + [ (in, (2) = aua, (2Jua, ())(a2) = fou (D3 (),
where ug(2) = dlog fo(2)/06 and ig(z) = —Oug(z)/06. Therefore, if we put
Jo = (4@, g, (2 ~ Ty, (32

n

F S, () - vy, (X, (XM, (X0),

t=1
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then one can show that ja converges to J, almost surely (cf. Lemma 4.5).
Now, we estimate K,. Under the assumptions of Theorem 2.2,

- OV (6, Xo) V(B Xi)
Ka= 2. rap COV( 9 ' a0

exists due to Theorem 1.5 in Bosq ((1996), p. 32). Assuming that

K1. 32 B(n)'/3 < oo;

K2. E|0Va(04;X)/00:° < o fori=1,...,m;

K3. there exists a function M,(z) with EM,(X)? < oo such that
STt 10%Va (6 1) /00:86;] < Ma(z) for all € © and z € &,

one can show that K, — K, in probability (cf. Lemma 4.8), where

i: Z av (0a ’th) 8V (004 nth-f-k)
n(l+ oz)2

00

and {h,} is a sequence of positive integers such that
(2.9) hn =00 and  hy,/v/n — 0.

Combining the above convergence results and Theorem 2.3, we establish the follow-
ing.

THEOREM 2.4. Define the test statistic T, n by

k2 A - s A o
(2.10) Ton = mrgg)én 7{(9& & — a,n)/JaKglJawa,k —Oon)-

Suppose that the conditions of Theorem 2.2 and K1-K3 hold. Then, under Hg,

Toyn = sup [Wo(s)]l?.
0<s<1

We reject Hy if Ty n 45 large.

Remark. If {X.} is the M(> 0)-dependent process, then we can use h, = M
instead of (2.9).

3. Simulation results

In this section, we evaluate the performance of the test statistic T ,, in Theorem 2.4
through a simulation study. In particular, we consider the situation that an exponential
distribution fg(z) = @exp(—0z) is fitted to the iid observations X1,..., X, with density
g. The empirical sizes and powers are calculated at a nominal level of 0.1 for o = 0.0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.5 and 1.0. First, we consider the case that g(z) = f¢(z).
The empirical sizes are calculated with sets of 200, 300 and 500 observations generated
from f;. The figures in the ‘size’ row of Table 1 indicate the proportion of the number
of rejections of the null hypothesis Hy, under which no parameter changes are assumed
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Table 1. Empirical sizes and powers of To,n for the exponential model.

o

n 0.0 0.05 0.1 0.15 0.2 0.25 0.5 1.0
size 200 0.143 0.141 0.144 0.148 0.148 0.139 0.144 0.146
300 0.113 0.112 o0.106 0.113 0.115 0.115 0.129 0.146
500 0.113 0.117 0.114 0.108 0.109 0.107 0.106 0.110
power: 200 0.976 0983 0.984 0985 0.984 0.982 0.960 0.901
A=2 300 1000 1000 1.000 1.000 1.000 1.000 0.999 0.983
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

Table 2. Empirical sizes and powers of Tq,n for the exponential model with outliers.

3% n 0.0 0.05 0.1 0.15 0.2 0.25 0.5 1.0
size 5 200 0.149 0117 0.114 0.126 0.125 0.126 0.121 0.127
300 0.120 0.102 0.102 0.094 0.097 0.100 0.107 0.116
500 0.131 0.119 0.108 0.099 0.100 0.106 0.120 0.134
10 200 0.189 0.111 0.108 0.116 0.120 0.127 0.130 0.129
300 0.174 0.111 0.104 0.102 0.109 0.110 0.130 0.138
500 0.142 0.095 0.096 0.108 0.114 0.120 0.137 0.136
20 200 0.312 0.120 0.088 0.095 0.108 0.117 0.133 0.151
300 0.251 0.103 0.085 0.093 0.106 0.120 0.133 0.135
500 0.204 0.112 0.102 0.116 0.118 0.124 0.140 0.132
power: 5 200 0.105 0.278 0516 0.695 0.778 0.844 0.882 0.830
A=2 300 0.208 0493 0.768 0.909 0959 0980 0.982 0.964
500 0.428 0.832 0979 0.996 1.000 1.000 1.000 0.998
10 200 0.073 0.074 0.381 0.667 0.799 0862 0.894 0.849
300 0.049 0.177 0634 0.884 0.955 0983 0.985 0.969
500 0.069 0.400 0.892 0994 1.000 1.000 1.000 0.999
20 200 0.198 0.030 0.397 0.755 0.872 0914 0916 0.849
300 0.147 0.048 0.624 0.934 0977 0.984 0.980 0.966
500 0.121 0.151 0.882 0.997 1.000 1.000 1.000 0.998

to occur, out of 1000 repetitions. To examine the power, we consider the alternative
hypothesis

H1:Xt~f1, tzl,,[n/2],
Xe~fa, t=[n/2]+1,...,n.

