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A b s t r a c t .  This paper introduces generalized skew-elliptical distributions (GSE), 
which include the multivariate skew-normal, skew-t, skew-Cauchy, and skew-elliptical 
distributions as special cases. GSE are weighted elliptical distributions but the dis- 
tribution of any even function in GSE random vectors does not depend on the weight 
function. In particular, this holds for quadratic forms in GSE random vectors. This 
property is beneficial for inference from non-random samples. We illustrate the latter 
point on a data set of Australian athletes. 
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1. Introduction 

Probabi l i ty  dis tr ibut ions tha t  are more flexible t h an  the normal  are often needed in 
stat is t ical  modeling (Hill and Dixon (1982)). Skewness in datasets ,  for example,  can be 
modeled  th rough  the mult ivar ia te  skew-normal  d is t r ibut ion in t roduced  by Azzalini and 
Dalla Valle (1996), which appears  to a t t a in  a reasonable  compromise  between mathe-  
mat ical  t rac tabi l i ty  and shape flexibility. Its probabi l i ty  densi ty funct ion (pdf) is 

(1.1) 2~)p(Z; ~, ~-~) . O(ozT(z - -  ~)), Z E ]~P, 

where Cp denotes the pdf  of a p-dimensional  normal  dis t r ibut ion centered at  ~ C ]~P 
with scale ma t r ix  ~t E ]~pxp and �9 denotes  the  cumulat ive  d is t r ibut ion  funct ion (cdf) 
of a s t anda rd  normal  distr ibution.  W h e n  (1.1) is the pd f  of a r an d o m  vector  Z we 
write Z ~ SNp(~ ,  ~ , a ) .  The  vector  a C ]l~ p controls the shape and the special case 
a = 0 corresponds to the mult ivar ia te  normal  dis tr ibut ion.  Despite  the presence of 
an addi t ional  pa ramete r ,  skew-normal  dis t r ibut ions resemble the normal  ones in several 

2 ways, for instance they  are unimodal  and (Z - ~ ) T f ~ - I  ( Z -  ~) N Xp. 
The  kurtosis of skew-normal dis t r ibut ions  is however bounded.  D a t a  f rom heavy 

tailed dis tr ibut ions can be be t t e r  modeled  th rough  cont inuous elliptical pdfs 

(1.2) la1-1/2, g ( a - 1 / 2 ( Z  -- ~)), Z �9 ]~P, 

where ~ �9 N p is the locat ion vector  paramete r ,  s �9 Npxp is the scale ma t r ix  parameter ,  
and g is the pd f  of a spherical dis t r ibut ion,  t h a t  is g(a)  depends on a only th rough  aTa.  
It follows tha t  elliptical densities are symmetr ic  a round  their  locat ion parameters .  
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In order to model both skewness and kurtosis, Branco and Dey (2001) introduced 
skew-elliptical distributions by means of the pdf 

(1.3) ~ g ( f ~ - l / 2 ( z  -- ~ ) ) "  G(~-~- I /2(Z -- ~)) ,  Z e ]~P, 

where g is the same as in (1.2) and G is the cdf of a univariate marginal pdf of g. 
Skew-elliptical distributions include skew-normal ones as well as elliptical ones. 

The purpose of the present paper is to analyze invariance properties of general- 
ized skew-elliptical distributions (GSE), a class of distributions which includes the skew- 
elliptical ones. More precisely, Section 2 introduces GSE and examines their relationships 
with other skew distributions in the literature. Section 3 presents a distributional invari- 
ance property of even functions in GSE random vectors. Section 4 discusses likelihood- 
based inference for generalized skew-normal (GSN) distributions. Section 5 applies the 
results of the previous section to inference from non-random samples, that  is a set of 
non i.i.d, random variables. Section 6 concludes and presents some open problems and 
conjectures. 

2. Generalized skew-elliptical distributions 

Azzalini and Capitanio (1999) defined skew-elliptical distributions by means of pdfs 
of the form 

(2.1) 2.....~. g ( ~ _ l / 2 ( z  _ ~)). H(vT(  z __ ~)) Z e R p, 

where g is the pdf of a spherical distribution and H is the cdf of a distribution symmetric 
around 0. The above class of densities includes the skew-elliptical ones (Branco and Dey 
(2001)). Note also that  (2.1) is twice an elliptical pdf at z C R p multiplied by a cdf 
evaluated at a linear function of z - ~. The pdf of a GSE distribution is twice an 
elliptical pdf at z E R p multiplied by a function of z - ~. The latter function is not 
necessarily a cdf and does not necessarily depend on z only through aT(z -- ~). More 
formally, we give the following definition. 

