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A b s t r a c t .  The present article shows that a limiting argument that is essentially the 
law of small numbers produces a proper discrete multivariate distribution from any 
generalized Poisson distribution. Based on this result, Engen's Extended Negative 
Binomial (ENB) model is derived from the Poisson-Pascal distribution, which is 
a generalization of the inverse Gaussian-Poisson distribution. The ENB model is 
also derived from Sichel's generalized inverse Gaussian-Poisson distribution. The 
application of the ENB model is discussed thereto. 
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1. Introduction 

Engen (1974) proposed the Extended Negative Binomial (ENB) model to describe 
the population structure of frequencies of species. A population model of this type is 
called a stochastic abundance model (Engen (1978)) and is statistically a distribution 
over nonnegative integers. This kind of population modeling has extensive applicability 
and is thus an important subject. Many linguists, for instance, have applied population 
models to word frequencies, and recently statistical disclosure control demands continu- 
ous development in this modeling; see Hoshino (2001) for a brief survey. 

The ENB model was, however, not clearly specified enough to attract  many statisti- 
cians' interest, as explained in Subsection 1.1. Consequently, there remain many points 
to be clarified. In order to elucidate relationships among the ENB model and other 
models, the present article in Section 2 shows a limiting property of a population model 
that consists of generalized Poisson distributions in the sense of Johnson et al. ((1993), 
p. 351). An instance of this distribution called Poisson-Pascal will result in the ENB 
model. It is also shown that the same type of limiting produces the ENB model from 
Sichel's (1971) generalized inverse Gaussian-Poisson distributions. The present article 
demonstrates the applicability of the ENB model in Section 3. Concluding remarks are 
given in Section 4. 

Because the class of generalized Poisson distributions contains most of distribu- 
tions that  have been used to describe frequency data, these discussions bring profound 
understanding on models for count data. 

1.1 Background 
In the following, N denotes the set of natural  numbers; N0 denotes the set of non- 

negative integers. For an arbitrary nonnegative integer J ,  the set of positive integers 
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from one to J,  or {1 ,2 , . . . ,  J}, is denoted by N(J).  Consider a population consisting of 
J cells (groups, species, words), each of which is uniquely indexed by j ,  where j E N(J).  
The j - th  cell contains Fj individuals, where Fj E No, and the total number of individuals 

J is denoted by N = ~ j = l  Fj. 
Let Si denote the number of cells of size i. More specifically, 

J 

= - -  i ) ,  i E N0, 

(1.4) P(Fj  -- y) = (1 - O)~OYV(y + 7) ' 

The joint distribution of size indices results in 

(1.5) P(S1 -- tl ,  $2 = t~, . . . )  

f r ( i  + 7)  (1 - 1 
= J! l -I  \ r(-~)i! / t~-~' 

i = 0  

y c N 0 ,  0 < 0 < 1 ,  0 < %  

(3O 

to = J -  E ti >_ O. 
i = 1  

j - ~ l  

where I(.) is the indicator function: 

1, F j = i ,  
I ( F j = i ) =  0, Ej r  

In the statistical literature, (So, $1, . . . )  are called size indices (Sibuya (1993)) or fre- 
quencies of frequencies (Good (1953)). 

Obviously the Si are nonnegative integers that  satisfy 

oo 

E S~ = J, 
i = 0  
oo 

(1.1) E i . Si = N. 
i = 1  

It is noteworthy that  J is the total number of cells including empty cells, which may 
correspond to unseen or extinct species. In the following 

oo 

(1.2) U = E S i  = J -  So 
i = 1  

denotes the number of non-empty cells. 
A typical assumption of a model for count data  is that  Fj, j C N(J),  is independently 

and identically distributed over nonnegative integers. Then, as explained in Appendix A, 
size indices are multinomially distributed over No~176 

P(F1 = i) t' 
(1.3) P(S1 ---~ t 1 , S 2  ---- t 2 , . . . )  ---- J! H to -- J -  E ti > O. 

t~! ' 
i = 0  i----1 

For example, suppose that Fj, j C N(J) ,  is independently identically distributed as the 
negative binomial distribution: 
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The expectation of a size index is 

(1.6) E(Si) = j ( 1  - o),oT(i + 3`) 
r(3`)i! 

, i E N o ,  

under (1.5). The population size N becomes a random variable, and let us restrict its 
expectation to the actual population size No, which is usually given in practice. Under 
(1.5), the restriction E(N)  = y~i~176 iE(Si) = No is equivalent to 

No(1 - O) 
(1.7) J3` -- 0 

An actual population often consists of very large number of cells. It is thus reason- 
able to consider the limit of a model as 

(1.8) J --* OC, where E(N)  -- No fixed. 

(1.9) 

where 

Anscombe (1950) pointed out that  applying (1.8) to (1.5) produces the logarithmic series 
model: 

oo  

P(S1 = tl ,  S2 ---- t 2 , . . . 1  = 1-I Ait~ exp(-Ai)  
ti! 

i = 1  

Ai -- No(1 - 0) 0i 
i 

Under (1.9), each S~ is independently subject to the Poisson distribution with mean Ai, 
which is henceforth denoted by Po(A~).  The model (1.9) is named after the logarithmic 
series distribution (Fisher et al. (1943)), since the series of A~ is based on the same series 
expansion. 

Using the restriction (1.7), we can rewrite (1.6) as 

No (1 - 0)~+10iF(i + V) :-- T(i; V, ~)- 
(I.i0) E(Si) = 0 F(3` q- 1)i! 