For A = 2, n = 200, 300, 500, the number of rejections of the null hypothesis are
calculated out of 1000 repetitions. The results are summarized in Table 1. From the
results, we can see that T, , does not produce severe size distortions and has good
powers, close to 1 for all o except for @ = 1.0. This implies that the estimator with
«a > 0, not very close to 1, does not damage the test even when there are no outliers.
In order to see how T, ,, performs for the data with outliers, we consider the mixture



560 SANGYEQOL LEE AND OKYOUNG NA

Table 3. Empirical sizes and powers of Ty, for the Gaussian AR(1) process.

o

¢ n 0.0 0.05 0.1 0.15 0.2 0.25 0.5 1.0

size 0.1 200 0.084 0.086 0.085 0.087 0.085 0.088 0.083 0.096
300 0.088 0.088 0.092 0.091 0.092 0.092 0.093 0.094

500 0.077 0.076 0.076 0.079 0.082 0.082 0.079 0.081

0.5 200 0.082 0.083 0.0r9 0.078 0.076 0.075 0.075 0.082

300 0.060 0.060 0.062 0.059 0.058 0.062 0.068 0.078

500 0.075 0.0 0.073 0.069 0.073 0.076 0.078 0.082

0.8 200 0.092 0.08 0.086 0.084 0083 0.086 0.084 0.092

300 0.114 0.109 0.106 0.102 0.106 0.100 0.102 0.101

500 0.114 0.114 0.113 0.107 0.107 0.107 0.103 0.107

power: 0.1 200 1.000 1.000 1.000 1.000 0.999 0.999 0.996 0.983
A=1 300 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 200 0871 0.872 0.862 0860 0.859 0.855 0.804 0.700

300 0.980 0977 0976 0973 0972 0971 0.966 0.936

500 1.000 1.000 0.999 0.999 0.999 0.999 0.998 0.995

0.8 200 0391 0.378 0.367 0.368 0.357 0.353 0.307 0.244

300 0.459 0.453 0.449 0443 0.441 0435 0.402 0.355

500 0.659 0.659 0.657 0.654 0.648 0.641 0.615 0.557

distribution g(2) = (1 — €) fo(z) + €h(z), where h(z) represents a contaminating distri-
bution. For h(z), we consider the exponential distribution with mean py larger than 1.
The empirical sizes and powers are calculated out of 1000 repetitions for n = 200, 300,
500, uy = 5, 10, 20, ¢ = 0.1 and A = 2. Table 2 shows that T, , with a = 0 (the test
based on the maximum likelihood estimator) has severe size distortions and produces
very low powers. However, the test with « > 0.1 cures the drawback remarkably. This
result demonstrates the validity of T, » with a > 0.1.

Next, we consider the mean change test in time series data. Let {X,:} be an AR(1)
process: X, t—p = ¢(Xo,t—1—p)+e€:, where ¢, are iid standard normal random variables.
First, we handle the case that X; = X, and they are not contaminated by outliers. We
fit a normal distribution to Xi,...,X,, and perform the cusum test for y utilizing the
estimators fia x, £ = 1,...,n. Under the null hypothesis Hy, u is assumed to be 0 for
all observations. For the alternative, we consider

Hy:p=0, t=1,...,[n/2,
p=A4, t=[n/2]+1,...,n.

The empirical sizes are calculated for n = 200, 300, 500, ¢ = 0.1, 0.5, 0.8, A =1 and
hn, = nl/3 are used for K. In each simulation, 100 initial observations. are discarded to
remove initialization effects. The results, presented in Table 3, show that T, ,, does not
have severe size distortions and has good powers for all @ > 0 as in the previous case.
As expected, we can see that the power increases as n increases and ¢ decreases to 0.
Tables 4 and 5 summarize the empirical sizes and powers of T, , when outliers are
involved in observations. Here we assume that X, are contaminated by the outliers
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Table 4. Empirical sizes of Tw n for the Gaussian AR(1) process with outliers.