DEFINITION 2.1. A p-dimensional random vector Z has a generalized skew-ellip- 
tical (GSE) distribution with location vector parameter ~ E ~P, positive definite scale 
matrix parameter ~ C l~pxp, and skewing function 7r, if its pdf is 

(2.2) V ~ g ( ~ - l / 2 ( z  - ~ ) ) -~ (a -1 /2 (z  - ~)), z ~ ~P, 

where g is the pdf of a spherical distribution, and 7r satisfies 0 < 7r(z) < 1 and zr(-z) = 
1 - zr(z), Vz E ~P. We write Z ,.~ GSEp(~, f~, g, zr). 

The location vector ~ and the scale matrix ~t are not, in general, the expected value 
and the covariance matrix of Z, since GSE distributions may not be symmetric with 
respect to ~. Moreover, they may not have finite second moments. Note also that  we 
could write ~(~-1/2(z - ~)) as #(z - ~) where # satisfies exactly the same constraints as 
~, i.e. 0 < #(z) _< 1 and # ( - z )  = 1 - ~(z), Vz E Rp. Hence, the form (2.2) and the form 

(2.3) 2 n(O_1/2( z -  ~)). # ( z -  ~), z e I~ p, 
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Table 1. Some well known skew distributions belonging to the GSE family. 

g(z) ~(z) 
skew-normal Cp(Z) ff2(o~Tz) 

s k e w - t  Tp,t~ 1 ,t~ 2 (z) Tr,~ ,r,~ (OLT z) 
skew-Cauchy "~p(Z) C(o~T z) 
skew-elliptical ~p(Z) EI(o~T z) 

can be used interchangeably, see Section 4. 
The skewing function 7r is flexible enough for the GSE class to include many well 

known skew distributions, some of which appear in Table 1. In order to keep the presen- 
tation simple, location vectors and scale matrices are set equal to 0 and Ip respectively. 
In Table 1, Cp, ~-p,vl,~2, 3'p, and s denote the p-dimensional pdf of a normal, generalized 
Student t, Cauchy, and elliptical distribution respectively. Similarly, (I), T~;,~, C, and 
E1 denote the univariate cdf of the standard normal, the generalized Student t with 
P~ = lJ 1 + z T z  and v~ = v2 + p, the Cauchy, and an elliptical distribution. All the 
distributions in Table 1 are defined on R p. 

The skewing functions in Table 1 are monotone functions of their arguments, but 
this does not need to hold for every GSE distribution. For instance, consider the skewing 
function 7r(z) = (~(z 3 -  z) defined on 1~, where (I) is the cdf of a univariate standard normal 
distribution. It readily follows that  7r(z) is increasing in z only when Iz] > l /v/3.  

The skewing function 7r can also be a constant. Then it follows that  7r(z) = 1/2, 
Vz E ]~P, and the corresponding distribution is elliptical. Therefore, the class of GSE 
distributions includes elliptical distributions as special cases. The skew-normal, skew- 
Cauchy, skew-t, and skew-elliptical distributions in Table 1 assume some relationship 
between g and 7r. The GSE class, however, includes all possible combinations of elliptical 
distributions and skewing functions. Flexibility of the GSE class in modeling skewness 
can be appreciated by considering the univariate skew-t distribution. Its third cumulant 
is unbounded, as can easily be seen by considering the pdf h of the half-t distribution 
(a t distribution truncated at the origin), which is a limiting case of the skew-t with v 
degrees of freedom (see Branco and Dey (2001), p. 106): 

h ( z ) =  F[(v+ l)/2] 2 ( ~ )  (--u--1)/2 
r ( . / 2 )  ~ 1 +  , z > 0 .  