Observing (1.10), Engen (1974) claimed for i E N that the natural lower bound of V 
is - 1  in contrast to the logarithmic series model where 3  ̀ --* 0; the "extended" part 
of the ENB model is this newly introduced area of - 1  < 3  ̀ < 0. However, only the 
expectation of a size index (1.10) was given, and the joint distribution of size indices 
was not specified. See Section 3.4 of Engen (1978) or Section 5.12.2 of Johnson et al. 
(1993) for more information. To avoid confusion, the ENB model is discriminated from 
the Extended (truncated) Negative Binomial distribution: 

- ~  exr (x  + 3`) 
(1.11) P(x) = 1 - (1 - ~)-~ F(3` + 1)x! 

c< T(X; 3`, 0), X E N, 0 < 0 < 1, --1 < 3` < O. 

When 3' is positive, (1.11) is the usual truncated negative binomial distribution. Sichel 
(1997) remarked that the ENB distribution fits a good number of observed species fre- 
quencies rather well as its skewness lies somewhere between that of the logarithmic se- 
ries distribution and the lognormal-Poisson distribution. This fact accords with Engen's 
claim that the ENB model can describe various actual populations. 
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Recently, Hoshino (2002) obtained a population model: 

(1.12) 
exp(--T(i; ~ 1~2~ O))T(i; --1~2~ 0) t, 

P(S1 = tl ,  $2 = t2 , . . . )  = 1~ 
i=1  ti! ' 

where 

T(i;--1/2,0) --  
2 N ~  No 00 r(i - 1/2) 

0 1"(1/2) r( i  + 1) ' 

(-1)!! -- 1 and (2i - 3)!! = (2i - 3)(2i - 5 ) . - .  1. In (1.12), each Si is independently 
distributed as PO(T(i;--1/2, 0)). Hence (1.12) satisfies the restriction (1.10) with V -- 
- 1 / 2  and can be regarded as a special case of the ENB model. Let us consider the 
following ENB model: 

(1.13) 
exp(--~-(i; 7, O))T(i; O) ~, "7, 

P(S1 ---- t l ,S2 -- t2 , . . . )  = U 
i=1 t i [  

where - 1  < V < 0. Henceforth (1.13) is referred to as ENB(v),  and (1.12) is E N B ( - 1 / 2 ) .  
The derivation of E N B ( - 1 / 2 )  is as follows. Suppose that  Fj,  j C N(J) ,  is indepen- 

dently and identically distributed as the Inverse Gaussian-Poisson (IGP) distribution: 

(1.14) Vfl  P ( F  = y) = exp(ax/i--L-0) y---~ Ky_w2(a) ,  

y C N 0 ,  0 < a ,  0 < 0 < 1 ,  

where K~(.) is the modified Bessel function of the third kind of order V; see Chapter 
7.1 of Seshadri (1999) for the IGP distribution. Equation (1.12) is the result of applying 
the limiting argument (1.8) to this IGP population model. The next section investigates 
what kinds of generalizations of the IGP distribution lead to ENB(v) as (1.8). 

2. The derivat ion of  the ENB model 

This section explicates two methods each of which produces ENB(v).  The first one 
uses the general property of an infinitely divisible distribution over nonnegative integers. 
In this way, we also generalize known results about conditioning a population model on 
N. The second one links Sichel's generalization of the IGP distribution with the ENB 
model. All the proofs of theorems in this section are provided in Appendix B. 

A good place to start  is to examine the condition under which the limiting distri- 
bution of a size index is an independent Poisson distribution. We have seen that,  if Fj,  
j E N(J) ,  is independently and identically distributed, size indices are subject to the 
multinomial distribution (1.3). Because the marginal distribution of the multinomial 
distribution is the binomial distribution, the law of small numbers applies except for 
So (or any margin). Engen (1977) summarized this result as Lemma 2.1 below. The 
derivation of independent Poisson distributions from a finite-dimensional multinomial 
distribution appears, say, in Johnson et al. ((1997), p. 124); the set of finite number of 
independent Poisson distributions is called a multiple Poisson distribution there. 
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LEMMA 2.1. Let Fj, j E N(J) ,  be independently and identically distributed over 
No. If, for each positive i, the expectation of Si converges to a positive constant as 
J --, oo, or 

(2.1) lim J P ( F j  = i) = c~, i C 1% 
J---~ oo 

where ci > 0, the limiting distribution of Si as J --* oo is independently Po(ci). 

An infinite series of size indices that  are subject to independent Poisson distributions 
is called composed Poisson distributions; see Johnson et al. ((1997), p. 188). When S~ is 
subject to Po(c~), the probability generating function (pgf) of the number of individuals 
from cells of size i equals 

E~176 zX.iciX x!eXp(-ci) = exp(ci(z i - 1)). 

x = 0  

Therefore, the pgf of N under composed Poisson distributions is expressed as 

o o  

G (z) = I I  e x p ( c , ( z  ' - 1 ) )  
i=1  

If oo E i = I  Ci ---~ C < o o ,  w e  can rewrite Go(z) a s  

Gc(z) = exp(C(g(z) - 1)), 

where 
o o  

g(z) = ~ff" Cizi 
L _ ~  C �9 
i = l  

o o  Let c~/C be denoted by q~. Because q~ is positive and ~-~=1 q~ = 1, we can regard g(z) as 
a pgf. The distribution defined by this Go(z) is called a generalized Poisson distribution, 
where g(z) defines its generalizing distribution. Obviously, 

o o  o o  

E(N) = E iE(Si) = C E iqi := No. 
i----1 i = l  

The next question is to determine the distribution of Fj that satisfies the condition 
(2.1) of Lemma 2.1, given {ci [ i C IN}; the ENB model arises when ci = T(i; 7, 0). As 
a matter  of course, such a distribution can not be unique. Later two distributions are 
shown to share the same limiting distribution, for example. 