¢ wy n 0.0 0.05 0.1 0.15 0.2 0.25 0.5 1.0
0.1 0 200 0.061 0.075 0.079 0.081 0.078 0.081 0.090 0.105
300 0.077 0.094 0.095 0.084 0.086 0.085 0.086 0.114
500 0.081 0.083 0.090 0.086 0.086 0.087 0.081 0.107
5 200 0.058 0.071 0.077 0.078 0.080 0.081 0.079 0.120
300 0.075 0.082 0.086 0.075 0.078 0.083 0.095 0.124
500 0.074 0.081 0.079 0.084 0.083 0.091 0.096 0.123
10 200 0.073 0.087 0.107 0.099 0.098 0.099 0.108 0.154
300 0.081 0.080 0.091 0.096 0.090 0.094 0.103 0.158
500 0.080 0.081 0.088 0.090 0.096 0.098 0.103 0.148
0.5 0 200 0.070 0065 0061 0.069 0.074 0.074 0.073 0.082
300 0.074 0.078 0.074 0.076 0.076 0.066 0.058 0.076
500 0.075 0.080 0.086 0.090 0.086 0.085 0.083 0.097
5 200 0.081 0.090 008 0.074 0.071 0.070 0.063 0.099
300 0.069 0.073 0.067 0.074 0.072 0.071 0.065 0.097
500 0.096 0.090 0.095 0.096 0.095 0.095 0.084 0.118
10 200 0.069 0.085 0.078 0.079 0.081 0.076 0.065 0.121
300 0.073 0.088 0.079 0.074 0.073 0.065 0.068 0.134
500 0.070 0.082 0.076 0.069 0.074 0.077 0.086 0.145
0.8 0 200 0.094 0.111 0.1120 0.111 o0.117 0.117 0.121 0.128
300 0.096 0.099 0.1056 0.102 0.099 0.098 0.102 0.110
500 0.091 0.095 0.097 0.091 0.092 0.090 0.091 0.104
5 200 0.093 0.107 0.106 0.111 0.110 0.110 0.105 0.126
300 0.099 0.096 0.109 0.106 0.110 0.112 0.114 0.126
500 0.100 0.115 0.115 0.102 0.103 0.103 0.100 0.118
10 200 0.089 0.094 0091 0096 0.103 0.104 0.110 0.148
300 0.092 0.106 0.111 0.119 0.121 0.114 0.112 0.161
500 0.097 0.099 0.099 0.098 0.099 0.104 0.116 0.156

X, which are iid N(puy,10%), and that the observed r.v.’s follow the model X; =
(1 — pt)Xot + ptXc,t, where p; are iid Bernoulli r.v.’s with success probability p = 0.1.
It is assumed that {p;}, {X,:} and {X.+} are all independent. The empirical sizes and
powers based on the X,’s are calculated out of 1000 repetitions for n = 200, 300, 500,
¢=0.1,05,08, ugyy =0, 5, 10 and A = 1. Tables 4 and 5 show that the sizes are not
severely distorted. However, we can see that the test with a = 0.0 produce low powers.
The result also demonstrates the validity of our test.

4. Proofs

Throughout this section, we establish the lemmas under the null hypothesis. To
prove Theorem 1.1, we need the following lemma.

LEMMA 4.1. Let X1, Xoa,... be strictly stationary and ergodic. If
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Table 5. Empirical powers of Ta,n for the Gaussian AR(1) process with outliers.

a

¢ pv n 0.0 0.05 0.1 0.15 0.2 0.25 0.5 1.0
0.1 0 200 0446 0.749 0871 0927 0.949 0.972 0.992 0.999
300 0.606 0.875 0.954 0980 0.986 0.996 0.999 1.000
500 0.818 0.980 0996 0.999 1.000 1.000 1.000 1.000
5 200 0422 0678 0.825 0.898 0.933 0.959 0.991 0.996
300 0537 0.834 0940 0979 0992 0995 1.000 1.000
500 0.736 0.961 0.997 1.000 1.000 1.000 1.000 1.000
10 200 0.311 0.525 0.714 0.821 0.894 0.927 0.982 0.994
300 0.394 0.679 0.831 0930 0968 0.981 0.999 1.000
500 0.578 0.884 0.971 0995 0.997 0.998 1.000 1.000