Indeed, from basic probability theory, we know that  the third standardized cumulant 
exists and is finite if and only if the third moment exists and is finite. A necessary 
condition for this to happen is that  the second moment exists and is finite. Consider 
now the integral representing the second moment of the half-t distribution: 

]o ]+] E(Z2) = z2h(z)dz = z2h(z)/2dz - u t , - 2 '  u > 2 ,  

which is finite only if v > 2, and where we used the fact that  Z 2 is even and h(z)/2 is the 
pdf of a t distribution. Hence, the third standardized cumulant of the half-t distribution 
does not exist when v < 2. This property represents an advantage of the GSE family over 
the skew-normal distribution when modeling highly skewed data. Indeed, the skewness 
of the skew-normal distribution is bounded, see Azzalini and Dalla Valle (1996). 
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GSE distributions arise in inference from non-random samples, that  is sets of ob- 
servations which are not i.i.d, according to the population's density. This happens when 
the value of an observation influences its probability of being included in the sample 
(Copas and Li (1997)). Under these circumstances, an observation's distribution can be 
better  described by a selection model (Bayarri and De Groot (1992)): 

(2.4) f ( z ;  0) .  w(z)  
E[w(Z)] ' z �9 R p, 

where f is the pdf of the sampled population, 0 is the parameter of interest, w is a 
nonnegative weight function and E[w(Z)] is the expected value of the random vari- 
able w(Z) .  The representation of a GSEp(O, f~, g, 7r) distribution as a selection model is 
straightforward: 

g (a -1 /2z)  w(z) = ~(a-1 /2z) ,  E[w(Z)] = 1/2. (2.5) f (z;O) - igtll/~ , 

It follows that the multivariate skew-normal distribution is a selection model as well. 
Indeed, the p-dimensional skew-normal distribution can be generated through a (p + 1)- 
dimensional normal distribution, by conditioning the first p variates on the event that  
the last variate is larger than its expected value. From the inferential point of view, 
this means that  skew-normal samples arise when multivariate normal observations are 
included in the sample only if a given component of the observation itself is larger 
than it is expected to be. Similar comments hold for the multivariate skew-elliptical 
distribution (Azzalini and Capitanio (1999); Branco and Dey (2001); Sahu et al. (2003)), 
the multivariate skew-t distribution (Branco and Dey (2001); Sahu et al. (2003)), and 
the multivariate skew-Cauchy (Arnold and Beaver (2000)). 

GSE distributions also arise in prospective studies (Weinberg and Sandler (1991); 
Weinberg and Wacholder (1993); Wacholder and Weinberg (1994); Zhang (2000)). Con- 
sider a random sample Z 1 , . . . ,  Zn from a p-dimensional elliptical distribution with pdf 
g. Let d~ �9 {0, 1}, i -- 1 , . . .  ,n, be the observed value of a dichotomous random variable 
Di associated with the i-th observation, and P(Di  = 0 I Zi = z~) = 7r(zi). Prospective 
studies focus on the conditional distribution of Zi given Di =- di. From Bayes' theorem 
we get: 

(2.6) f(z~ I di = O) - g(z i ) .  7r(zi) f ( z i  I di -- 1) -- g(z i ) .  (1 - ~r(zi)) 
E[~r(Z)] ' 1 - E l f (Z ) ]  

It easily follows that ~r(-zi) = 1 -Tr(zi) implies that  f ( z i  I di) is GSE. Relevant examples 
include the logistic regression model: 

exp(~T zi ) 
(2.7) P(D~ = 0 I Zi = zi) = 1 + exp(~Tzi) ' 

and the probit regression model: 

(2.8) P(Di  -- 0 I Zi = zi) = (I)(f~Tzi), 

when the intercept is assumed to be equal to zero. 
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3. Invariance properties 

Azzalini (1985) shows tha t  if Z ~ SNI(0,  1 ,a) ,  then Z 2 ~ X~ for any value of the 
shape parameter  c~. This result has been generalized to the mult ivariate  skew-normal 
dis tr ibut ion by Azzalini and Dalla Valle (1996): if Z ~ SNp(O, ~t, a) ,  then  z T ~ - a Z  ~ X2p. 
A similar result holds for skew-elliptical random vectors (Branco and Dey (2001)). A 
further generalization is given by Azzalini and Capitanio (1999): if Z ~ SNp(O, ~,  c~), 
then  Z T A Z  ,~ X2p when A~tA = A. Genton et al. (2001) compute  moments  of quadrat ic  
forms in skew-normal random vectors. The joint distr ibution of several quadrat ic  forms 
is examined in Azzalini and Capitanio (1999), as well as in Genton et al. (2001). These 
results are related to the following distr ibutional  invariance property  (Loperfido (2001)): 
if Z ~ S Np(O, ~, (~), then the joint distr ibution of the products  ZiZj  ( i, j = 1 , . . . ,  p) does 
not depend on the shape parameter  c~. In this section, we show tha t  a similar proper ty  
holds for any even function T(Z), i.e. a function such tha t  T(--Z) ---- T(Z) Vz �9 ]~P, of a 
GSE random vector Z centered at  0. 