In order to determine the distribution of Fj uniquely, one may restrict the model 
such that the distribution of N does not change for all J ,  by which the distribution of 
N remains unchanged after the limiting argument (1.8) and then E(N)  is restricted to 
No. This is possible by letting the pgf of Fj  be 

which is again a generalized Poisson distribution. In this  case, the pgf of N can be 
written as 

(2.2) Go(z) = O F ( z /  
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for all J ,  with the result tha t  the dis tr ibut ion of N is infinitely divisible. Conversely, 
any infinitely divisible dis tr ibut ion over nonnegative integers is a generalized Poisson 
distr ibution by L@vy's Theorem; see Section 12.3 of Feller (1957). I t  implies the following 
fact. 

Remark 1. Suppose tha t  Fj ,  j E N(J) ,  are independent ly  and identically subject  
to a proper dis tr ibut ion over nonnegative integers. Then  the distr ibution of N remains 
unchanged for all positive J ,  only if F j ' s  are subject to a generalized Poisson distr ibution.  

It is thus impor tan t  to elucidate the proper ty  of a model tha t  consists of independent  
and identical generalized Poisson distributions. In fact, to any model of this type,  the 
limiting argument  (1.8) can apply. 

THEOREM 2.1. 
subject to the distribution that has the pgf : 

(2.3) 

where 

Suppose that each Fj, j E N(J) ,  is independently and identically 

G(z) = exp(a(g(z) - 1)), 

oo 
g(z)  ~ ~ qiz i 

O < a < ~ ,  

i = l  

is the pgf of a proper distribution over positive integers. Let Ja = # be fixed. The limiting 
distribution of Si, i C N, as J ---+ c~ (a ~ 0) is independently Po(qi#). 

The negative binomial distr ibution (1.4) is infinitely divisible wi th  a -- -3,  log(1 - 8) 
and g(z) -- log(1 - Oz)/log(1 - 8), which defines the logarithmic series distribution: 

1 0 i 

qi = log(1 - 8) i 

Thus,  by lett ing # equal the right hand side of (1.7) t imes - l o g ( 1  - 8), we obta in  the 
logarithmic series model (1.9) as ~/--) 0. Wil lmot  (1986) noted tha t  the IGP distr ibut ion 
is also infinitely divisible; let a = ~(1 - ~ -  8) and g(z) = (1 - x/1 - zS)/(1 - x/1 - 8), 
which is the pgf of the t runca ted  ENB dis t r ibut ion wi th  ~/-- - 1 / 2 :  

q i - -  1 8 i ( 2 i - 3 ) ! !  

1 - x/1 - 0 2ii! 

Then,  if # -- 2N0(1 - v/i'-L-0)v/1 - 0/0, the limiting dis t r ibut ion is (1.12) as c~ ---+ 0. See 
Section 8.3 of Johnson et al. (1993) for other infinitely divisible distributions. 

To prove Theorem 2.1, the author  referred to Kemp (1978), where it is shown tha t  
g(z) of Go(z) defines the limiting distr ibution of the t runca ted  distr ibution of Go(z) as 
C ~ 0. For instance, the logarithmic series dis t r ibut ion is the limit of the t runca ted  neg- 
ative binomial distribution.  The limiting dis t r ibut ion of the t runca ted  IGP dis t r ibut ion 
as c~ ~ 0 is the ENB distr ibut ion (1.11) wi th  7 -- - 1 / 2 .  

Next we consider condit ioning the popula t ion  model  tha t  consists of independent  
generalized Poisson distr ibutions on N.  Sibuya et al. (1964) pointed out tha t  the 
conditional dis tr ibut ion of the negative binomial model  (1.5) given N is the Dirichlet- 
mult inomial  mixture  or the negative mult ivariate hypergeometr ic  distr ibution proposed 
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by Mosimann (1962). Hoshino (2003) discussed the property of the conditional IGP 
population model given N (CIGP distribution). According to Watterson (1974), the 
conditional distribution of the logarithmic series model on N is the Ewens distribution 
(Ewens (1972)); see Hoshino and Takemura (1998) also. The conditional distribution 
of E N B ( - 1 / 2 )  or the limiting CIGP distribution was derived in Hoshino (2002), where 
these relationships were illustrated. This type of conditioning is of importance because 
fixed N is more realistic than to fix E(N)  in application fields where a sampling frame 
is definite. 

As for models in a broad class, the conditioning has another advantage. Let us write 

-~ aih(O) i 
(2.4) g ( z ) - -  ~(0) z', 

i=1 

where 
oo 

7(0) -- E aih(O)~' ai >_ O, h(O) > O. 
i=1 

The distribution defined by the pgf (2.4) is called a Modified Power Series (MPS) dis- 
tribution (Gupta (1974)). If h(O) -- 0, which is the case of the negative binomial dis- 
tribution and the IGP distribution, (2.4) reduces to that  of a power series distribution 
(Noack (1950)); see Johnson et al. ((1993), p. 70). The following theorem states that 
the power parameter 0 does not affect the conditional model of the Poisson distribution 
generalized by an MPS distribution given its total frequency. In other words, N is a 
sufficient statistic for 0; see Johnson et al. ((1993), p. 73). After conditioning on N, 
parameter estimation should become easier. 