0.5 0 200 0355 0560 0.652 0.728 0.755 0.785 0.818 0.841
300 0492 0739 0.859 0.895 0.912 0926 0.946 0.947
500 0.708 0.922 0969 0987 0.992 0996 0.999 0.999
5 200 0.328 0.503 0629 0.705 0.733 0.765 0.819 0.855
300 0475 0.705 0.813 0.871 0901 0920 0958 0.971
500 0.673 0912 0.968 0984 0990 0.993 0.995 0.999
10 200 0.280 0432 0529 0.608 0.653 0.697 0.785 0.835
300 0.368 0.592 0.736 0.824 0.877 0.909 0.957 0.964
500 0.559 0.828 0.934 0964 0979 0.984 0.996 0.997
0.8 0 200 0.263 0315 0334 0338 0.343 0344 0350 0.344
300 0316 0.387 0.413 0425 0436 0441 0452 0.438

500 0.460 0.545 0.583 0.608 0.619 0.623 0.630 0.621
5 200 0.255 0.303 0321 0335 0.342 0.341 0.342 0.347
300 0.311 0.381 0.408 0.422 0.433 0.438 0.447 0.448
500 0.492 0.568 0.604 0.613 0626 0.632 0.644 0.642
10 200 0.215 0.268 0.287 0.302 0309 0.320 0.331 0.360
300 0.294 0.347 0.384 0409 0.432 0435 0.455 0.477
500 0.394 0.516 0.575 0.605 0.609 0.613 0.626 0.634

(a) © is compact,

(b) A(z,0) is continuous in 0 for all z,

(c) There exists a function B(x) such that EB(X) < oo and |A(z,0)| < B(z) for
all x and 0,
then

(4.1) P{ lim sup

1 n
=N A(X,0)—a(d)|=0p =1,
n
t=1
where a(f) = EA(X, 6).
In addition, if there exists 8y = argmingecg a(8) and it is unique, then
(4.2) P{0, — 0g,n —> o0} =1,

where 0, = argmingeo n™ ! 37, A(X,,0).
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PROOF. The proof of (4.1) is essentially the same as in Ferguson ((1996), pp. 107-
111), and is omitted for brevity. Now we prove (4.2). For any § > 0, ||6, — 6| > 6
implies that

coOn

1 R L1
min — ZA(Xt, EZA(Xt,Hn)-—-IgnelgﬁZA(Xt,G),
t=1 t=1

where S = {6 € © : |6 — 6o|| > 6} is a compact subset of ©. Therefore,

a(0o) - ggiga(o)] < %E‘ZA(Xt,e) min a(8) | + mm—ZAO‘t"” piga(®)
< 221613 ZA(Xtve) —a(9)|-

Note that due to conditions (b), (c) and the dominated convergence theorem, we
have
a(¢) = EA(X,0') - EA(X,0) =a(f), as 6 — 0,

and consequently, a(f) is continuous in 8. Hence, from the uniqueness of 8y, it follows
that

a(fy) — mlna(ﬁ)‘ = Ieneiéla(e) —a(fp) :=¢5 > 0.

Therefore, by (4.1) we have

o<P{ﬂ U (16x —90||>5)}

N=1n=N

<P{ﬂ U (sup

N=1n=N

ZA(Xt,e) —a()| >
t=1

which completes the proof. O

For notational convenience, without any confusion, we drop the subscript o from
the quantities 6,,, H,, V, U, and etc.

PrOOF OF THEOREM 2.1. Since 9 is an open set with 8, € 9, there exists a

positive § such that
Bs :={0:60 —6,| <6} C9.

Note that from A2 and A3, V(0;z) is r-times differentiable with respect to 6 on 9, and
consequently, by Taylor’s series expansion we can write

m

V(0;z) = V(ea,x)+z Z 6PV(0°"”’) H(ezq Oaiy)

7fl EN ’lp—

- 8PV0 u(@ —0,); -
(r—l)'/ Z ( + (8%) )H(e"' “’q)(l_“) e

.....
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for all 8 € Bs and almost all x € X'. Thus, for almost all x € X,

r—1 m
&P 6PV(90¢§$)
4.3 sup |V (0;z)| < |V (8;2)| + - FY
(4.3) sup |V(6:2)] < [V(6;) gP.Z 56;, - 90,