PROPOSITION 3.1. I f  Z~ GSEp(O,~,g,~) ,  then the distribution o fT(Z) ,  where T 
is an even function, does not depend on the skewing function 7r. 

PROOF. We derive the proof for a real-valued function T since the vector- or matrix-  
valued case is similar and straightforward. Wi thou t  loss of generality, we can assume 
tha t  ~t = Ip. It suffices to prove tha t  the characteristic function c(q) of T(Z), 

(3.1) c(q) -- ~ exp(iT(z)q)2g(z)~(z)dz, q �9 ~, 

does not depend on 7r. Let A + (A- )  be the set of vectors in ]~P whose first component  
is not  negative (is negative): 

(3.2) A + = {(Zl ,Z2, . . . ,Zp):  zl _> 0}, A -  = { ( z l , z 2 , . . . , z p ) :  zl < 0}. 

It follows tha t  A + U A -  = ]I~ p and A + N A -  -- 0. Hence: 

c(q) = /A+ exp[iT(z)q]2g(z)Tr(z)dz + /A-exp[iT(z)ql2g(z)Tc(z)dz. 

Consider now the t ransformat ion w = - z  and notice tha t  z c A + r - z  c 4 - ,  the 
closure of A - .  Because .A- and A -  have the same measure, we have: 

a- exp[iT(z)q]29(z)Tr(z)dz = /A+ exp[iw(-w)q]2g(-w)Tr(-w)dw" 

By assumption,  T ( - z )  = T(Z), 9(--Z) ---- g(z), and 7r(-z) ---- 1 - 7r(z). Thus: 

(3.4) c(q) = 2/A+ exp[iT(z)q]2g(z)dz, 

which does not  depend on 7r. [] 

COROLLARY 3.1. If  Z ~ GSEp(O, ~ ,g ,u) ,  then the distribution of Z Z  T does not 
depend on the skewing function ~. 
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PROOF. This is a direct consequence of Z Z  T being an even function and Proposi- 
tion 3.1. [] 

COROLLARY 3.2. Let A a , . . . ,  Am be p • p real matrices and let Z ,,~ GSEp(O, ~, 
g, 7~). Then the joint distribution of the quadratic forms (ZTA1Z, . . . ,  ZTAmZ) does not 
depend on the skewing function It. 

PROOF. This is a direct consequence of quadratic forms being even functions and 
Proposition 3.1. [] 

The following proposition presents an invariance property that  will be useful for 
inference in the GSE family, see Section 4. 

PROPOSITION 3.2. IfZi ~ GSEp(O, ~t, g, ~i), i = 1 , . . . ,  n, are independent random 
vectors and S = ~-~i~1 z i z T / n ,  then the joint distribution of z T s - 1 z 1 , . . . ,  z T s - 1 Z n  
does not depend on ~t, ~1,. . .  ,~n. 

PROOF. Without loss of generality, we can assume that  Ft = Ip. Then it suffices 
to show that  the joint distribution of the vector of quadratic forms ( z T s - 1 z 1 , . . . ,  
z T s - 1 Z n )  does not depend on the skewing functions ~1,..-,~rn. The following set of 
determinants is a function of ( z I Z T , . . . ,  ZnZT): 

[ZIZ T + Sl IZ~Z T + Sl 
(3.5) ISl 1, . . . ,  ISl 1. 

From element ary properties of determinants, we know that  I A + yyT[ = I AI(1 + yT A -  1 y). 
Then: 

(3.6) ( Iz lzT§ IN~ZT+Sl ) ISl 1 , . . . ,  ISl 1 m_ (zTIS-1Z1,..., zTs-IZn). 

By Corollary 3.1, the joint distribution of ( z 1 z T , . . . ,  ZnZ T) does not depend on the 
skewing functions ~l , . . . ,~rn ,  which is therefore also the case for ( z T s - 1 z 1 , . . . ,  
z ~ s - l  zn). [] 

4. Generalized skew-normal distributions 

Invariance properties of GSE distributions allow one to ignore the sampling bias 
when the distribution of the data  are sample selection models. They lead to several 
extensions of well-known inferential results from normal distribution theory. 