THEOREM 2.2. Suppose that each Fj, j C N(J) ,  is independently and identically 
subject to the distribution that has the pgf : 

G(z)  = exp(atl(O)(g(z ) - 1)), 0 < c~ < c~, 

where ~?(0) and g(z) are defined by (2.4). Then G(z)  also defines the M P S  distribution: 

bih(O) i 
(2.5) P(F j  = i) - exp(a~(0)) '  

where bo = I and bi+l = a( i  + 1)-1 ~ = o  (i + 1 - j ) a i + l - j b j .  
J The conditional model given N = ~-~j=l Fj is expressed as 

J 

P(F1 = gl, F2 = g2 , . . . ,  F j  = ga I Y = n) = 1-[ bgj/dn, 
j = l  

or  

J! I I  bit~ n 
(2.6) P ( S 1  -= t l ,  $2 -= t 2 , . . . ,  Sn  : tn  I N = n) - ( j  - - v ) ! d n  ti! ' v = E t i ,  

i=1 i=1 

where do 1 and di+l Jc~(i + 1) -1 i = = y~j=o(i + 1 - j ) a i + l - j d j .  
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When J a  is fixed at #, the limiting distribution of (2.6) as J --+ oo is 

~tv ~I aiti 
P(S,  --- t l ,$2  = t 2 , . . . , S n  = tn [ N = n) = ~ ti! " 

i----1 

Now, ENB(q,) is derived based on Theorem 2.1. The ENB distribution (1.11) has 
the following pgf: 

g(z) -- 1 - (1 - zO)-~ 
1 - ( 1  - ' 

by which we obtain a generalized Poisson distribution defined by this pgf: 

(2.7) G(z) = exp(a{(1 - 0) -~ - (1 - z0)--v}), 

where 0 < a,  0 < 0 < 1 and - 1  < ~/< 0. Actually, ~ can be positive, and (2.7) reduces 
to that  of the Poisson distribution when "y -- - 1 .  However, the present article only 
considers the aforementioned parameter space. Let the distribution of Fj,  j C N(J) ,  be 
defined by (2.7). Then 

E(Fj)  = -a~/0(1 - 0) -~-1,  j e N(J) ,  

and the relationship that  E(N)  = No is equivalent to the restriction: 

(2.8) J a  -- N0(1 - O) 1+~ 
"y0 

When a -- a(1 - (1 - 0) -~) and # equals the right hand side of (2.8), Theorem 2.1 
produces ENB(7). In summary, the following result holds. 

PROPOSITION 2.1. Suppose that Fj, j E N(J) ,  is independently subject to the iden- 
tical distribution that has the pgf (2.7). Let E(N)  be fixed at No. The limiting distribution 
of ($1, $2 , . . . )  as J --+ oo ((~ ~ O) is then ENB(~). 

The distribution (2.7) is called Poisson-Pascal and reviewed by Johnson et al. 
((1993), p. 382), in which the case of positive 7 is solely considered, though. It was 
Willmot (1989) who pointed out that  negative ~/ larger than - 1  is valid. If we allow 
the first moment of the Poisson-Pascal distribution to be infinite, 0 can be unity, where 
(2.7) reduces to that  of the discrete stable distribution (Steutel and van Harn (1979)) 
and the ENB distribution (1.11) reduces to the Sibuya distribution (Sibuya (1979)). It is 
observable that  the ENB distribution is a power-series-distributionized Sibuya distribu- 
tion and the Poisson-Pascal distribution is a power-series-distributionized discrete stable 
distribution. 

The probability function of the Poisson-Pascal distribution is generally complicated. 
However, because the ENB distribution (1.11) belongs to the class of MPS distributions, 
Theorem 2.2 assures us of the following result. 

PROPOSITION 2.2. Suppose that Fj, j E N(J) ,  is independently subject to the iden- 
tical distribution that has the pgf (2.7). Then 

D(i; oz, "/)9 i 
(2.9) P (F j  = i) = exp(~(1 - (1 - 9 ) -~) ) '  i e No, 
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where D(0; a,  3') = 1 and 

c~ 
(2.10) D(i  + 1 ;a ,V  ) - i + 1 

o r  

(2.11) 

_ _ _  s -3`r(i + 1 - j + 3`) D ( j ;  a ,  V)- 
j=0 F ( V +  1 ) ~ - - j ) !  

J The conditional model given N = }-~j=l Fj is expressed as 

J 
1 

P(F1 = gl ,F2 = g2, . . . , F j  = g j  IN = n) - D(n;  Jo6 v ) 1-I D(gj; 
j = l  

n 
where v = E i = I  ti. 

P(S1 = t l , $ 2  = t 2 , . . . , S n  = tn I N = n) 

J! ~-[ D(i;  a, V) t~ 

D(n;  Ja ,  7 ) ( J  - v)! 1 1  ti! 
i=1 

The limiting distribution of (2.11) as J --~ oc when J a  = # is 

(2.12) P(S1 = tl ,  $2 = t 2 , . . . ,  Sn = tn ] N = n) 

F(V + 1) D(n;  ~t, 3`) i=1 

• 
i! ti!" 

When p equals the right hand side of  (2.8), equation (2.12) is the conditional distribution 
of ENB(v)  given N .  

We may recall tha t  (2.7) reduces to tha t  of the  IGP  dis t r ibut ion when 3  ̀ = - 1 / 2 .  
Hence (2.11) reduces to the CIGP  dis t r ibut ion when 3' = - 1 / 2 ,  and (2.12) reduces to the 
limiting C I G P  distribution. When  V ~ 0, (2.12) corresponds to the  Ewens distr ibution.  
These  special cases are very simple. 

Remark  2. The distr ibut ion (2.12) belongs to an exponent ial  family, when 3` is 
fixed and # is seen as the unique parameter .  Then  U is its sufficient statistic,  as the 
Ewens dis t r ibut ion (V --* 0) and the limiting C I G P  dis t r ibut ion (V = - 1 / 2 ) .  