+ i—: Z Mil“'ir (.Z')

i1yeeeir=1

and the expected value of the term of the right hand side of (4.3) is finite by A4. There-
fore, the conditions in Lemma 4.1 for compact Bs C 9 are satisfied, and consequently, if
we set 6,(6) := arg minge g, Hn (), we get

(4.4) P{0,(6) — 04, asn — o0} =1
and
(4.5) P {eseug |Hp(68) —v(0)] — 0,n — oo} =1,

where v(0) = EV(0; X), X ~ G.
In order to obtain 6,, which is independent of §, we define 6,, as the closest 6,,(8)
to B, i.e.,

(4.6) 16n — 04 = inf{||0,(8) — 04 ;6 (6) satisfies (4.4)}.

Then, with this 6,, (2.2) holds obviously.
Next, note that v(0) = da(g, fo) — @ ! [ g'1*(2)dz, and so

0o = argminda(g, fo) = arg minv/(6).
In addition, since v() is continuous in  and 6, is unique,

1 1
€(8) == — ||0-S;{,I|)|=6 (—5(1/(0) - V(Ga))) =3 ”9_1;5":6(1/(9) —v(6a)) > 0.

Then using these facts, we have
By, := {sup |\H,(0) —v(0)] < 26(6)}
9€Bs

C { sup |Hp(0) — v(0) — Hno(0a) +v(8a)] < 6(5)}
0€Bs
C {Hn(0) — v(0) — Ho(a) + v(6a) > —€(6),V0 € Bs}

C {Hn(e) - Hn(ea) - I/(O) + V(ea) > sup (—%(V(@) - V(ea))) ’
[6—6all=5

VO : |10 — 6l = 5}

- {Hn(e) — H,(6,) —v(6) + v(0s) > —%(y(&) —v(0,)),¥0 : |0 — 6, = 6}
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1

= {Hn(t?) - H,(6s) > E(y(e) —(604)),Y0 : |0 — 04| = 6}
1

C §Hn(0) — Hp(0y) > 5 inf

{ (0) = Hal0) > 5 16—6a|=6
C {Hn(0) > Ho(62),Y0: |0 — 0] = 6} := A
Therefore, due to (4.5), we have

1>P“JﬂA}>P“JﬂB}

N=1n=N N=1n=N

Thus, a local minimum is attained in the interior of Bs, and therefore,

(4.7) Un(9n(6)) =0,

565

(1(6) ~ v(62) = e(6) > 0,40 |6 — ]| = 6}

if V(6;z) is differentiable with respect to 6. Hence, for 6, satisfying (4.6), (2.3) holds.

This completes the proof. O
Now we prove Theorem 2.2.

LeMmMa 4.2. Under the assumptions of Theorem 2.2

[ns]

\/—U[ns] (0 ) Kl/sz(s)a

in the D™[0,1] space.

PROOF. We prove the theorem using the Cramér-Wold device.

(Ay-oAm)’ € R™ with || M| =1, let

)= L3, WXy

1+ao im1 602

For any A =

Note that due to conditions 1-3, {Y*} is a strictly stationary real-valued process, such

that

(a) {Y;*} is strong mixing of size —y/y — 2,

(b) EY} =0 and E|Y)" < oo,

(¢) n 1 Var(} 1, Y') = X (nKp,)A — NYKA > 0.
Therefore, we have

[ns]

DY = (VENY2W(s)

, [nS] 1
4 ~ Vi

in the D[0, 1] space (cf. Peligrad (1986), p. 202). Hence, the lemma follows. O

LEMMA 4.3. Under the assumptions of Theorem 2.2, R, converges a.s. to J.
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ProoF. From condition A4 with » = 3 and (2.2), the second term of the right
hand side of (2.4) converges to 0 almost surely since

" O%H,(6%)

0<
£ 50,0,;06,

(én,k - ea,k) Z zgk:(Xt ”én - ea”

and n™1 Y0 ST Mik(Xe) — > ope EMiji(X1) a.s. by the strong law of large num-
bers.

Meanwhile, since {X;} is strictly stationary and ergodic, {92V (0; X;)/00,00;} is
also strictly stationary and ergodic for all 1 < 4,7 < m. Hence,

PHp(0a) _ 1 8°V(0a; X2) as. E82V(0a;X1)

00;00; ~n —~  00,06; 00,00,

=-(1+a)J¥,

that is, the first term of the right hand side of (2.4) converges almost surely to the
(4,7)-th component of J. Therefore, R, — J a.s. O

The following lemma is concerned with the negligibility of Ay.