Consider a GSE pdf (2.3) which factors into a p-dimensional  normal pdf r and a 
skewing function ~, that  is: 

(4.1) 2r ~ ( z -  ~), z c ~p. 

A random vector Z with pdf (4.1) has a generalized skew-normal distribution with loca- 
tion vector parameter ~, scale matrix parameter ft, and skewing function ~. We denote 
it by Z ~ GSNp(~, ~, 7r). Note that  the dependence of ~ on fl has been removed, and 
thus inference is simplified as shown below. The multivariate normal distribution and 
the skew-normal distribution (1.1) are special cases of GSN distributions. 
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The skewing function ~ can be interpreted as a parameter, since different skewing 
functions lead to different GSN distributions. It follows that sufficient and ancillary 
statistics are defined for GSN distributions too. For example, consider a random variable 
Z whose pdf f(z; 0,7) depends on the parameters 0 and 7. A statistic t is said to be 
partially sufficient for 0 if its distribution depends on 0 only and it is sufficient for 0 for 
any given value of V (Basu and Pereira (1983); Reid (1995)). Loperfido (2001) shows 
that the sum of squares and products (SSP) matrix is partially sufficient for the scale 
parameter it when the rows of the data  matrix are independent skew-normal SNp(O, ~, ~) 
random vectors. Similar results hold for GSN random vectors. 

Under the same assumptions, the SSP matrix divided by the number of observations 
is the maximum likelihood (ML) estimator and the uniform minimum variance unbiased 
(UMVU) estimator of the scale matrix. Moreover, its distribution is Wishart. The above 
statements can be formalized as follows: 

PROPOSITION 4.1. Let ~ = ZTZ/n,  where Z is an n • p matrix whose rows 
Z l  , . . . , Zn are independent and Zi ,~ G S Np ( O, it, Tci ) , i -- 1 , . . .  ,n. Then 

(1) ~ is the ML estimator of ft. 
(2) The distribution of ~ is Wishart: ~ ~ W(it /n,  n). 
(3) ~ is partially sufficient for it. 
(4) ~ is the UMVU estimator of it. 

PROOF. (1) Because the random vectors Z 1 , . . . , Z n  are independent and Zi --~ 
GSNp(O, it, 7ri), i = 1 , . . .  ,n, the likelihood function l is the product of a function of it 
only and a function of ~1 , . . . ,  7~n only. Therefore, the supremum of l is: 

sup l(it,~l,...,~n)=suplal-~/2exp- t r ( a - l z T z )  �9 sup 1-ITr~(Zi). 

The above equation implies that the functional form of ~ does not depend on the choice 
of 7h , . . . ,  7rn. Hence standard maximization procedures (e.g. Mardia et al. (1979), p. 104) 
lead to fi -- z T Z / n  and the first part of the proof is complete. 

(2) If the n rows of a matrix Y are i.i.d. Np(0, it) then y T y  ... W(it, n), see e.g. 
Mardia et al. ((1979), p. 66). Equivalently, if the n rows of the matrix Y/v/~ are i.i.d. 
Np(0, i t /n)  then Y T y / n  ~ W(it /n,  n). Since z r z / n  is an even function in the rows Zi 
of Z, z T Z / n  ~.. W(f~/n, n), see Proposition 3.1 in Section 3. We already proved that 

= z T Z / n  and this completes the second part  of the proof. 
(3) We already proved that the distribution of fi depends on f~ only. Then it suffices 

to prove that the conditional distribution of the sample given z T z  does not depend on it 
for any given choice of ~h , . . . ,  ~r,~. Since z T z  ~ W(it, n), the pdf of z T z  is proportional 
to (Mardia et al. (1979), p. 85): 

The conditional pdf  of Z given z T z  = D is proportional to: 

If~l -n/2 exp - t r ( i t - l D )  1-Ii=lTri(i) 

: ~[DIl+p-nl-I~i(Z d. 
lit]-n/2 v/lDln-P-l exp [ - l  tr(i t- l  D)] i = 1  
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The last relationship does not depend on ft for any given choice of 7rl, . . .  , 7l- n. Hence 
the third part of the proof is complete. 