Let us investigate the number  D(i; a, 3`) defined by the recursion (2.10). I ts  gener- 
at ing function appears  to be 

f ( z ;  a ,V  ) = exp(a(1  - (1 - z ) -~ ) )  

because  of (2.9). Charalambides and Singh ((1988), equat ion 3.19) evaluated it as 

(2.13) 
1 

f ( z ; a , ? )  = E E C ( i ' J ' - v ) ( - a ) J ( - z ) i i - [ . '  
i=0 j= l  

where  C ( i , j , - V )  is the C-number,  which is a generalized Stirling number;  see Char- 
alambides and Singh (1988) for its detailed review. In the  domain  of - 1  < V < 0, the 
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expression of the C-number is not simple except for the case of 7 = - 1 / 2 .  Because 
equation (2.13) implies that 

i 

D ( i ; a , 7 )  = E(~J(-1) i+JC(i , j , -7)~ . , .  
j = l  

it is unlikely that D(i; a, 7) can be generally expressed in a simple form. 
Professor H. Yamato suggested the following evaluation of the distribution of U 

under (2.12). See Hoshino (2002) for its simple case of 7 = - 1 / 2 .  Let us rewrite the 
right hand side of (2.12) as 

(2.14) 
(_Tp)~ 12 [ {(1+7)[~_,1 }t~ 1 :__~ ~ (~)t, 

D ( n ; # , 7 )  i! t/! - D(  ,7) ( -1 )n -~  7 1 
i = l  i=1  t i ! '  

where (1 + 7) [i-11 = F(i + 7) /F(1 + 7). Charalambides and Singh ((1988), equation 3.24) 
showed 

Z 
t l+ t2+. . .+ t ,~=v  i=1  t i !  ' 

where the summation is taken over all partitions of n into v parts under ~ iti = n. 
Consequently, 

#v 
P ( U = v I N = n ) = b ( n ; # , 7 ) ( - 1 ) ~ - v  C(n , v , -7 ) ,  

assuming (2.12). 
The above derivation follows Yamato et al. (2001), who evaluated the distribution 

of U under a generalized Ewens distribution called Pi tman's  sampling formula. Pi tman 
(1995) defined it as 

O(V:'Y) f-I { (l +7)[i-l l}t~ 1 
P(S1 = t l , . . . ,  S~ = tn I N = n) = n!--~h T i! ti--!.' 

i=1  

where v = ~ n  . . .  i=l ti and 0 (v:'y) = 0(0 - 7) (0 - (v - 1)7). The parameter space of 
- 1  < 7 < 0 is valid for 0 > 7, and U is sufficient for 0 because 

(2.16) P(S1 = tl ,  $2 = t 2 , . . . ,  Sn = tn [ U = v ,  N = n) 

C(n,v,-7)  t~! 
i=1  

under Pitman's  sampling formula. The following fact has been obvious. 

Remark 3. The conditional distribution of (2.12) given U and N is the same as 
(2.16) of Pi tman's  sampling formula. 

The restriction (2.2) was expedient to determine the distribution of Fj uniquely. 
Removing this restriction allows us to show that another model converges in distribution 
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Generalized 
CIGP 
distribution: 
(2.11) 

Mixture 

,<--.-..- 

Conditioni~ 

Law of small numbers 

Generalized 
Limiting CIGP 
distribution: 
(2.12) 

Poisson- 
Pascal model 

GIGP model: 
(2.18) 

Law of small numbers V 

Mixture~ I 
ENB model : 
(1.13) 

<---- 

Conditioning 

Fig. i. Models relating to ENB(7). 

. . .: 
.....'" 

. y  
. . . "  

Z: .... Law of small numbers 

to ENB(3,) by the limiting argument  (1.8). Sichel (1971) proposed the Generalized IGP 
(GIGP) dis tr ibut ion or Sichel distribution: 

(2.17) P(F=y )= ' (1 -O) 'Y /2 ( c~O/2 )YK y+.~ (c ~ ) ,  y e N 0 ,  0 < 8 < 1 ,  0 < c ~ ,  
K ( Vl - e)y! 

which equals the IGP distr ibut ion (1.14) when 3, -- - 1 / 2 .  The limiting dis t r ibut ion of 
(2.17) as c~ ~ 0 is the negative binomial  dis t r ibut ion when 3' is positive. Sichel (1992) 
showed for - 1 < ~/< 0 tha t  the limiting dis t r ibut ion of the t runca ted  G I G P  dis t r ibut ion 
as c~ -~ 0 is the ENB distribution. As regards the GIGP model: 

J (1 - 
(2.18) P(FI  = gl ,F2 = g 2 , . . . , F j  -- g j )  = H ~rt--~-(~i--- 0~ j . t  KaJ+'v(a) '  

j = l  

the limiting distr ibution as a ---* 0 (3, > 0) is the negative binomial  model, which becomes 
the logarithmic series model by the limiting argument  (1.8). We are interested in the 
case of - 1  < 3, < 0 on (2.18), which becomes ENB(3,). 

THEOREM 2.3. I f  --1 < 3' < 0, under  the restriction that E(N)  = No, the limiting 
distribution of size indices of (2.18) is ENB(3,) as J ~ oc and c~ ---* O. 

The relationships shown in this section are summarized in Fig. 1. 