LEMMA 4.4. Under the assumptions of Theorem 2.2,

(48) g (G184l ) = op().

PROOF. Since det(R,,) 23 det(J) in view of Lemma 4.3, it follows from Egoroff’s
theorem that given € > 0, there exists an event A with P(A) < € an integer Ny such
that on A€ and for all n > N,

|| det(Rn)| — | det(J)|| < |det(R,) — det(J)| < 27| det(J)| # 0,
and consequently,
|det(Ry,)] > 27t det(J)| # 0.

Therefore, on A¢ and for all n > Ng, there exists an inverse matrix of R,,.
Note that for any § > 0,

(4.9) P{ max %“Ak” > 35} < P{ max %HA,CH > 5}

1<k<n 1<k<Ng

k
+P{ max TnAkn zé,Ac}

No<k<n?
P —||A|l = €
+p{ e Lo 2 .40}

+ P(A).

First, notice that there exists N7 > 1, such that for all n > N;, the first term of the
right hand side of (4.9) is less than e, since

\/—llAkH<\/—— e klJ “HI = Rl — fall = 0p(1)  as n— oo

1<}c<N
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Second, since on A€, the inverse matrix of Ry exists for all k£ > Ny, we have
Ay = J YT = Ry)(Bk — 0,) = J"H(J — Ry)R;, ' Ux(6a),

so that
00w iad < e 157 -0 )
. NOS’?gnV \/ﬁ Ell = No<k<n¥ k \/ﬁ i oy At )
Note that
1 &
B 3" U (05 X0)l| = v~ B0 (0a; X1l = O(n*~1/2),
Vﬁt:l

since {X;} is strictly stationary and E|U(04; X1)| € Yoie; E|Ui(64; X1)| < oo. There-
fore, for some 0 < v < 1/2, we have

1 &

. — o; Xt)|| = .
(411) LI Xl =orl)
On the other hand, R;;! — J~! on A° and therefore

-1 _ 7-1j| —
(4.12) w2ax [|Rg” - J7 = 0p(1).

By (4.11) and (4.12), the right hand side of (4.10) becomes op(1), and thus there exists
an integer N, such that for all n > Nz, the second term of the right hand side of (4.9)
is less than e.

Finally, we have

k 1 1 k
< —_ . —_— =
=Ny - iyl
since
max [[Ry' - J7 %30
n¥<k<n
and L
K d 1/2
o vl I R

Therefore, there exists N3 > 1, such that for n > N, the third term of the right hand
side of (4.9) is less than e. Now, if we put N = maxg<;<3{N;}, the right hand side of
(4.9) is less than 5¢ for all n > N. This establishes the lemma. O

LEMMA 4.5. Under the assumptions of Theorem 2.2, J converges a.s. to J.

PROOF. Define

16) = [40+aua=)us(a) — in(2)}5*(2)d:
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Note that

and thus, J;(6) is continuous in by condition A3. Therefore, since 6, 23 0,,
(4.13) J1(6n) 5 J1(6a).

Let
n(z,8) = {ig(x) — oug(x)ue(z)'} f§'(z)
and let J5(8) = En(X,0), where X ~ G. Note that for any € > 0 and § > 0,

:

> € |0 - 0] < 5} U{||6n — 0ol > 6}

ZT](Xt,én) - J2(én)
t=1

. 1

A, = { =
n —
. -
n t=1

- sup
[|6—64] <8

- sup
160—64 <8

where By, := {sup|g_g, | <s In™" 2oi=q 1(X:,0) — J2(0)|| > €} and C, := {16, — 6| > 6}.
Moreover, since the conditions in Lemma 4.1 are satisfied,

- J2(én)

Zn (X1,8) — J2(6)

n
t=1

> €, ||0n — 04 H<6}U{||0 — 04| > 6}

Zn(Xt,G) J2(0)(| >

n
t=1

} U {ll6n — 0l > 6} := B, UCh,

Zn(xtﬂ) T (0)|| %

n

16— 0 ||<6

Therefore, we have

R34}

/—/A

N U(BnUCn)}
N=1n=N N=1n=N
SP{ﬁ D Bn}+P{ﬁ G Cn}_o
N=1n=N N=1n=N
That is,
(4.14) Zn(xt, — Ja(6)|| 23 0.