(4) The Wishart distribution belongs to the exponential family and hence is com- 
plete (e.g. Mardia et al. (1979), p. 46). The UMVU property of ~ easily follows from 
sufficiency of z T z ,  unbiasedness of ~ with respect to m, and completeness of the Wishart 
distribution. [] 

Invariance properties of GSN distributions can be applied to hypothesis testing 
as well. Many likelihood-based tests for scale matrices with normal data  Z / ~  Np(0, m) 
maintain their properties when the data  are GSN, i.e. Zi "~ GSNp(O, m, 7r~). The following 
proposition focuses on likelihood ratio tests (LRT) for the equality of two scale matrices. 
It shows that the functional form of the LRT statistic, as well as the power function of 
the LRT test, do not depend on the skewing functions 7rl,...,Trn. Hence the Skewing 
functions do not need to be specified, allowing a high degree of robustness with respect 
to departures from normality and maintaining many optimality properties of the LRT. 
More formally: 

PROPOSITION 4.2. Let Z 1 , . . . , Z n  and Y1,..- ,Ym be independent p-dimensional 
random vectors such that Zi ~ GSNp(O, Qz,  7ri), i - -  1 , . . . ,  n, and Yj ..~ GSNp(O, Qy,  
wj),  j = 1 , . . . , m .  Moreover, let A be the likelihood ratio test statistic for the null 
hypothesis Ho : mz = Qy against the alternative H1 : mz  ~ Qy.  Then the followings 
hold: 

(1) A is invariant with respect to the skewing functions 7rl,. . .  ,rrn and Wl,.. .  ,win. 
(2) The power function of the L R T  does not depend on the skewing functions zr l , . . . ,  

7rn and 0 3 1  , . . . , ' ( .dr  n . 

(3) When the null hypothesis is true and the sample size is large, the distribution 

o f - 2 1 o g A  is chi-square: -2 log  A ~a Xp(p+l)/22 under Ho. 

PROOF. Denote by A, B, and C the following matrices: 

A =  Z~ , B =  , C -  , 
n + m  i=1 j=l 

and denote by W the vector of weight functions 7rl, . . .  ,Trn, Wl,. . .  ,com. 
(1) From the previous proposition's proof we know that: 

n m 

Ho ~ 2 ~  .= -= 

Following a similar argument, we can write: 

n m 

= 

f ~ z , f ~ y  , W  W . =  . =  

By definition, the LRT statistic is the ratio of the above suprema: 

[ IcI n§ 
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Its functional form does not depend on W and hence it is invariant with respect to it. 
This completes the first part of the proof. 

(2) The statistic A depends on z T z  and y T y  only, which are even functions of 
the data. Hence A is an even function of the data. By Proposition 3.1 in Section 3, this 
implies that the distribution of A, and hence the power function of the test, depends on 
f~z and ~ y  only, and not on the skewing functions ~rl , . . . ,  7rn, Wl,. �9 win. 

(3) Proof of the asymptotic properties of - 2  log A easily follows from ordinary prop- 
erties of likelihood ratio tests and from the invariance property of A. The proof is then 
complete. [] 

It is well known that  the joint distribution of the random variables: 

ZT1 (Z TZ) - 1 Z I , . . . , Z T ( Z  TZ) - l z  n 

does not depend on f~, when the rows Z1 , . . . ,  Zn of the data  matrix Z are independent 
and Z~ ~ Np(0, ~). The same result holds if Zi ". GSNp(O, f~,Tri): they are ancillary 
with respect to the scale matrix f~ and skewing functions 7rl , . . . ,  7r,~. Therefore they can 
be used to check generalized skew-normality. 

PROPOSITION 4.3. If  Zi ~ GSNp(O, t2, Tci), i = 1 , . . . , n  are independent random 
vectors and S = Y~i"=-x ZiZT /n, then the joint distributions of ZT S-1ZI ,  . . . , z T  S - 1 Z ,  
does not depend on ft, 7rl, . . .  ,Trn. 

PROOF. This is a special case of Proposition 3.2. [] 

Notice that all the above propositions hold even when the observations are not iden- 
tically distributed, since the skewing functions 7rl , . . . ,  7rn might not be equal. Moreover, 
the assumption of the location parameter ~ being zero is not restrictive when ~ is known 
or the sample is large and a consistent estimator of ~ is available. 