3. Applying the ENB model 

3.1 Parameter  est imation 
This section discusses the Max imum Likelihood (ML) es t imat ion of ENB(3,). For 

( X )  O~3 �9 

i = 1 , 2 , . . . ,  an observed size index Si is denoted by ti, and v = ~-~i=1 ti, n = ~ i = 1  ~ti. 
The log likelihood is expressed as 

n = -N0(1  - 0) ~+1 (1 - 0) -~ - 1 + ( n -  v) log0 + v(3, + 1) log(1 - 8) 
03, 

o o  

+ t (log r ( i  + 3,) - log r (1  + 7))  + const .  
i=1 
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The first derivatives are 

0L00 No.7 ( (1 - 0)'~+1 - 0 2  1 (1 +'7)(10 - 0 ) 7 )  ( ) 1 - + + n - v ~ - v - -  

OL_N01-O No ( ( 1 - 0 )  "~+1 ( 1 - 0 )  7+1 ) 
0.72 + ~ "72 + '7 log(1 - 0) 

oo i-1 
1 +vl~  +j" 

i=2 j= l  "7 

('7 + 1) 
1 - 0 '  

The ML estimators are the solution of these simultaneous equations: 0L/0"7 = 0L/09 -- 
0. For its numerical evaluation, the Newton-Raphson method is available. The second 
derivatives are provided below. 

02L 

0700 

02L 
002 

No((1 - 0) "r+l - 1) No 0) "7+1 10g(1 0) 
02.72 - 02"7 (1 - - 

N o  N,~ N .  + ~--5~2 (1 - 0) 7 - ~-~(1 -/9) 7`/log(1 - 0 ) -  - ~ ( 1  - 0) 7 log(1 - 0 ) -  - -  

N~ ( 2 -  2(~ - 0 ) 7 + 1 " 7  ~ -- 2(1 + '7)(1 -- 9 ) 7 0 2  - (1 + V)'7(1 -- 9)'Y-1 ) 0  

N - v v('7 + 1) 
192 (1 - 0) 2 .  

No / / -2(1 - 9) + 2(1 - 0) ~'+1 
9 ~ '73 

02/" -- - log(1 - 0)2(1 - 0) 7+1 
0"72 '72 

+ l o g 2 ( l _ 0 ) ( 1 - ~  )7+1) 

r i--1 
1 

- E t, (j + '7 )2  
i----2 j=l  

1 - 0 "  

In practice, the realized value of N (denoted by n) usually equals No. 
likelihood equations reduce to the following: 

OL No(1 - (1 - 0)7)(1 - 0) 
(3.1) - -  = 0 r v -- 

00 70 
and 

} O0 i - - 1 ~ 1  = 0 ,  
(3.2) OLo___~ = 0 ~ N0(1V 0- O) 1 - (1V- 0)7 -~- log(1 - O) ~- Ei=2 ti j=aE "7 _~ j 

Then the 

where the derivation of (3.2) depends on (3.1). It is easy to show that the first term 
of the left hand side of (3.2) is negative and the second term is positive, when , 1  < 7 
(#  0) and 0 < 0 < 1. Namely, 

N o ( l - 0 )  { 1 - ( 1 - 0 )  7 + l o g ( I - 0 ) }  < 0  
(3.3) ~0 . '7 

and 
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Table 1. Fits of the ENB model to insect data from Mehninick (1964). 

381 

i Si Engen MLE i Si Engen MLE i Si Engen MLE 

1 50 51.02 53.31 

2 20 1 6 . 1 4  16.17 

3 11 8.77 8.65 

4 6 5.77 5.63 

5 5 4.18 4.05 

6 3 3.22 3.11 

7 2 2.58 2.48 

8 2 2.14 2.05 
9 2 1.81 1.73 

10 1 1.56 1.48 

11 0 

12 O 

13 0 

14 1 

15 0 

16 1 

17 0 

18 2 
19 0 

20 1 

1.36 1.29 21 

1.20 1.14 22 

1.07 1.02 23 

0.97 0.91 24 

0.88 0.83 25 

0.80 0.75 26 

0.73 0.69 27 

0.68 0.63 28 
0.63 0.59 29 

0.58 0.54 30 

0 0.54 0.51 

0 0.51 0.47 

1 0.48 0.44 

0 0.45 0.42 

0 0.42 0.39 

0 0.40 0.37 

0 0.38 0.35 

1 0.36 0.33 
1 0.34 0.32 

1 0.32 0.30 

oo i-1 
(3.4) 1 O. > 

i=2 j = l  ~9'+" 

The  left hand  side of (3.3) decreases as V decreases.  These  facts  suggest  t h a t  the  E N B  
model  (V < 0) fits b e t t e r  t h a n  the  NB mode l  (V > 0) when  small  cells are dominan t ,  i.e., 
the left hand  side of  (3.4) is large. 

3.2 An application result 
This  sect ion provides an example  of f i t t ing the  ENB model .  We will compa re  a fit of 

E N B ( v )  by the  ML es t ima t ion  wi th  a fit ob ta ined  by  Engen  (1974), who adop t ed  pseudo  
es t imat ion  methods .  

Table  1 shows the  resul t  of f i t t ing the  E N B  model  to insect d a t a  f rom Mehninick  
(1964). T h e  to t a l  n u m b e r  of insects, No, was 2220. T h e  columns  t i t led "i" cor respond  
to the  f requency of insects of  the  same  species, and  "Si" is the  observed n u m b e r  of 
species of f requency i. We omi t  d a t a  of frequencies larger  t h a n  30 f rom Table  1; o the r  
observat ions  were a t  31, 36(2), 39, 48, 73, 76, 93, 120, 148, 201, 283 and  592. T h e  
columns t i t led "Engen" show a fit by  Engen ' s  pseudo  m o m e n t  me thod ,  which essent ial ly  
uses the  t r u n c a t e d  negat ive  b inomia l  d is t r ibut ion.  T h e  p a r a m e t e r  e s t imates  by  the  
pseudo m o m e n t  m e t h o d  were "~p -- -0 .366 ,  0p -- 0.997; see Engen  (1974) for more  detail .  