Then from(4.13), (4.14), and the identities

R R 1< .
J = 11(6a) + Ta(0a), T = J1(0a) + =D n(Xe,60),

t=1
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we have

19 = I < 171(8n) = 1Bl + Zn(Xt, — J2(0a)

< [1720n) = 110l + Zn Xi,60) = Ja(0) | + 1J2(0n) = J2(8) ]| 25 0,

where we have used the fact §,, — 6 a.s., the continuity of Ja(t), and Slutsky’s theorem.
This completes the proof. O

To prove Lemma 4.8, we need the following lemmas.

LEMMA 4.6. (1-dimensional case) Let {X:} be a zero-mean real-valued stationary
process such that

(4.15) sup E| X;24V") < o0
t
and
x
(4.16) > Bk)P < o,
k=1

where g >1,r>1and 1/q+1/r =1—1/p. Then the following hold:
(i) The series Y, Cov(Xo, X) is absolutely convergent and has a nonnegative sum
2
as.
(i) If {hn} is a sequence of positive integers satisfying the property in (2.9), then

hn
(4.17) 3 Anlk) S o?
k=—hn
where An (k) = n"t 7 F X X gk
PRrOOF. First, note that
1
_:1_1_.1_§1_ 2 <1-— 2 ,
P q r gVvr 2(qVvr)

and consequently, (4.16) implies that S5 | B(k)'~2/2(aV") < oo. Therefore, from (4.15),
(i) holds (cf. Bosq (1996}, p. 32).
Let (k) = Cov(Xyp, Xi) and note that

hn

> An(k) - o?

k=—hn

hn

< Y Bk =B+ D k).

k=—hn |kl>hn

(4.18)

Since Y, |v(k)| < co and h, — o0, the second term of the right hand side of (4.18)
converges to 0 as n — oco. Let vi(k) = n™' 3" | X¢Xt4x. Then from the fact that

n(k) = (1 — k/n)v;_(k), we have

hn hn hn

@19) 30 Bl W< Do bl -2+ 2D S

k=—hn k=—hnpn k=—hn
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Since hy/+/n — 0, the second term of the right hand side of (4.19) is o(1) as n — oo.
Therefore, if the first term of the right hand side of (4.19) is op(1), then (4.17) holds.
Since

hn by
Yo mk® =B < D k) = (R
k=—hn 9 k=-hg,
< (2hn+1)_ max Ik (k) = v(K)ll2,
it is enough to show that
(4.20) sup |17 (k) = 1(B)ll2 = 0(1/v/n).

However, by Davydov’s inequality, we have that

I (k) = v(R)1lz = —nl,‘;E {Z(XtXt+k - EXtXt+k)}

t=1

1 n
3 Z | Cov(X: Xtk Xs Xov)]

t,s=1

LS 2p(28(0t — sD)YPIX Kbl Ko Kokl

t,s=1

1 oo
< =+ 8p- || Xoll3l|1 Xoll3, - > Br)P
k=1

IA

IA

for all k. Then (4.20) is immediate in view of (4.15) and (4.16). O

LEMMA 4.7. Let {X,} be a strictly stationary process and let A(z,8) be a measur-
able function of = for all 6 in some parameter space © C R™. Let 0, be a consistent
estimator of 8y € ©, based on X1,...,X,. Assume that

(1) EA(X,6p)? < oo,

(2) A(z,0) is differentiable on © for all z,

(8) There exists a function B(x) such that EB(X)? < 0o and >~ |0A(z,6)/06;| <
B(z) for all x and 6,

(4) 6, — 6y = Op(1/+/n) as n — .

Then for a sequence {h,} satisfying the property in (2.9), as n — oo,

n—k

hp
2 3 D ACKL0AKerts B = ACK ) AKeon ) = 0p (1),

PROOF. By the mean value theorem, we have
Az, 0) — A(z,6p) = OA(x,00 + A(0 — 6y))/06 - (6 — 6y)
for some 0 < u < 1, and consequently,

|A(z,0) — A(z,00)| < [|0A(z, 00 + A(6 — 60))/ 06| - 1|0 — bol| < B(x) - [0 — 6o
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for all  and z. Therefore, we have

|A(Xs, 0,) A(Xeak, ) — A(Xe, 00) A(Xpgk, 00)|

< HAXe, )| A(X etk On) — A(Xosk, 00)] + | A(Xe, Bn) — A(Xe, 00)||A(Xp1x,60)]
< 16 — 60l (JA(X+, 00)| B(Xt4k) + B(X0)|A(Xp 4k, 60)))
+ 116n — 60> B(X:) B(Xt1k)