5. Inference from non-random samples 

This section applies invariance properties of GSN distributions to inference on 
heights and weights of Australian adults, using a non-random sample drawn from the 
same population. From official statistics (Australian Bureau of Statistics (1995)) we 
know that the average height (in centimeters) and weight (in kilograms) of adult Aus- 
tralian males (females) is 174.8 and 82.0 (161.4 and 67.0) respectively. We make the 
standard assumption that  the joint distributions of heights and weights for adult Aus- 
tralian males (HM and WM) and females (HF and WF) are bivariate normal: 

( H M )  ~N2[ (174"8~  ] 
WM [ \ 82.0 ] '  ~M 

( H F )  ~ N2 [ (166104) , ~F ] �9 

Under the above model, inference on heights and weights of Australian adults re- 
duces to inference on ~M and fiE- We shall focus on point estimation of rim and f~F 
and hypothesis testing for their equality. Inference will be based on the heights and 
weights collected by the Australian Institute of Sport (AIS) from 202 athletes of both 
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sexes (102 males and 100 females), competing in different events. Cook and Weisberg 
(1994) analyzed this data  within the framework of a regression model, under the normal- 
ity assumption. Azzalini and Dalla Valle (1996) showed that the bivariate skew-normal 
distribution gave a bet ter  fit, the data  being slightly skewed. Arnold and Beaver (2000) 
modeled skewness through the skew-Cauchy distribution, which also accounts for heavier 
tails. AIS data, however, are not a random sample from the adult Australian popula- 
tion. Individuals are included in the sample only if they are gifted athletes. Moreover, 
the sample includes athletes of both sexes, competing in different disciplines (i.e. bas- 
ketball, gymnastic, and rowing). Indeed, the AIS data are significantly skewed: p-values 
associated with Mardia's hi,2 measure of multivariate skewness (Mardia (1970)) for male 
athletes and female athletes are 0.003 and 0.046 respectively. 

We now motivate the GSN model for the AIS data. Without loss of generality we 
can represent the joint distribution of height Hs and weight Ws of an adult Australian 
individual of sex S (S = M for males and S = F for females) as follows: 

Hs =FtHS n u AHS �9 Us + ~/HS " ~ H S ,  

Ws -- # w s  + Aws  �9 Us + 7 w s  �9 ~ws, 

where Us, ~HS, and ~ws are independent standard normal variables and: 

) CIs = AHS -~- "/HS AHS �9 AWS 
2 2 ' 

AHS " AWS Aws + Tws 

174.8 S = M, ~" 82.0 S = M, 
#HS = 161.4 S = F, # w s  = ~ 67.0 S = F. 

It easily follows that the above model is a single factor model, where Us is the common 
factor and ~HS, ~ws are the specific factors for height and weight respectively. The 
former can be interpreted as a proxy for "physical fitness", which is clearly above average 
for all individuals in the AIS data set. More formally: 

() <) Hs individual in the data  set r Us > O. 
Ws Ws  

Azzalini and Dalla Valle (1996) show that the distribution of Hs,  Ws  I Us > 0 (and 
hence the joint distribution of heights and weights for the athletes in the sample) is 
bivariate skew-normal, under the above assumptions. More precisely: 

(gs)lindividualinthedataset~SN2[(#US~ws k \ # w s / '  a s , a s ]  

where c~s is a function of AHS, ~/HS, AWS, and Vws. In order to achieve some robustness 
and to account for individual differences (i.e. for different sport events) we propose the 
more general GSN bivariate model: 

Zi ~ GSN2 (0, ['~M, 71"i) i = 1 , . . . ,  102, 

~ asN2(0,a.,  ) j = 1 , . . . , 1 0 0 .  

Here Z 1 , . . . ,  Z102 and Y1, . . . ,  ]I100 are the vectors of differences between the observed 
heights, weights and the corresponding populations' averages: 

of the i-th male athlete - 174.8h 
Zi = k, Weight of the i-th male athlete - 82.0 ! ] '  
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of the j - th  female athlete - 161.4) 

YJ = \ Weight of the j - th  female athlete - 67.0 )"  

Despite the above arguments, the GSN distribution might not be an appropriate model 
for the AIS data. The sampled population might not be normal, nor the sampling bias 
could be modeled through a skewing function 7r(z) = 1 - 7r(-z). An example of the 
latter case is: 

(~l(Z) .(i) ~ 5Z-}-50 ~ 
(5.1) f ( z ) =  ~(5o----) \ ~ ) '  z E R ;  5 0 C R ,  - 1 < 5 < 1 .  