The  ML es t imates  of E N B ( v )  are %~ = -0 .392 ,  ~,~ -- 0.998, which result  in the  fit shown 
in the  co lumns  "MLE" .  T h e  ML es t ima t ion  al locates  sl ightly more  p ropor t ion  to  smal l  
groups in this example  t h a n  the  pseudo m o m e n t  me thod ,  bu t  b o t h  fits seem reasonable .  

F i t t i ng  ENB('),) by  the  ML es t ima t ion  does work. Engen  had  to rely on pseudo  
me thods  since the  d i s t r ibu t ion  of size indices was unknown.  Because  even the  pseudo  
m o m e n t  m e t h o d  requires numer ica l  i terat ion,  there  is seemingly  no reason to use pseudo  
me thods  now. 

4. Concluding remarks 

In  diverse app l ica t ion  fields, negat ive  b inomia l  d is t r ibut ions  are of ten used for de- 
scribing count  da ta .  However,  the  negat ive  b inomia l  d i s t r ibu t ion  can hard ly  descr ibe  
the d a t a  of m a n y  smal l  groups,  for which we could improve  a fit by  in t roducing  E N B ( v ) .  
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The major way for describing counts has been to employ a truncated distribution or 
P (F j  [ Fj > 1). Such a distribution is over positive integers, and this may remind us that  
generalizing distributions, denoted by g(z), are also over positive integers. For instance, 
the ENB distribution is a truncated distribution and can be a generalizing distribution, 
from which the ENB model is produced. Then it is natural to ask the difference between 
the ENB distribution and the ENB model, or more generally, the difference between 
the direct use of a truncated distribution and its use as a generalizing distribution to 
generate the limiting distributions of size indices. 

The difference is whether U is fixed or random: In the direct modeling, U has to 
be fixed at the observed number of nonempty cells; on the contrary U is a random 
variable when size indices are independently Poisson distributed. To illustrate, for fixed 
v, suppose that  Fj,  j = 1 , 2 , . . . , v ,  are independently and identically subject to the 
ENB distribution (1.11). Then the joint distribution of these Fj ' s  coincides with the 
conditional ENB model given U = v. Assuming the distribution of U enables us to 
estimate the increase of nonempty cells as the total number of individuals (N) grows. 
The practical importance of this advantage is apparent when we see the vast researches 
on this type of estimation surveyed by Bunge and Fitzpatrick (1993). By applying 
the limiting argument (1.8) to generalized Poisson distributions, U becomes Poisson 
distributed, whereby the total number of species in a population can be estimated for 
example. More detailed discussion on this issue will be held in the author's subsequent 
paper. 

A generalized Poisson distribution is suitable to describe skew data  that are observed 
in many cases; see Zipf (1949) or Mandelbrot (1983) for this empirical fact. There are 
ample reasons why we have shown some general properties of this class of distributions. 
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Appendix 

The following notation is used henceforth: 

F = (El, F 2 , . . . ,  F~) c N0 J, S = ($1, $2 , . . . )  ~ N0 ~ ,  
S(Trt) -~ (Sl, S 2 , . . . ,  Sin) E ~0 rn, /It E 1~]. 

A. The infinite-dimensional multinomial distribution 
The infinite-dimensional multinomial distribution has only finite sources of variation. 

We construct the joint distribution of an infinite series of size indices from the distribution 
of finite-dimensional F .  

Let us consider r : N0 g ~-~ No W, where 

) r  = I(Fj = 1), I(Fj = 2), I(Fj = 3), . . . .  
j= l  j= l  
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This function r assigns to each frequency vector its size indices. Hence for a proper 
probability mass function P, 

(A.I) i= P(F): P(F). 
FeNo J SeI% ~ ,ve{rJr 

It may be worthwhile to point out that 

and P(0) = 0. We write 

{ r  I F e N0 J} c N0 ~176 

~ ( s )  = 

which is nonnegative for all S E No c~. 
probabilities. Because (A.1) shows 

E P ( F ) ,  
F6{FIr 

Note that  P ( S )  is the sum of finite number of 

1 =  E P ( S ) ,  
SCNo ~ 

we can regard ~ as the definition of the joint probability of an infinite series of size 
indices when the distribution of F is proper. This construction is valid for all J .  In 
particular, the distribution of F is proper when Fj,  j C N(J) ,  is independently and 
identically subject to a distribution over No. Then the distribution of S is proper and 
formally specified as follows. 

The restricted size indices S ( m )  are subject to the m + 1 dimensional multinomial 
distribution Pm defined by the pgf: 

(A.2) G ( z l , z 2 , . . . , Z m )  = zi - 1)P(F1 = i) + 1 , 

which converges for Izil __ 1. Then the sequence {Pm}~=l determines the distribu- 
tion of S uniquely; see Corollary 2.20 of Breiman (1968). Let Am = { S  I S ( m )  = 
(tl, t 2 , . . . ,  tm)}. Since Am are decreasing, 

lira P(Am): e ( ,ira Am), 
m---+oo \m--*oo 

where P(Am) is measured by Pm. We can thus write the probability mass function of S 
as (1.a). 