1 .
< 5”971 — 0o||(A(X¢,00)% + A(Xisk,00)% + B(Xy)? + B(Xi4x)?)
1 -
+5l6n = 0oll*(B(X:)? + B(Xexk)?),

and consequently,

hn n—k
(4.21) Z > {A(X:,0n) A(X1 4k, On) — A(X+, 00) A(Xz4x,60)}
" —h, t=1
< 6~ 0ol - 5 Z"j S (4K 80 + (K60
k——hn t=1
+ B(X:)? + B(Xt4x)%)
10 = 0] o Z" Z(B(Xt)2+B<Xt+k))
k——h t=

From conditions (1), (3) and the strict stationarity of {X:}, it follows that as n — oo,

hn, n-—k
{ (Xe4k)? )}

t=1

vn
h, mn—k
{ Z Z(A(Xt,00)2 + A(X14k,60)* + B(X1)? + B(Xs4x) )}
k_—h
1

hn n—k

= e > D (BA(X+,00)* + EA(Xerk,00)* + EB(X:)? + EB(X14x)%)
k=—h, t=1
< 2hn \/f LBA(X,80)2 + EB(X)?) = 0.

Since ||6, — 8o]| = Op(1/+/n), the term of the right hand side of (4.21) is op(1). This
completes the proof. O

LEMMA 4.8. Under the assumptions of Theorem 2.4, K — K in probability.

PROOF. Let

8V(0 Xe) OV(6; Xewr)'
in (03 k) = n(1+a)2Z 59+ ‘
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Note that for any A € R™ with ||A|| = 1, {0V (0,; Xt)/08} is a zero mean real-valued
stationary process and that conditions K1 and K2 imply conditions (4.15) and (4.16)
for p = ¢ = r = 3. Therefore, the conditions in Lemma 4.6 for {\'0V (0,; X:)/00} are
fulfilled, and thus

hp
Z '?n(e(ﬁ k) —P’ NEKM.
k=—hg,

Since conditions A1-A5 with r = 3 and K1-K3 imply the conditions in Lemma 4.7, we
have

hn hp

S 4nl0nik) = 3 Fn(Baik) = 0p(1).

k=—h, k=—hn
Therefore, by the Slutsky’s theorem we have

[
NEX= 3" Aullnik) & XK,
k=—h,

which establishes the lemma. O
5. Concluding remarks

In this paper, we constructed the cusum test statistic as proposed in Lee et al. (2003)
based on the estimator minimizing density-based divergence measures. It was shown that
the test statistic converges to the sup of a Brownian bridge under regularity conditions.
For this, we verified the strong convergence result of the estimator. Through a simulation
study, we have seen that the cusum test Ty, , with a > 0 constitutes a robust test against
outliers, while it still keeps the same efficiency as the MLE based cusum test when there
are no outliers. The simulation result strongly supports the validity of the test. In
actual practice, it may be an important issue to select an optimal . One possible way
is, as in the trimmed mean context, to choose an a to produce the smallest asymptotic
variance of the minimum density power divergence estimator. See, for instance, Hong
and Kim (2001). They only handled one dimensional parameter space, but the idea can
be extended to multi-dimensional cases adopting the largest eigenvalue as a measure of
the magnitude of asymptotic covariance matrices. However, taking account of possible
parameter changes, it is not clear whether one can select an optimal « in all situations.
Actually, a local power study for a robust cusum test has been conducted in Lee and Park
(2001). According to their result, the power of the cusum test based on trimmed r.v.’s
depends upon trimming portions and unknown density of a given data. Thus, a serious
difficulty arises in choosing optimal trimming portions. From this example, one can also
reason that obtaining an optimal « is not an easy task in our case. We recommend to
use a = 0.1 ~ 0.2 since in our simulation study, it keeps the efficient of the test when
there are no outliers, while it makes a robust test against outliers. Here, we restricted
ourselves to the case of the strong mixing process, but the robust cusum test has a great
potential to be applied to various statistical models. We leave the task of extension to
other models as a future study.
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