The above distribution is a selection model with respect to the normal pdf, but  it is not 
GSN since in general: 

~ - 5 z  + 5o ~ 5Z + 5o ~ 

Simple counterexamples show that invariance properties introduced in Section 3 do not 
hold for (5.1) unless 50 = 0. 

Invariance properties of GSE distributions can be used to check the adequacy of the 
GSN model. Azzalini and Capitanio (1999) analyzed body fat and body mass indices 
of the athletes in the AIS data  set, under the assumption that they came from a skew- 
normal distribution. They computed the quadratic forms of the data  and used Healy's 
plot (Healy (1968)) to obtain a graphical display of fit. We also use quadratic forms to 
check the adequacy of the GSN model for the heights and weights in the AIS data  set. 
We consider the Mahalanobis distances of the observations from their official average 
values, with respect to the ML estimates ~M and ~F,  that  is: 

ZT•M, Z,, T ^-1 yTf iF ,Yl ,  . " T A_, �9 . Y100~F YlOO. �9 , ZlO2f~M Z102 and ., 

By Proposition 4.3, the joint distribution of these statistics depends neither on f~M, 
f~g nor on 7h , . . . ,  7rlo2 and w l , . . . ,  WlOO. The same holds for any function of the above 
statistics, including Mardia's measure of multivariate kurtosis (Mardia (1970)): 

1 102 
(5.2) b2,.(M) = zyfi 'a, 

i=1 
100 

(5.3) b2p(F) - 1 
' 100 E ~T~F1YJ" 

j=l 

Mardia (1970) obtains the asymptotic distribution of b2,p under normality. Proposition 
4.3 implies that the same result holds under generalized skew-normMity. Hence, we can 
use b2,p(M) and b2,p(F) to check the adequacy of the GSN model. The p-values of the 
b2,2 statistics for male and female athletes are 0.098 and 0.016 respectively. Hence, at 
the 0.05 level, we do not reject the GSN hypothesis for male athletes, but  we do reject it 
for female athletes. If we do not reject the GSN model for both male and female athletes, 
we can test the hypothesis H0 : f~M = ~ '~g through the likelihood ratio test. Since the 
sample size is large, the sampling distribution of - 2  log A is approximately chi-square 
with 3 degrees of freedom under the null hypothesis (Proposition 4.2 in the previous 
section). The observed value of - 2 1 o g A  is 11.166, and the corresponding p-vMue is 
0.011. We can therefore reject the hypothesis f~M ---- f~F at the 0.05 level. 
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6. Conclusions 

In this article, we have in t roduced  a new class of skewed distr ibutions:  general- 
ized skew-elliptical (GSE) distr ibutions.  These  are weighted elliptical dis t r ibut ions tha t  
include the mult ivar ia te  skew-normal,  skew-t, skew-Cauchy, and skew-elliptical distri- 
but ions  as special cases. We have shown tha t  the  dis t r ibut ion of any even funct ion in 
GSE r a ndom vectors does not depend on the skewing function,  which holds in par t icu lar  
for quadra t ic  forms. This  p rope r ty  is beneficial for inference from non- random sam- 
ples. We have developed inference for the special case of generalized skew-normal  (GSN) 
dis t r ibut ions and i l lustrated our results on the Aust ra l ian  athletes  d a t a  set. 

At  present  t ime there  does not  exist a general  m e t h o d  for comput ing  ord inary  mea- 
sures of skewness and kurtosis (i.e. cumulants)  for GSE distr ibut ions,  due to the great  
flexibility of the skewing funct ion and the extent  of the elliptical family. Th e  problem is 
s tr ict ly re la ted to  the characterist ic  funct ion of a GSE pdf, which we conjecture  to have 
the following form: 

(6.1) c(t) ---- f exp( i tTz )2g(z )Tr (z )dz  = 2 ~ ( t T t ) k ( t ) ,  t �9 R ~, 
Y~ p 

where k9 is the  character is t ic  funct ion corresponding to the elliptical p d f  g and the 
funct ion k is a funct ion such tha t  k ( - t )  = 1 - k( t )  and 0 _< k( t )  < 1. T h e  conjecture  
is t rue  for the  skew-normal  dis t r ibut ion (Azzalini and Dalla  Valle (1996)) where  k( t )  = 
�9 ((~Tt), and it is wor th  asking whether  it holds for a more  general  subclass of GSE 
distr ibutions.  
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