B. Proofs 
P R O O F  OF T H E O R E M  2.1.  

expressed as 
Given (A.2), the pgf of S ( m )  under the assumption is 

(B.1) 
1 

C ( Z l ,  z 2 , . . . ,  Zm) = 1 + j #  
m 1 )  

E ( z i  - 1)P(F1 = ~)a 
i=1 

In fact it is true that  

lim P(F1 = i )  
a--*0 a 

(B.2) - qi, i E N. 
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If (B.2) holds then the pgf converges as J ~ co when # < co and [zi[ <_ 1: 

(B.3) lim G(z1,  z 2 , . . . ,  Zm) ---- exp zi - 1)qi# �9 
J ~ o o  
a ~ O  

The right hand side of (B.3) implies that  each Si is independently subject to Po(q i# ) .  The 
limiting joint distribution is proper because the right hand side of (B.3) equals one when 
zi = 1 for all i. The above argument holds for all m, and thus the limiting distribution 
of S is determined by the sequence of the joint distribution of m independent Poisson 
variables as m --4 co. Note that  (B.2) is equivalent to the condition (2.1) of Lemma 2.1 
when ci = qi#. Consequently, it suffices to prove (B.2). 

We now show 

OO o o  

(B.4) lim E z i P ( F 1  = i) _ E ziqi = g(z), 
a--*0 a 

i = 1  i----1 

which implies (B.2). Because G(z )  = ~-~i~o z i P (  F1 = i),  the left hand side of (B.4) 
equals lima--.0(G(z) - G ( O ) ) / a ,  which amounts to 

lim exp (a (g ( z )  - 1)) - e x p ( a ( - 1 ) )  
a - * 0  a 

= laimo(g(z ) - 1 ) e x p ( a ( g ( z )  - 1)) + e x p ( - a )  

= g ( z )  

by l 'Hopital 's rule. [] 

The proof of Theorem 2.2 requires the following lemma shown by Khatri and Patel  
(1961). 

LEMMA B.1. Suppose that a random variable F is subject to the generalized Pois-  
son dis tr ibut ion defined by (2.3). Then  

i 

(i + 1 )P(F  = i + 1) = a E ( i  + 1 - j ) q i + l _ j P ( F  = j ) .  
j=O 

PROOF OF THEOREM 2.2. First we show, by induction, that  the assumed distri- 
bution of F1 belongs to the class of MPS distributions. We assume (2.5), which is true 
when i = 0 because G(0) = P(F1 = 0) = 1 /exp(c~(0))  and b0 = 1. For a generalized 
Poisson distribution, we can use the recurrence formula stated in Lemma B.1. Therefore, 

(B.5) 
i _ J) a i+l_ jh (O) i+l_  j 

(i + 1)P(F1 = i + 1) = c~(O) E ( i  + 1 P(Fi  = j ) .  
5=0 

Using (2.5), we rewrite the right hand side of (B.5) as 

i a i+l_ jh (O) i+l_  5 
a~(t~) E ( i  + 1 - j )  

5=0 ,7(o) 

b i b ( e )  5 h ( e )  i§ 
exp(c  (0)) - ol (i  + 1 - j ) a i + l _ j b 5  . 
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Namely, 

P(F1 = i + i) -- bi+lh(O)i+l 
exp(wl(8)) ' 

which again satisfies (2.5). Hence the distribution of F1 belongs to the MPS class. 
J Let N = E j = I  Fj. Because the pgf of N is G(z )  J, 

Dividing 

(B.6) 

P ( N  = n) - dnh(O)n 
exp(Ja~(0))  " 

P(F1 = gl ,F2 = g2 , - - . ,Fg  = g g , N  = n) 

h(O)n J J 
-- exp(Ja~(O)) 1-I bg~, n = E g j ,  

j=l j=l 

by P ( N  -- n), we obtain the conditional distribution (2.6). 
A referee suggested to rewrite the right hand side of (2.6) as 

( j ) ( )  1 I I ( J b i ) t '  1 . . . .  1 v - 1  
d ,  RiLl  ti! i=1 Y " 

Then, because (B.2) implies that  Jbi -~ ailA as J -~ (x3, the last result of the theorem 
obviously holds. The author originally obtained the limiting distribution by conditioning 
the joint distribution of infinite Poisson variables. [] 

PROOF OF THEOREM 2.3. We first consider the limiting of a -~ 0. Jorgensen 
((1982), p. 171) stated that for ~/> 0 

(B.7) a'rK.r(a)  ~ F(7)2 ~-1 

as a ~ 0. Because, as seen in Jcrgensen ((1982), p. 170) for instance, 

K~ (a) = K_~ (a) 

we obtain 

(B.8) 

as a ~ 0 when "~ < 0. 

a- '~K.~(a)  ~ F ( - 7 ) 2 - ~  -1 

According to Sichel (1974), E(N)  = No is equivalent to 

s o  K ~ + 1 ( ~ 4 1  - 0) 
(B.9) No = J - -  

2 4 1  - 0 K ~ ( ~ 4 1  - 0) 

under (2.18). Since - 1  < ~/< 0, the restriction (B.9) becomes 

(~)~ yor(~+ i) 
(B.m0) N o  = F ( - ~ ) ( 1  - 0)~+1 
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as a ~ 0 by (B.7) and (B.8). The  right hand side of (B.10) is constant  if and only if 
J a  -2"~ is fixed as a --* 0 and J --~ oo. Therefore we consider the limiting argument  of 

(B.11) J a  - 2 " ~ = # f i x e d ,  as J ~ o o  and a - * 0  

for - 1  < "y < 0, where 
NoF(-~/)(1 - 0)~'+ 1 

# ---- 22~0F(~ + 1) 

By Lemma 2.1, it suffices to show under  (B.11) tha t  

OiF(i + -y)22"v 
(B.12) lim J P ( F  = i) = # 

s ~  r(-,~)i! 

where P ( F  -- i) is given in (2.17); see the  proof  of Theorem 2.1. We can easily show 
(B.12) for - 1  < ~ < 0, considering (B.7) and (B.8). [] 
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